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Global climate change is expected to accelerate biological invasions, necessitating accurate risk fore-
casting and management strategies. However, current invasion risk assessments often overlook adaptive
genomic variation, which plays a significant role in the persistence and expansion of invasive pop-
ulations. Here we used Molgula manhattensis, a highly invasive ascidian, as a model to assess its invasion
risks along Chinese coasts under climate change. Through population genomics analyses, we identified
two genetic clusters, the north and south clusters, based on geographic distributions. To predict invasion
risks, we employed the gradient forest and species distribution models to calculate genomic offset and
species habitat suitability, respectively. These approaches yielded distinct predictions: the gradient forest
model suggested a greater genomic offset to future climatic conditions for the north cluster (i.e., lower
invasion risks), while the species distribution model indicated higher future habitat suitability for the
same cluster (i.e, higher invasion risks). By integrating these models, we found that the south cluster
exhibited minor genome-niche disruptions in the future, indicating higher invasion risks. Our study
highlights the complementary roles of genomic offset and habitat suitability in assessing invasion risks
under climate change. Moreover, incorporating adaptive genomic variation into predictive models can
significantly enhance future invasion risk predictions and enable effective management strategies for
biological invasions in the future.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Biological invasion and climate change are two major environ-
mental threats to global biodiversity, and both have caused severely
negative ecological, economic, and social consequences [1,2].
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Importantly, the extent and intensity of biological invasions are
expected to exacerbate under global climate change, particularly in
marine and coastal ecosystems [3,4]. Marine ecosystems are
extremely susceptible to biological invasions, as frequent human
activities, such as shipping coupled with climate change, enable
marine species to overcome geographical barriers and facilitate
their wide geographical spread [5]. Therefore, it is urgent to assess
invasion risks and design effective management at the early stages
of biological invasions in marine and coastal ecosystems.

Species distribution models (SDMs; abbreviations were listed in
Table S5) can predict species habitat suitability by linking species
distribution data to environmental predictors [6]. SDMs represent
an effective tool to assess geographical patterns of invasion risks
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Fig. 1. Two adaptive genetic clusters identified in the highly invasive Molgula man-
hattensis along Chinese coasts. a, Eight sampling sites along Chinese coasts. MinS in-
dicates the lowest monthly average salinity. b, Adaptive single nucleotide
polymorphisms (SNPs) identified by PCAdapt and LFMM. c, Population genetic struc-
ture based on adaptive single nucleotide polymorphisms (SNPs) using STRUCTURE. d,
Population genetic structure based on adaptive single nucleotide polymorphisms
(SNPs) using PCA.
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under current and future climatic scenarios [6e8]. Despite their
popularity, SDMs are based on several critical assumptions,
including the niche conservatism hypothesis, which assumes that
all populations within a species are spatial homogeneity and
respond uniformly to climate change [6]. Recent empirical studies
have challenged this hypothesis, revealing evidence of niche shifts
during biological invasions, particularly in marine invasive species
[9]. Relative studies have detected remarkable divergence among
populations within a single invasive species, suggesting that rapid
adaptation to diverse local environments plays a crucial role during
range expansions [10e12]. Therefore, it is critical to consider
intraspecific variation when assessing invasion risks using SDMs.

The incorporation of genomic information into SDMs provides a
possible solution for this critical inherent limitation [13]. A
commonly used approach is to incorporate spatial genetic structure
into SDMs, which can be achieved by identifying genetic clusters
and developing distribution models for individual clusters [14,15].
Despite its usefulness, this approach ignores the genomic infor-
mation in relation to rapid evolution during invasions [13]. More
specifically, as the frequency of alleles varies across populations,
the genotype-environment matching pattern indicates the signa-
ture of genomic adaptation to local environments or climate change
[16]. To overcome these limitations, researchers have attempted to
map species genomic variation at landscape scales via modeling
approaches such as the gradient forest model [17]. This new
approach makes it possible to evaluate the disruption of gene-
environment relationships under climate change scenarios
(termed as “genetic offset”) [17]. Thus far, genetic offset has been
widely promoted by genomic techniques (known as “genomic
offset”) and applied in a variety of taxa, such as forest tree species
[18] and terrestrial animals [19,20]. However, its implementation in
marine species remains limited, with only a few studies exploring
its potential in those taxa (e.g., Ref. [21]). Besides, integrating
genomic offset into the invasion risk assessment of alien species
under climate change is still in its infancy.

Invasive ascidians provide good models for studying invasion
success in marine and coastal ecosystems [22]. Molgula man-
hattensis is native to the east coast of North America and has widely
invaded global coastal ecosystems [23,24]. Many biological features
of this invasive ascidian, such as high fecundity, strong competitive
capacity, and a high potential for rapid evolution, are believed to
enable its rapid adaptation to varied local environmental condi-
tions during invasions [24]. After an initial introduction into Chi-
nese coasts, the invasion fronts have been pushed forward onto
dramatically different local environments from the north, such as
the Bohai Sea, and the south, such as the Southern Yellow Sea [25].
Thus far, both field observations and SDM assessments have shown
the ongoing and future spread of this invader at regional and global
scales [26]. However, the impact of genomic variation, particularly
those environmental adaptation-related, on the future invasions of
M. manhattensis remains unclear, especially along Chinese coasts
that are experiencing rapid and profound climate change.

In this study, we aim to assess the invasion risks of
M. manhattensis under future climate scenarios by incorporating
genomic variation and species habitat suitability. To achieve this,
we implemented a three-step approach. Firstly, we identified
environment-associated genomic variation and utilized gradient
forest models to calculate the genomic offset, enabling the pre-
diction of population vulnerability to future climate conditions.
Secondly, we developed SDMs to predict the habitat suitability of
this species along Chinese coasts under future climate change.
Finally, we comprehensively integrated the genomic offset and
habitat suitability to estimate future invasion risks.
2

2. Materials and methods

2.1. Environment-associated genomic variation

We collected a total of 118 M. manhattensis individuals from
eight sites along Chinese coasts (Fig. 1a). Genome-wide single
nucleotide polymorphisms (SNPs) were obtainedwith the reduced-
representation genome sequencing (2b-RAD), and detailed infor-
mation, including sample collection, genomic DNA extraction, and
genomic data generation and processing, was provided in our
previous project [24].

We chose outlier detection methods, including correction steps
for population structure, i.e., one population differentiation-based
method (PCAdapt) and one environmental association-based
method (LFMM, latent factor mixed-effect model). This strategy
has been widely used in related studies to reduce the confounding
effects of demographic history when investigating the signature of
environmental adaptation [10,16,20]. Firstly, we employed the
“PCAdapt” package in R to identify potential outlier SNPs indicative
of selection [27]. We employed a K value of 5 in PCAdapt to
accommodate population genetic structure, consistent with our
previous findings based on STRUCTURE and DAPC analyses [24].
SNPs with a false discovery rate (FDR) lower than 0.05 were
considered candidate outliers (q-value < 0.05). Secondly, for the
environmental association approach, we adopted LFMM using the
R package “LEA” [28]. LFMM implemented a hierarchical Bayesian
mixed model to correct for unobserved latent factors and has been
widely used to identify SNPs significantly associated with
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environmental variables [10,24,29]. The number of latent factors
was also set to five, as inferred from the previous population ge-
netic structure [24]. We retrieved various marine environmental
layers from the Bio-ORACLE v2.0 database (https://www.bio-oracle.
org) [30], which is extensively used in marine macroecological
studies [31]. We focused on sea surface temperature and salinity,
which are well known to exert considerable influence on the
ecological and physiological performance of marine species,
including ascidians [22e24,32]. We extracted 12 environmental
variables under present scenarios, including annual mean,
maximum, minimum, range, and the average of the maximum and
minimum values per year of sea surface temperature and salinity.
While the Bio-ORACLE database contains predictors related to
current velocity, we excluded these variables due to the limited
dispersal ability of ascidians [22,24] and recent evidence suggesting
minor effects of current velocity on ascidians distribution [26]. As
LFMM does not address collinearity among environmental vari-
ables, we first conducted principal component analysis (PCA) and
retained higher-order PCs (i.e., the sum of PCs > 90%), followed by
the developers’ guidance [28]. The lfmm function in R package
“LEA”was conducted with 10,000 iterations for five replicates, with
5,000 steps for burn-in. SNPs with median z-scores exceeding the
absolute value of two [abs(z-score) > 2] and q-values lower than
0.05 adjusted for multiple testing were considered significantly
environment-associated. SNPs identified by at least one of the two
approaches (PCAdapt and LFMM) were considered putatively
adaptive SNPs [10,24].

To characterize genetic composition among populations based
on the putatively adaptive SNPs we used two population assign-
ment analyses: STRUCTURE and PCA. The STRUCTURE analysis was
conductedwith the R package “LEA”, which can estimate individual
admixture coefficients and evaluate the number of ancestral pop-
ulations using the sparse non-negative matrix factorization (sNMF)
[28]. The sNMF analysis was repeated ten times for each K value
between 1 and 8, and the number of sNMF clusters with the lowest
cross-entropy value was selected as the optimal value. PCA was
performed with the R package “SNPRelate” [33].

We used redundancy analysis (RDA) to test the influence of
environmental, geographical, and spatial variables on population
genomic variation. Apart from the above 12 temperature and
salinity-related predictors, we incorporated two geographical pre-
dictors, namely water depth and distance to shore, downloaded
from the Global Marine Environment Datasets (http://gmed.
auckland.ac.nz). Ascidians are known to exhibit a predominant
distribution in near-shore shallow waters [22,23], and these two
geographical predictors can affect their distributions [26]. Previous
empirical studies on ascidians have revealed that extreme environ-
mental conditions, such as low salinity and high temperature, were
detrimental to their survival, growth, and geographical distributions
[34,35]. To address collinearity among variables, we calculated the
pairwise Pearson’s correlation coefficient (r) and retained one pre-
dictor among highly correlated variables (|r| > 0.70) (Fig. S1) [36].
Additionally, we incorporated principal coordinates of neighbor-
hood matrices (PCNMs) as predictors for spatial structuring and
unmeasured environmental variables. PCNMs were calculated from
the geographic coordinates of each sampling site using the pcnm
function in the R package “vegan”, and the first two uncorrelated
spatial eigenfunctions (PCNM1 and PCNM2) were retained [24].
Based on biological importance and collinearity analysis results, our
initial RDA model included six predictors: minimum sea surface
salinity, maximum sea surface temperature, the annual range of sea
surface temperature, water depth, distance to shore, and PCNM2
(excluding PCNM1 due to high collinearity with other predictors
above). The allele frequency of putatively adaptive SNPs was
detrended using the decostand function with the hellinger method
3

implemented in the R package “vegan”. Significant explanatory
variables were selected by using the forward.sel function in R pack-
age “packfor”, and these variables were used to develop a parsi-
monious RDA model with the highest adjusted coefficient of
determination (Radj2 ).

2.2. Gradient forest model to predict genomic offset

The gradient forest, a regression tree-based machine learning
algorithm, was employed to test nonlinear associations among
spatial, environmental, and allelic variables [17]. Similarly to RDA,
the gradient forest model included six predictors. To assess the
robustness of gradient forest models, we compared two different
sets of SNPs: (i) the complete set of SNPs with positive R2 in the
gradient forest (4,198 SNPs with R2 > 0 out of 6,635 SNPs) and (ii)
putatively adaptive SNPs with positive R2 (1,264 SNPs with R2 > 0
out of 1,301 SNPs; Table S2). The performance of individual SNP
model was assessed by the weighted R2 value using the cumimp
function in the R package “gradientForest” [17,37]. The model with
the highest R2 value was considered optimal and used to predict
genomic variation under present-day and future climates. For each
SNP, the gradient forest was applied with uncorrelated environ-
mental and spatial variables as predictors, with 500 regression
trees and a variable correlation threshold of 0.50, as suggested by
Fitzpatrick and Keller [17].

The genomic offset measures the mismatch between current
and future genomic composition using genotype-environment as-
sociations across current gradients as a baseline [17,38]. Pop-
ulations with a lower genomic offset would be less vulnerable to
climate change and require smaller adjustments to track future
environmental change. To predict the future genomic composition,
we extracted future projections of marine environmental pre-
dictors from the Bio-ORACLE v2.0 database [30]. We considered
future projections in the 2050s and 2100s under two representative
concentration pathway (RCP) scenarios: RCP4.5 (intermediate
emission scenario) and RCP8.5 (high emission scenario). Genomic
offset was estimated by calculating the Euclidean distance between
present-day and future genomic compositions [17]. Furthermore,
we conducted a two-tailed Wilcoxon rank-sum test to assess dif-
ferences in genomic offset between the two clusters.

2.3. Species distribution model to predict habitat suitability

In this study, we focused on projecting the habitat suitability of
M. manhattensis along the Chinese coasts, driven by two primary
reasons. Firstly, the invasions of M. manhattensis in China occurred
in 1976, followed by a rapid spread along the Chinese coasts with
dramatically different environmental factors [23,24]. This relatively
well-documented invasion history and geographical distribution
with varied local environments represent a good system to esti-
mate future invasion risks by integrating genomic offset and habitat
suitability at a regional scale. Secondly, niche shifts during biolog-
ical invasions might occur [32,39,40]. Consequently, invasive spe-
cies may have different realized niches in invasive compared to
their native ranges, making geographical distribution data outside
the native ranges valuable for predicting habitat suitability in
invaded areas [32]. Indeed, we conducted SDM analyses at the
global scale using worldwide distribution data of M. manhattensis,
and our main conclusions remained consistent (Figs. S9 and S10).

Geographical occurrence records of M. manhattensis along Chi-
nese coasts were collected through field sampling, literature sour-
ces, and online databases (Table S1). As previous studies suggested
[32,41], we removed invalid occurrence points and kept one point
per 5-arcmin grid cell (i.e., the spatial resolution of marine pre-
dictors). We divided species occurrence records into north and
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south clusters based on the genetic evidence (see Results for more
details). In total, our analyses included 34 records, including 26 and
8 records from the north and south clusters, respectively (Table S1,
Fig. S2). The number of species occurrence records can greatly in-
fluence the predictive power of SDMs, and the sample size of
M. manhattensis is sufficient to construct a reliable model [42,43].
We employed the maximum entropy algorithm (MaxEnt) imple-
mented in MaxEnt v3.4.3 to develop SDMs for M. manhattensis.
MaxEnt has proven to be effective for projecting species habitat
suitability, even with small sample sizes [31]. We delineated the
study extent by generating a 1,000-km radius buffer around species
occurrence records [44] (Fig. S2) and randomly selected 10,000
points within these buffer zones as background data. Previous
studies have highlighted the importance of tuning model param-
eters and avoiding models with default parameterizations [45]. To
address this issue, we fitted a total of 32 MaxEnt models with
different feature classes and regularization multipliers, and then
estimated their predictive performance via a five-fold cross-vali-
dation method [46]. We measured MaxEnt's predictive abilities via
threemetrics: AUC (area under the receiver operating characteristic
curve), TSS (true skill statistics), and Boyce (continuous Boyce in-
dex). The optimal MaxEnt model was determined based on the
validation AUC value and omission rate [47]. To estimate the
possible effects of climate change on the invasive potential of
M. manhattensis in China, we binarized the continuous habitat
suitability of SDMs and calculated the change in the suitable range
size of M. manhattensis. To reduce uncertainties resulting from
threshold selection, we quantified range size change via twowidely
used thresholds: a 10% presence probability threshold and a
threshold maximizing the TSS value [48].

2.4. Genomic-niche index to combine habitat suitability change and
genomic offset

Habitat suitability change and genomic offset evaluate invasion
risks of M. manhattensis from different aspects. In theory, values of
genomic offset are greater than 0, and larger values indicate more
vulnerable to future climate change (i.e., lower future invasion
risks; [17]). The change in habitat suitability varies from �1 to 1,
and positive and negative values suggest increased and decreased
invasion risks in the future, respectively. To assess invasion risks
comprehensively, we calculated the genomic-niche index by
combining habitat suitability change and the genomic offset
[19,20]. The genomic-niche index, also termed an eco-genetic in-
dex, was first introduced by Chen et al. [20] and has been suc-
cessfully applied in several works [19,20]. This index can be
calculated as follows: A ¼ BaC1�a, where A represents the
genomic-niche index, B indicates the change in habitat suitability
projected by SDMs, and C means genomic offset estimated by
gradient forest. The variable a is a weight parameter ranging from
0 to 1 [20]. Based on the recommendations by Chen et al. [20], we
first scaled habitat suitability change and genomic offset between
0 and 0.9. Subsequently, the optimal a value was determined by
minimizing the total deviation between the genomic-niche index,
change in habitat suitability, and genomic offset. Following the
approach outlined by Chen et al. [19], we estimated the optimal a
value using the artificial bee colony algorithm via the R package
“ABCoptim”.

Given that the habitat suitability of M. manhattensis along Chi-
nese coasts is expected to decrease in the future (Fig. 3), we focused
on regions with decreased habitat suitability. To calculate the
genomic-niche index, we used the absolute values of habitat suit-
ability change. This enhances the interpretability of our results, as
smaller genomic offset values indicate higher invasion risks, while
smaller decreases in habitat suitability (i.e., less reduction in habitat
4

suitability in the future) correspond to higher invasion risks. Thus,
the smaller genomic-niche index means a higher overall invasion
risk.

3. Results

3.1. Genomic variation associated with adaptation to local
environments

After high-throughput sequencing and data processing, a total
of 6,635 high-quality SNPs with a minor allele frequency
(MAF) > 0.05 were used in our subsequent analyses. The PCAdapt
analysis detected 273 outlier SNPs (q-value < 0.05; Fig. 1b). For the
LFMM analysis, we initially retained the first four PCs (PC1: 44.03%;
PC2: 24.11%; PC3: 17.63%; PC4: 8.29%) based on the environmental
PCA. From this analysis, we retained a total of 1,060 significant
environment-associated SNPs (q-value < 0.05), with 568, 512, 260,
and 223 SNPs significantly associated with PC1e4, respectively
(Fig.1b). Collectively, a total of 1,301 SNPswere identified by at least
one of the two methods, and they were considered as putatively
adaptive SNPs for subsequent analyses.

To characterize the genetic composition of different geograph-
ical populations, we used two population assignment analyses:
STRUCTURE (Fig. 1c) and PCA (Fig. 1d). Clustering of these puta-
tively adaptive SNPs indicated that populations of M. manhattensis
along Chinese coasts could be divided into two genetic clusters: the
north and south cluster. The north cluster consisted of DAD, LIH,
LVS, LAZ, RIZ, and QJZ populations, located in the relatively north of
China. The south cluster comprised the ND and XIM populations,
situated in the south of China. After the forward selection analysis,
two significant variables, i.e., water depth (Dep, p ¼ 0.006) and
minimum sea surface salinity (Salinity.Min, p ¼ 0.029), were finally
retained to construct the RDAmodel. The parsimonious RDAmodel
was significant (P-model ¼ 0.031) with an adjusted coefficient of
determination (Radj2 ) of 0.287 (Fig. S3). Altogether, we revealed two
putatively adaptive genetic clusters driven by local environments,
particularly for water depth and minimum sea surface salinity.

3.2. Genomic offset

Among all 6,635 SNPs, we identified 4,198 with positive R2,
significantly associated with environmental and spatial variables.
After extracting cumulative importance data, the mean R2-
weighted importance of environmental variables was higher in the
putatively adaptive SNPs (0.308) than in the whole SNPs (0.265;
Table S2).We thus selected gradient forestmodels using the dataset
of putatively adaptive SNPs to calculate the genomic offset and
predict how allele frequencies would shift under future climate
change.

The genomic offset revealed similar spatial patterns under
RCP4.5 and RCP8.5 in the 2050s (Fig. 2) and 2100s (Fig. S5). Spe-
cifically, the genomic offset decreased from the northern parts (the
Bohai Sea and Yellow Sea) to the southern parts (the East and South
China Sea) of the distribution regions along Chinese coasts. Our
results showed that regardless of future time periods, the genomic
offset was significantly greater under the high emission scenario,
RCP8.5 (average value: 0.013 ± 0.005 in the 2050s and 0.032 ± 0.011
in the 2100s), than the intermediate emission scenarios, RCP4.5
(average value: 0.012 ± 0.005 in the 2050s and 0.015 ± 0.006 in the
2100s) (Wilcoxon rank sum test, P < 0.001; Figs. 2 and S5).
Furthermore, a significantly higher level of genomic offset was
detected in distributional records belonging to the north than the
south clusters (Wilcoxon rank sum test, FDR-adjusted P < 0.001;
Figs. 2 and S5). Accordingly, populations inhabiting the northern
regions of its distribution range (the north cluster) appeared to be



Fig. 2. Genomic offset to future climate change under different emission scenarios in
the 2050s. a, Genomic offset under RCP4.5 in the 2050s. b, Genomic offset under
RCP8.5 in the 2050s. The comparison of genomic offset between the north and south
clusters using the two-tailed Wilcoxon rank-sum test and FDR correction for multiple
comparisons. The asterisk (***) indicates FDR-adjusted P < 0.001.
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more vulnerable to future climate change than populations in the
southern part (the south cluster). Altogether, these results indi-
cated that intraspecific variation in genotype-climate associations
between the two clusters likely contributed to different degrees of
genomic vulnerability to future climate change.
Fig. 3. Habitat suitability to future climate change under different emission scenarios
3.3. Habitat suitability to future climate change

The SDMs for M. manhattensis showed high discriminative
abilities with AUC, TSS, and Boyce greater than 0.975, 0.926, and
0.328, respectively (Table S3). Under current climatic conditions,
most Chinese near-shore shallow coastal waters were predicted to
be suitable for this invasive species (Fig. S4). Our modeling results
showed that regardless of threshold selection, habitat suitability of
M. manhattensis along Chinese coasts might reduce remarkably in
the future (Figs. 3 and S6), and suitable ranges for this species will
reduce, especially in southern China (range contraction varying
from �7.385% to �82.514%) (Table S4; Fig. S7). In addition, in the
future, the habitat suitability of the north cluster will be signifi-
cantly higher than that the south cluster (Figs. 3 and S6). These
results suggested that the southern regions were likely to experi-
ence more habitat suitability reduction than the northern regions
in the future.
in the 2050s. a, Habitat suitability under RCP4.5 in the 2050s. b, Habitat suitability
under RCP8.5 in the 2050s. The comparison of habitat suitability between the north
and south clusters using the two-tailed Wilcoxon rank-sum test and FDR correction for
multiple comparisons. The asterisk (*) indicates FDR-adjusted P < 0.05. c, Change in
habitat suitability under RCP4.5 in the 2050s. d, Change in habitat suitability under
RCP8.5 in the 2050s.
3.4. Genomic-niche index to assess invasion risks

The genomic-niche index exhibited spatial variation along Chi-
nese coasts, and across emission scenarios, the genomic-niche
5
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index showed a decreasing trend fromnorth to south along Chinese
coasts (Figs. 4 and S8). Most populations inhabiting the northern
coasts were forecasted to have medium to high genomic-niche
index. In comparison, most southern regions were predicted with
a minor genomic-niche index. For example, under RCP4.5 in the
2050s, the genomic-niche index of records belonging to the north
cluster ranged from 0.310 to 0.699, with an average of 0.513, while
the genomic-niche index of the south cluster ranged from 0.161 to
0.485, with an average of 0.279 (Fig. 4a). Moreover, the south
cluster exhibited a significantly lower level of the genomic-niche
index than the north cluster (Wilcoxon rank sum test, FDR-
adjusted P < 0.001; Figs. 4 and S8). These findings indicated that
the south cluster would have higher invasion risks in the future.
4. Discussion

In this study, we conducted a comprehensive assessment of in-
vasion risks of the invasive M. manhattensis by considering adaptive
genomic variation and habitat suitability under climate change. The
widely used SDMs suggest that populations inhabiting the north
should have greater invasion risks than those of the south, while
SDMs, together with putatively adaptive genomic variation, provide
distinct conclusions. Our findings highlight the importance of
incorporating genomic variation in relation to local adaptation into
invasion risk assessment. Neglecting genomic information may lead
to opposite risk assessment results. Genomic offset and habitat
suitability change provide a complementary understanding of
invasive potentials under future climate change. Thus, our integra-
tive investigations have valuable implications for effectively man-
aging biological invasions, especially in an era of climate change.
Fig. 4. Genomic-niche index based on the combination of genomic offset and change
in suitability change to future climate change under different emission scenarios in the
2050s. a, Genomic-niche index under RCP4.5 in the 2050s. b, Genomic-niche index
under RCP8.5 in the 2050s. The comparison of genomic-niche indices between the
north and south clusters using the two-tailed Wilcoxon rank-sum test and FDR
correction for multiple comparisons. The asterisk (***) indicates FDR-adjusted
P < 0.001.
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4.1. Two clusters driven by local environments

We uncovered two putatively adaptive genetic clusters of
M. manhattensis along Chinese coasts by using population geno-
mics analyses, such as STRUCTURE (Fig. 1c) and PCA (Fig. 1d). The
results are consistent with previous findings using discriminant
analysis of principal components (DAPC) [24]. Notably, the
boundary of two putatively adaptive clusters in our study does not
align with the traditional coastal geographical boundary, i.e., the
Yangtze River Estuary Biogeographical Barrier [49]. Mounting evi-
dence in biogeographical and phylogeographical studies has
recently indicated novel biogeographical breaks due to the influ-
ence of climate change and human activities, e.g., the Subei
Biogeographical Barrier [50]. These two putatively adaptive clusters
were characterized by distinct environmental conditions, with the
north cluster characterized by lower temperature and salinity
compared to the south cluster, which exhibited higher temperature
and salinity [24]. Based on RDA, we found water depth and mini-
mum sea surface salinity were key drivers in influencing popula-
tion genetic divergence (Fig. S3). Additionally, we identified several
environment-associated genomic loci based on LFMM (Fig. 1b),
indicating the signature of environment-driven local adaptation.
Recent studies have evidenced that invasive species could rapidly
adapt to various environmental conditions in introduced regions
[10,23,24,51]. Altogether, the results in this study, together with our
previous findings [24], highlight the crucial role of local adaptation
to different environments in driving putatively adaptive genomic
variation, particularly between the north and south clusters in this
study. Interestingly, these two clusters performed differently in the
intraspecific response to future climate change.

4.2. Incorporating adaptive genomic variation into invasion risk
assessment

According to SDM projections, we found that the habitat suit-
ability of the north cluster was significantly higher than the south
cluster. Specifically, most regions in the northern parts were pre-
dicted to be relatively stable under RCP4.5 and RCP8.5 in the 2050s
(Figs. S7a and b). The northern areas are characterized by relatively
low temperatures, which may provide a climatic refuge for this
temperate-water ascidian in the face of global warming.
Conversely, the suitable habitats on the southern coast were pre-
dicted to contract under future climate scenarios (Table S4; Figs. 3,
S6, and S7). For some southern populations inhabiting warm en-
vironments, temperatures may be close to their upper thermal
limits in a global warming trend [23]. Our projections were
consistent with one recent prediction of range shifts in
M. manhattensis, and they also forecasted range loss in southern
East Asia and a northward range shift in the future [26]. Despite the
good predictive performance of our MaxEnt models for
M. manhattensis, we acknowledge that our MaxEnt models did not
consider biotic interactions and physiological information. Future
investigations should aim to improve the model by incorporating
these factors. Besides, we projected the potential impacts of climate
change on the habitat suitability of M. manhattensis by future ma-
rine climatic layers under RCP scenarios. More information from
future studies should be considered under shared socioeconomic
pathways.

Researchers have made great efforts to improve the reliability of
SDMs in different ways [52,53], making SDMs powerful in macro-
ecological studies. By accounting for genomic information in SDMs,
our results show that SDMs can provide a more integrative
assessment of invasion risks. Interestingly, we obtained different
future invasion risk patterns after combining genomic offset and
habitat suitability change. For the south cluster, the effect of
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suitable habitat loss under future climates might be mitigated by
the minor genomic offset (Figs. 2 and 4). Rapid genetic adaptation
to different environments predominantly depends on standing
genetic variation, and those preadapted individuals may be
genetically equipped to withstand and adapt to future climate
change [16,54]. One previous study in a marine tunicate invader,
Ciona robusta, has indicated that rapid microevolution played a key
role in adapting to high temperature and salinity environments
during recent range expansions to the Red Sea [25]. We infer that
the south cluster may possess preadapted genotypes, which would
contribute to overcoming the challenge of ecological constraints
under future climate change [24]. As a result, we expect a north-
ward shift of the south cluster along Chinese coasts in the future.
While the genomic offset approach provides valuable insights into
the magnitude of climate change disruption, it also makes some
simplified assumptions that should be used cautiously in applied
studies [55].We acknowledge that the genetic offset of this ascidian
may be overestimated, and the potential of future invasion riskmay
be underestimated due to the assumption that the genetic makeup
of the population in future climates remains unchanged accord-
ingly. Future studies are still needed to include estimating genomic
offset and further performing experimental testing and functional
validation of fitness (such as common garden experiments) [55].

Our findings indicate that habitat suitability change and
genomic offset may functionally complement predicting future
invasion risks. This finding is consistent with a recent study on a
globally invasive pest diamondback moth Plutella xylostella [20].
They found that those populations in central Africa and southern
China were predicted with reduced habitat suitability and minor
genetic offset under future climates [20]. SDMs and gradient forest
models may provide different predictive results due to their distinct
perspectives [56]. Altogether, our results highlight that prediction
results merely obtained from a single approach may be incomplete,
and the comprehensive index in our study, by combining adaptive
genomic variation and SDMs, would provide more comprehensive
insights into potential responses and invasion risks of specific
populations to climate change.

Performing invasion risk assessment under future climate
change contributes to identifying invasion hotspots and guides the
management of invasive species [57]. Consistent with previous
studies [13,14], our results also support the conclusion that
different geographical populations or genetic clusters may respond
differently to future climate change. Future work should integrate
distinct analyses to synthetically evaluate invasion risks, not only
by combining habitat suitability and adaptive genomic variation
but also by incorporating additional aspects of adaptive capacity
into predictive models. These factors may include genomic struc-
tural variation, gene expression plasticity, and epigenetic changes,
which have been shown to be responsible for range expansions
during invasions [58e60].
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maximizing reproducibility of ecological niche models, Nat. Ecol. Evol. 3
(2019) 1382e1395, https://doi.org/10.1038/s41559-019-0972-5.

[42] M.S. Wisz, R.J. Hijmans, J. Li, A.T. Peterson, C.H. Graham, A. Guisan, J. Elith,
M. Dudík, S. Ferrier, F. Huettmann, J.R. Leathwick, A. Lehmann, L. Lohmann,
B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J.M.C. Overton,
S.J. Phillips, K.S. Richardson, R. Scachetti-Pereira, R.E. Schapire, J. Sober�on,
S.E. Williams, N.E. Zimmermann, Effects of sample size on the performance of
species distribution models, Divers. Distrib. 14 (2008) 763e773, https://
doi.org/10.1111/j.1472-4642.2008.00482.x.

[43] P.A. Hernandez, C.H. Graham, L.L. Master, D.L. Albert, The effect of sample size
and species characteristics on performance of different species distribution
modeling methods, Ecography 29 (2006) 773e785, https://doi.org/10.1111/
j.0906-7590.2006.04700.x.

[44] C. Waldock, R.D. Stuart-Smith, C. Albouy, W.W.L. Cheung, G.J. Edgar,
D. Mouillot, J. Tjiputra, L. Pellissier, A quantitative review of abundance-based
species distribution models, Ecography 2022 (2022) 1e18, https://doi.org/
10.1111/ecog.05694.

[45] P. Brun, W. Thuiller, Y. Chauvier, L. Pellissier, R.O. Wüest, Z. Wang,
N.E. Zimmermann, Model complexity affects species distribution projections
under climate change, J. Biogeogr. 47 (2020) 130e142, https://doi.org/
10.1111/jbi.13734.

[46] J.M. Kass, R. Muscarella, P.J. Galante, C.L. Bohl, G.E. Pinilla-Buitrago, R.A. Boria,
M. Soley-Guardia, R.P. Anderson, ENMeval 2.0: redesigned for customizable
and reproducible modeling of species' niches and distributions, Methods Ecol.
Evol. 12 (2021) 1602e1608, https://doi.org/10.1111/2041-210X.13628.

[47] Z. Zhang, J.M. Kass, S. Mammola, I. Koizumi, X. Li, K. Tanaka, K. Ikeda, T. Suzuki,
M. Yokota, N. Usio, Lineage-level distribution models lead to more realistic
climate change predictions for a threatened crayfish, Divers. Distrib. (2021),
https://doi.org/10.1111/ddi.13225.

[48] C. Liu, M. White, G. Newell, Selecting thresholds for the prediction of species
occurrence with presence-only data, J. Biogeogr. 40 (2013) 778e789, https://
doi.org/10.1111/jbi.12058.

[49] Y. wei Dong, H. shan Wang, G.D. Han, C. huan Ke, X. Zhan, T. Nakano,
G.A. Williams, The impact of Yangtze river discharge, ocean currents and
historical events on the biogeographic pattern of Cellana toreuma along the
China coast, PLoS One 7 (2012), https://doi.org/10.1371/
journal.pone.0036178.

[50] L. sha Hu, Y. wei Dong, Northward shift of a biogeographical barrier on China’s
coast, Divers. Distrib. 28 (2022) 318e330, https://doi.org/10.1111/ddi.13463.

[51] P. Ni, K.J. Murphy, R.C. Wyeth, C.D. Bishop, S. Li, A. Zhan, Significant population
methylation divergence and local environmental influence in an invasive
ascidian Ciona intestinalis at fine geographical scales, Mar. Biol. 166 (2019),
https://doi.org/10.1007/s00227-019-3592-3.

[52] N.E. Zimmermann, T.C. Edwards, C.H. Graham, P.B. Pearman, J.C. Svenning,
New trends in species distribution modelling, Ecography 33 (2010) 985e989,
https://doi.org/10.1111/j.1600-0587.2010.06953.x.

[53] I. Gamliel, Y. Buba, T. Guy-Haim, T. Garval, D. Willette, G. Rilov, J. Belmaker,
Incorporating physiology into species distribution models moderates the
projected impact of warming on selected Mediterranean marine species,
Ecography 43 (2020) 1090e1106, https://doi.org/10.1111/ecog.04423.

[54] R.I. Colautti, S.C.H. Barrett, Rapid adaptation to climate facilitates range
expansion of an invasive plant, Science (80) 342 (2013) 364e366, https://
doi.org/10.1126/science.1242121.

[55] M.C. Fitzpatrick, V.E. Chhatre, R.Y. Soolanayakanahally, S.R. Keller, Experi-
mental support for genomic prediction of climate maladaptation using the
machine learning approach Gradient Forests, Mol. Ecol. Resour. (2021) 1e17,
https://doi.org/10.1111/1755-0998.13374.

[56] E.S. Nielsen, R. Henriques, M. Beger, S. von der Heyden, Distinct interspecific
and intraspecific vulnerability of coastal species to global change, Global
Change Biol. 27 (2021) 3415e3431, https://doi.org/10.1111/gcb.15651.

[57] C. Bellard, W. Thuiller, B. Leroy, P. Genovesi, M. Bakkenes, F. Courchamp, Will
climate change promote future invasions, Global Change Biol. 19 (2013)
3740e3748, https://doi.org/10.1111/gcb.12344.Will.

[58] Z. Chen, X. Huang, R. Fu, A. Zhan, Neighbours matter: effects of genomic or-
ganization on gene expression plasticity in response to environmental
stresses during biological invasions, Comp. Biochem. Physiol., Part D: Geno-
mics Proteomics 42 (2022) 100992, https://doi.org/10.1016/
j.cbd.2022.100992.

[59] X. Huang, S. Li, P. Ni, Y. Gao, B. Jiang, Z. Zhou, A. Zhan, Rapid response to
changing environments during biological invasions: DNA methylation per-
spectives, Mol. Ecol. 26 (2017) 6621e6633, https://doi.org/10.1111/
mec.14382.

[60] X. Huang, A. Zhan, Highly dynamic transcriptional reprogramming and
shorter isoform shifts under acute stresses during biological invasions, RNA
Biol. 18 (2021) 340e353, https://doi.org/10.1080/15476286.2020.1805904.

https://doi.org/10.1146/annurev-ecolsys-020720-042553
https://doi.org/10.1146/annurev-ecolsys-020720-042553
https://doi.org/10.1111/ele.12376
https://doi.org/10.1111/ele.12376
https://doi.org/10.1038/s41558-020-00968-6
https://doi.org/10.1038/s41467-022-32546-z
https://doi.org/10.1038/s41467-022-32546-z
https://doi.org/10.1038/s41467-021-27510-2
https://doi.org/10.1038/s41558-020-00959-7
https://doi.org/10.1038/s41558-020-00959-7
https://doi.org/10.1007/s00227-015-2734-5
https://doi.org/10.1007/s00227-015-2734-5
https://doi.org/10.1007/s12526-017-0743-y
https://doi.org/10.1002/ece3.7322
https://doi.org/10.1186/s12862-018-1311-1
https://doi.org/10.1016/j.marenvres.2020.104993
https://doi.org/10.1111/1755-0998.12592
https://doi.org/10.1111/2041-210X.12382
https://doi.org/10.1111/2041-210X.12382
https://doi.org/10.1111/evo.13385
https://doi.org/10.1111/geb.12693
https://doi.org/10.1016/j.ecolmodel.2019.108837
https://doi.org/10.1016/j.ecolmodel.2019.108837
https://doi.org/10.1016/j.scitotenv.2020.138815
https://doi.org/10.1093/bioinformatics/bts606
https://doi.org/10.1093/bioinformatics/bts606
https://doi.org/10.1007/s00227-008-0973-4
https://doi.org/10.1007/s00227-008-0973-4
http://refhub.elsevier.com/S2666-4984(23)00064-9/sref35
http://refhub.elsevier.com/S2666-4984(23)00064-9/sref35
http://refhub.elsevier.com/S2666-4984(23)00064-9/sref35
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/mec.15731
https://doi.org/10.1111/mec.15731
http://science.sciencemag.org/
https://doi.org/10.1073/pnas.2004289117
https://doi.org/10.1111/jbi.13649
https://doi.org/10.1038/s41559-019-0972-5
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1111/j.0906-7590.2006.04700.x
https://doi.org/10.1111/j.0906-7590.2006.04700.x
https://doi.org/10.1111/ecog.05694
https://doi.org/10.1111/ecog.05694
https://doi.org/10.1111/jbi.13734
https://doi.org/10.1111/jbi.13734
https://doi.org/10.1111/2041-210X.13628
https://doi.org/10.1111/ddi.13225
https://doi.org/10.1111/jbi.12058
https://doi.org/10.1111/jbi.12058
https://doi.org/10.1371/journal.pone.0036178
https://doi.org/10.1371/journal.pone.0036178
https://doi.org/10.1111/ddi.13463
https://doi.org/10.1007/s00227-019-3592-3
https://doi.org/10.1111/j.1600-0587.2010.06953.x
https://doi.org/10.1111/ecog.04423
https://doi.org/10.1126/science.1242121
https://doi.org/10.1126/science.1242121
https://doi.org/10.1111/1755-0998.13374
https://doi.org/10.1111/gcb.15651
https://doi.org/10.1111/gcb.12344.Will
https://doi.org/10.1016/j.cbd.2022.100992
https://doi.org/10.1016/j.cbd.2022.100992
https://doi.org/10.1111/mec.14382
https://doi.org/10.1111/mec.14382
https://doi.org/10.1080/15476286.2020.1805904

	Incorporating adaptive genomic variation into predictive models for invasion risk assessment
	1. Introduction
	2. Materials and methods
	2.1. Environment-associated genomic variation
	2.2. Gradient forest model to predict genomic offset
	2.3. Species distribution model to predict habitat suitability
	2.4. Genomic-niche index to combine habitat suitability change and genomic offset

	3. Results
	3.1. Genomic variation associated with adaptation to local environments
	3.2. Genomic offset
	3.3. Habitat suitability to future climate change
	3.4. Genomic-niche index to assess invasion risks

	4. Discussion
	4.1. Two clusters driven by local environments
	4.2. Incorporating adaptive genomic variation into invasion risk assessment

	CRediT author contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


