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Rainfall data with high spatial and temporal resolutions are essential for urban hydrological modeling.
Ubiquitous surveillance cameras can continuously record rainfall events through video and audio, so they
have been recognized as potential rain gauges to supplement professional rainfall observation networks.
Since video-based rainfall estimation methods can be affected by variable backgrounds and lighting
conditions, audio-based approaches could be a supplement without suffering from these conditions.
However, most audio-based approaches focus on rainfall-level classification rather than rainfall intensity
estimation. Here, we introduce a dataset named Surveillance Audio Rainfall Intensity Dataset (SARID)
and a deep learning model for estimating rainfall intensity. First, we created the dataset through audio of
six real-world rainfall events. This dataset's audio recordings are segmented into 12,066 pieces and
annotated with rainfall intensity and environmental information, such as underlying surfaces, temper-
ature, humidity, and wind. Then, we developed a deep learning-based baseline using Mel-Frequency
Cepstral Coefficients (MFCC) and Transformer architecture to estimate rainfall intensity from surveil-
lance audio. Validated from ground truth data, our baseline achieves a root mean absolute error of
0.88 mm h-1 and a coefficient of correlation of 0.765. Our findings demonstrate the potential of sur-
veillance audio-based models as practical and effective tools for rainfall observation systems, initiating a
new chapter in rainfall intensity estimation. It offers a novel data source for high-resolution hydrological
sensing and contributes to the broader landscape of urban sensing, emergency response, and resilience.

© 2024 Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin
Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rainfall information plays a pivotal role in urban hydrology
systems and finds wide-ranging applications across numerous
research domains, including meteorological forecasting, water
resource management, agricultural security, and urban planning
[1e7]. The existing literature highlights the crucial significance of
high-resolution rainfall data [8]. Due to climate change, rainfall in
complex areas (such as urban areas and mountains) is becoming
more varied and frequent. Therefore, high-quality rainfall data are
al Geographic Environment
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always desirable. The relatively small scale of urban catchments
and the specific demands of hydrological applications, particularly
those requiring real-time insights, necessitate rainfall information
with spatial resolutions as precise as 1 km and temporal resolutions
of 1 min [2,9e11]. Nevertheless, current rainfall observation
methods, such as ground- and satellite-based systems, still fall
short of meeting these stringent resolution requirements [12].
Consequently, substantial efforts have been devoted to enhancing
the resolution and precision of rainfall estimation. Leveraging the
extensive utilization and technological advancements in surveil-
lance systems, surveillance camera-based rainfall estimation
(SCRE) has emerged as a promising avenue for achieving low-cost,
high-resolution rainfall observations [7,13e15].

Most studies concerning SCRE often focus on surveillance video-
nmental Sciences, Harbin Institute of Technology, Chinese Research Academy of
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based rainfall estimation (SVRE) methods [4,14,16e23]. However,
challenges remain in this area, especially under uncontrolled noisy
conditions characterized by factors such as shading and lighting
variations. As a result, there has been growing interest in surveil-
lance audio-based rainfall estimation (SARE), aiming to alleviate
the limitations of visual observation during environmental fluctu-
ations. SARE has distinct advantages in the acoustic domain,
including its all-weather capability, resilience to obstructions, and
low data volume [7,13]. However, it is essential to note that SARE
does not displace visual methods but complements rainfall esti-
mation using acoustic signals. Therefore, effectively leveraging
audio data from surveillance resources can advance SCRE devel-
opment, offering novel perspectives and approaches to enhance
current rainfall observation systems.

Early attempts at acoustic-based rainfall observation focused on
rainfall events above the ocean or water area [24,25]. Various un-
derwater acoustic sensors have been designed to record rainfall
sounds generated by raindrops colliding with the water surface,
and the acoustic characteristics, raindrop size distribution, and
wind have subsequently been analyzed [26]. These studies claim
this approach is an efficient way to observe rainfall. However, the
differences in the acoustic environments between land and ocean
pose challenges in transferring methodologies from oceanic to
terrestrial settings. Hence, certain researchers have directed their
efforts toward gathering acoustic data and formulating observation
methodologies for rainfall, specifically in terrestrial environments.
For example, Dunkerley proposed an approach to get unbiased
rainfall duration and intensity data from tipping-bucket rain gauges
using synchronized acoustic recordings to get rainfall start and end
times [27]. Nevertheless, the majority of current studies necessitate
specialized acoustic sensors [28,29], and/or can only approximate
broad categories of rainfall levels by using a thresholds [30e34],
decision tree [35], random forest [36], convolution neural network
(CNN) [7,29,37,38], and parallel network [13]. Consequently, these
studies have limitations regarding both high installation costs and
the granularity of rainfall data. In 2017, Bedoya et al. proposed a
linear regression approach for estimating rain intensity based on
power spectral density features extracted from audio recordings in
forested environments [31,33,34]. However, the general applica-
bility of their method warrants further investigation, as audio
features in forested areas may differ significantly from those
recorded in urban environments, such as differences in underlying
surfaces, background sounds, and weather conditions. In addition,
although current advances in audio-based rainfall detection and
classification are predominantly data-driven, and many authors
have assembled their datasets, the availability of online datasets
remains limited, with only the following datasets available online:
Audio/Video Database for Rainfall Classification (AVDB-4RC)1 [39],
RAZ2 [7], and audio-extreme rainfalls dataset3 [29]. Unfortunately,
these datasets suffer from the shortcomings of being small in size
(less than 5000 sound slices) and having limited diversity (only
rainfall levels are labeled). Moreover, the AVDB-4RC dataset names
its audio files based on respective rainfall intensity values; how-
ever, it comprises only 15 rainfall audio samples, each lasting 22 s.
These recordings were captured using a microphone shielded by a
plastic shaker at a singular location, resulting in limited variations
concerning rainfall events and underlying surfaces within this
dataset.

Overall, challenges persist in SARE concerning the granularity of
rainfall estimation, methodological adaptability, and dataset
1 https://github.com/vicosystems/AVDB-4RC.
2 https://pan.baidu.com/s/1MTv8cbLLh1sB3yEatNg8mw.
3 https://pan.baidu.com/s/1DcV8ei73SWa3kIrP-5Jbxg (Code: b48n).
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volume and diversity, leading to limitations in generating finely
detailed rainfall data in current studies. Therefore, a publicly
available dataset and practical approaches have yet to be developed
to utilize surveillance audio networks for calculating rainfall in-
tensity. This paper introduces the Surveillance Audio Rainfall In-
tensity Dataset (SARID) and a baseline model to overcome existing
limitations and provide a better benchmark for SARE approaches.
SARID provides a comprehensive and diverse data collection for
surveillance audio-based rainfall intensity estimation (SARIE).
Through deep learning, the baseline model establishes the rela-
tionship between rainfall intensity and surveillance audio.

We developed a data collection pipeline with thorough anno-
tation to build an effective dataset for data-driven training and
validation. First, we collected surveillance audio and corresponding
meteorological data. Each audio recording was then segmented and
annotated with the following: (1) rainfall intensity (RI), (2) mete-
orological information (i.e., temperature, humidity, air pressure,
and wind speed), (3) underlying surface data, and (4) background
noise details (e.g., car sounds, human activity, and animals). To
understand the complexity of SARID, we conducted basic experi-
ments. Using common acoustic features and deep learning frame-
works, we created a regression model that maps surveillance audio
to RI. These experiments highlight the effectiveness of the optimal
baseline model by using the Mel-Frequency Cepstral Coefficient
(MFCC) as the input and the Transformer [40] as the network in
SARE. Eventually, this study contributes to developing a compre-
hensive dataset and provides an effective and low-cost SARIE sys-
tem that was previously only conceptual. The study outcome is
expected to enhance the feasibility of using surveillance camera
networks for hydrology sensing and to provide valuable insights for
future endeavors.

The main contributions of this paper are as follows.

(1) SARID, the only open audio-based rainfall intensity dataset,
provides surveillance audio recordings of rainfall events in
urban areas with extensive annotations. This dataset is
highly advantageous for training, validation, and data-driven
analysis.

(2) We develop and analyze an effective baseline model for
SARIE using the MFCC input and the Transformer network.
The experimental results demonstrate that the model is su-
perior to other machine learning methods.

The rest of the paper is organized as follows: Section 2 details
the dataset generation process. Section 3 introduces the baseline
model. Section 4 validates the model and discusses the system's
effectiveness. Section 5 provides the conclusions of the study.
2. Dataset

SARID is used to evaluate rainfall estimation methods based on
surveillance audio. SARID must include a wide range of variability
in rainfall intensity, background noise, weather conditions, and
underlying surfaces to achieve this goal. In addition, it is critical that
SARID adheres to a standardized annotation format and is scalable
to allow for the addition of more data in the future. To ensure the
suitability of the dataset for accurate training and evaluation, the
audio annotations must maintain consistency, accuracy, and
completeness for the specified rainfall events. This section outlines
the procedures for collecting and annotating SARID to meet these
objectives.

https://github.com/vicosystems/AVDB-4RC
https://pan.baidu.com/s/1MTv8cbLLh1sB3yEatNg8mw
https://pan.baidu.com/s/1DcV8ei73SWa3kIrP-5Jbxg
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2.1. Data collection

2.1.1. Collection devices and distribution
For SARID, we obtained all audio recordings and rainfall infor-

mation from surveillance cameras and a meteorological station on
the Xianlin Campus of Nanjing Normal University, China. The
meteorological station has various environmental monitoring in-
struments, including a disdrometer and temperature and humidity
sensors. It provides nearly real-time updates of weather conditions,
such as rainfall intensity, temperature, and humidity, every minute,
meeting the specified temporal resolution requirement of 1 min, as
mentioned earlier. To fulfill the spatial requirement of 1 km, all
surveillance cameras were strategically positioned within 500 m of
the weather station (Fig. 1). Given the complexity of the meteoro-
logical station parameters, we refrain from providing an exhaustive
description here. Table 1 displays the key specifications of the
surveillance camera used for data collection (Ezviz CS-CB3).
2.1.2. Data collection procedure
With the data collection devices selected, the next critical step

was to assemble a carefully selected set of candidate audio re-
cordings. To strengthen the data representation, SARID diligently
collected surveillance audio samples from various underlying sur-
faces and categorized them into five different classes: road (con-
crete), road (marble), road (wood), urban meadow, and water.
Within the road (concrete) category, we identified two distinct
scenarios: one located within the campus grounds (Fig. 1a) and the
other located at the campus entrance (Fig. 1b). Notably, the campus
entrance experiences increased vehicular traffic, resulting in the
amplified presence of background noise in the surveillance audio
recordings. The road (wood) data were collected on an open-air
terrace surrounded by nearby buildings (Fig. 1c). Conversely, ur-
ban meadow provided a softer surface (Fig. 1d). For the road
(marble) category, we focused on surfaces composed primarily of
Fig. 1. Distribution of collection devices and different underlying surfaces.
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regularly shaped marble tiles, which are known for their relatively
uniform and flat composition (Fig. 1e). During data collection near
water, often in remote locations, the recorded audio had minimal
background noise (Fig. 1f). Due to the limitation of land use types
around the meteorological station, the number of classes was
limited to five. The extension of more classes will be considered in
future iterations.

SARID collected audio recordings from surveillance cameras
capturing rainfall events on these substrates. Six audio recordings
of rainfall events were secured, ranging from a minimum recorded
RI of 0.04 mm h�1 to a maximum RI of 14.72 mm h�1. The full
details of these six rainfall events are provided in Table 2. Notably,
the “time” series in Table 2 denotes the start and end times of the
camera recordings on the respective days. Due to intermittent rain-
free periods, only audio recordings of actual rainfall were retained.
Following this initial audio recording phase, synchronized meteo-
rological station data were collected to facilitate the preparation of
the data annotations.

2.2. Data annotation

2.2.1. Audio annotated attributes
For evaluating estimation methods, the audio annotations

include the following attributes for each rainfall event: (1) Rainfall
information: This includes RI; (2) Scenario information: This in-
cludes environmental factors such as temperature, humidity,
barometric pressure, and wind speed. It also includes details about
the underlying surface and labels for background sounds (e.g., car,
people).

An overview of all annotated attributes in SARID is provided
(Fig. 2) In addition to the basic RI data, each sound recording in
SARID is enriched with numerous scenario-related annotations.
Variations in environmental factors can significantly affect raindrop
characteristics, potentially influencing the generation and propa-
gation of rain sound [41]. For example, changes in wind speed can
alter the speed and direction of raindrops, thereby affecting the
path and intensity of rain sound propagation. In addition, variations
in temperature and air pressure can affect the size and evaporation
rate of raindrops, further affecting rain sound production. As a
result, atmospheric conditions were included as part of the anno-
tation attributes. In addition, due to the inherent complexity of
urban environments, surveillance audio often captures a variety of
other sounds, such as vehicular traffic, human activity, and animal
noises, which typically contribute to the acoustic landscape of rain
sound. As a result, additional urban sounds classified as background
noise were introduced. These annotations can be valuable for
noise-filtering algorithms, ultimately improving the performance
of audio-based rainfall estimation. To accomplish this task, each
audio recording underwent a manual inspection with auditory
analysis, and the identified noise was meticulously labeled in a CSV
file. In the following section, we will return to this point when
discussing the annotation procedure.

2.2.2. Audio annotated procedure
Given the need to annotate both existing and future audio re-

cordings, designing a cost-effective yet high-quality annotation
pipeline was imperative. The annotation pipeline can be divided
into two primary tasks: data matching and data organization
(Fig. 3). Note that surveillance audio is derived from surveillance
video data, and due to the specific data storage format of the Ezviz
surveillance cameras, an additional step of converting the original
video data was required. Therefore, we manually reviewed all



Table 1
Key Parameters of surveillance camera.

Category Parameter Details

Model/Version Model CS-CB3
Version V100-2D2FL4GT

Camera Sensor type 1/2.9 Progressive Scan CMOS
Lens 2.8mm@F2.0, visual diagonal angle 128� , horizontal angle 108� , vertical angle 56�

Interface Audio input Built-in high-sensitivity microphone
Audio output Built-in high-power speaker

Compression Standards Video compression standard H.265
Video compression bitrate Adaptive bitrate
Audio compression bitrate Adaptive bitrate

Image Maximum image size 1920� 1080
Frame rate Max: 15 fps
Supported protocols Ezviz cloud private protocol

Table 2
Description of recorded rainfall events.

ID Rainfall event Time Primary underlying surface Minimum RI (mm h�1) Maximum RI (mm h�1)

1 2022-09-15 17:56e23:56 Road (marble) 0.04 3.9
2 2022-10-05 13:25e17:56 Road (wood) 0.04 14.72
3 2022-10-06 09:45e22:59 Road (concrete) 0.25 7.96
4 2022-10-08 23:50e23:59 Urban meadow 0.12 0.54
5 2022-10-26 15:37e23:48 Water 0.04 5.21
6 2022-11-21 22:37e23:59 Road (wood) 1.6 9.59

Fig. 2. SARID annotations.
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original videos to obtain the start timestamp and duration, then
converted them to a standard video format using “moviepy4", a
Python library for video data processing. Subsequently, the corre-
sponding audio was extracted.

The first task in annotating SARID was to match audio and
meteorological station data based on their timestamps. For long
audio files and meteorological station data, segments with non-
zero RI were extracted by parsing the meteorological data. Then,
using the temporal information, the corresponding audio segments
were matched and divided into shorter audio files, typically 60 s in
duration, although shorter durations were occasionally used for
specific boundary data. After this initial matching stage, 1093 in-
dividual recordings were acquired. Next, the filename was used to
label the annotation attributes of each audio recording. For
example, consider the annotation information contained in the
name of a particular audio file: “2022-09-15 17-56-
00_0.19_22.335_92.35_2.491_0.892_ hiv00013_60_road (concrete).
mp3". This filename information can be segmented using the "_"
delimiter as follows.

� “2022-09-15 17-56-00": Time tag indicating that the recording
time is September 15, 2022, at 17:56.

� “0.19": Rainfall intensity in millimeters per hour during the
specified time interval.
4 https://github.com/Zulko/moviepy.
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� “22.335": The average temperature in Celsius for the given time
period.

� “92.35": The average humidity observed during the recorded
time interval, expressed as a percentage.

� “2.491": The average atmospheric pressure in hPa during the
given time period.

� “0.892": The average wind speed in meters per second recorded
during the given time period.

� “hiv00013": The original video file is associated with the current
audio segment.

� “60": The total duration of the audio file, which is 60 s.
� “road (concrete)": Specifies that the underlying surface for the
recording is a concrete road.

These detailed annotations provide comprehensive insights into
each audio file, including the corresponding meteorological con-
ditions recorded at specific times. After completing the above-
mentioned task, a verification step was performed on the
segmented instances to ensure the accuracy of the dataset. Since
verifying annotations is a considerably time-consuming process
and audio identification can be challenging, we used a random
sampling approach. We selected some video files (about one-tenth
of the original video files) and cross-referenced the timestamp in-
formation in the videos to verify the correctness of the annotations.
In the next phase, we performed manual annotations of the noises
identified within each audio segment. By listening carefully to each
recording, we meticulously documented the exact start and end
timestamps for each identified sound and assigned an appropriate
category (e.g., “people”) to each noise source. This process resulted
in a separate noise annotation file in CSV format. Specifically, the
annotation file contained the following fields: “n_start" (noise start
timestamp), “n_end" (noise end timestamp), and “n_type" (noise
type).

2.3. Dataset statistics

As part of the research focused on rainfall estimation using
surveillance audio, we created a subset of shorter sound segments.
Based on existing literature, previous studies have shown that

https://github.com/Zulko/moviepy


Fig. 4. Statistics of the SARID. a, Distribution of monitoring rainfall audio slices with a
logarithmic scale. b, Information about rainfall events on different underlying surfaces.
c, Number of audio slices per underlying surface. d, Number of annotated instances per

Fig. 3. Annotation pipeline.
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providing subjects with 4-s snippets of environmental sounds can
yield an impressive 82% accuracy rate for sound identification [42].
Therefore, we adopted this recommended duration as the
maximum limit and proceeded to divide the audio files into 4-s
slices. Furthermore, since the primary goal of this paper is to
contribute a new dataset and develop a functional baseline model,
the effect of background noise will be ignored in subsequent ex-
periments. This resulted in a total of 12,066 labeled slices.

The SARID statistics, particularly for the subset used in subse-
quent experiments (as described in Section 3.3), are shown (Fig. 4).
The distribution of audio samples per RI interval, with intervals of
0.5 mm h�1 (Fig. 4a). Note that these counts are plotted on a log-
arithmic scale. The interval labeled [0.5, 1.0] was the most common
and contained 2562 sound slices. Rainfall event information and
the number of slices corresponding to different underlying surfaces
are shown in Fig. 4b and c. Among the recorded rainfall events, the
underlying surface labeled “road (wood)” had the widest range of
rainfall intensities, reaching a maximum of 14.68 mm h�1. On the
other hand, the “urban meadow” had the narrowest range, at only
0.42 mm h�1. In terms of sample distribution, approximately 59% of
the audio samples corresponded to “road (concrete),” while 18%
represented “water.” In addition, “road (marble)” accounted for 15%
of the samples, followed by “road (wood)” with 7%, and “urban
meadow”with 1%. The distribution of noise in the dataset is shown
in Fig. 4d. It is important to note that the noise labels are relative to
the original audio segments due to the fixed length of 4 s for our
audio samples. A total of 2142 noise audio segments were labeled
into seven classes, namely “car passing,” “car whistle,” “wind,”
“people,” “animal,” “other,” and “hybrid.” The “other” class repre-
sents cases in which the annotators could not identify a specific
noise class, which is not uncommon due to the complexity of the
surveillance soundscape. After filtering out segments with noise,
2527 rainfall audios (“no_noise”) remained and were used to
generate 4-s slices. Statistical information on the recorded meteo-
rological data is depicted using a box plot (Fig. 4e). The data were
normalized to facilitate visualization since the units of different
meteorological elements vary. Temperature exhibited relatively
large fluctuations, while humidity, barometric pressure, and wind
speed exhibited more stable values. Because the recorded rainfall
events mostly fall within the same season, with little variation in
meteorological conditions, further analysis will require an expan-
sion of the dataset to explore the role of meteorological
information.
5

3. Baseline model

This section introduces the proposed baseline model, training
methodology, and evaluation experiments. The baseline model has
two primary objectives: to establish an effective framework for
estimating RI based on surveillance audio and to select the most
sound category. e, Statistics of meteorological information.



Fig. 5. Baseline structure. a, CNN-based baseline. b, LSTM-based baseline. c,
Transformer-based baseline.
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suitable feature engineering techniques and network architectures
for this challenge from existing, well-established research.

3.1. Baseline model overview

The basic model consists of three main components. The first
component serves as the input to the model. Three commonly used
acoustic features, namely Mel-spectrogram (Mel), Mel-Frequency
Cepstral Coefficient (MFCC), and Short-Time Fourier Transform
(STFT), were selected to represent the rainfall audio and used in
subsequent experiments [7,13,43]. Mel captures the frequency
content of audio signals and is widely used in audio signal pro-
cessing. MFCC contributes crucially to capturing the spectral char-
acteristics of audio signals, effectively representing various audio-
related tasks, such as speech and environmental sound analysis.
The STFT is employed to analyze the time-frequency domain of the
audio signal, decomposing it into its frequency components over
short, overlapping time intervals. These features were extracted
using the Python library “librosa” [44]. The Mel coefficient and
MFCC were set to 128, resulting in feature vectors with dimensions
of 128 � 173. The STFT used default coefficients, resulting in di-
mensions of 1025 � 173 � 1.

The second component is a deep learning network that extracts
feature maps from the input acoustic signal. Three widely used
deep learning architectures suitable for audio data were analyzed:
CNN, Long Short-Term Memory (LSTM), and Transformer. CNN is
known for spatial modeling, LSTM is for temporal modeling, and
Transformer uses self-attention to extract features at different
levels. Note that in this configuration, only the “encoder" module of
the Transformer serves as a feature extractor for the baseline
network. Notably, both the input acoustic features and the deep
learning network are single-function, meaning that a combination
of a single input feature class and a single network class was used
(e.g., using MFCC as the input feature and Transformer as the
network structure), rather than using multiple features or net-
works. The network then feeds the feature map output from the
last fully connected layer for rainfall intensity prediction. The entire
baseline model follows a regression framework for estimating RI.

3.2. Baseline model structure

3.2.1. CNN-based baseline
In the CNN-based baseline model, similar to its application in

image tasks, the convolution kernel spans the entire channel
dimension while maintaining a limited range along the width
dimension. This approach allows the CNN to capture patterns
across the acoustic spectrum effectively while preserving the local
temporal context (Fig. 5a). The network architecture consists of the
following components: three convolutional layers with ReLU acti-
vation and batch normalization, three max-pooling layers with
dropout, one global average pooling (GAP) layer, and two fully
connected layers. After the CNN extracts the feature maps, the GAP
layer transforms each feature into a fixed-size feature vector, fed
into fully connected layers for RI estimation.

3.2.2. LSTM-based baseline
In the LSTM-based baseline model, the LSTM is used as the

primary feature extraction structure, and the fully connected layers
are used to construct a regression model for RI estimation. Unlike
recurrent neural networks (RNNs), this model relies on the LSTM as
a more effective temporal feature extractor. The network archi-
tecture (Fig. 5b) includes two stacked LSTM layers of 256 hidden
units each. Fully connected and pooling layers exist to downscale
temporal features and perform RI regression.
6

3.2.3. Transformer-based baseline
The Transformer-based baseline model employs the “encoder”

portion of the Transformer as its fundamental structure to establish
a feature extraction network (Fig. 5c). In this setup, the Transformer
module comprises four stacked encoders with specific hyper-
parameters: the number of attention heads (“nhead”) is set to 4,
and the dimension of the feed-forward fully connected layer is
configured as 512. The feature dimension extracted by the Trans-
former encoder remains consistent with the original. Then RI
estimation is performed using a fully connected layer after
obtaining a two-dimensional feature vector through GAP. This so-
phisticated utilization of the Transformer's “encoder” ensures the
model can capture intricate patterns within the surveillance audio
data for accurate RI estimation.

3.3. Training

The baseline model enables end-to-end training on SARID for
single-forward RI estimation. The training process involves the
selection of appropriate loss functions to optimize estimation per-
formance, along with specific training strategies. The estimation
loss, as defined in equation (1), uses a smooth L1 loss [45] that
computes the difference between the predicted RI (y0i) and the
ground truth RI yi. A warm-up strategy has been implemented to
increase the stability of the training. Initially, a relatively small
learning rate is set and gradually increased to accelerate conver-
gence as the model approaches stability. This warm-up phase is
followed by linear decay [46]. For optimization, the Adam algo-
rithm [47] is used to optimize the randomly initialized model
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weight parameters on minibatches. Each minibatch is defined as a
vector of size B� H� W , where the batch size is set to 256 and H�
W represents the dimension of the input matrix. In the CNN-based
baseline model, the input size is adjusted to B� H �W � 1 to meet
the dimensional requirements of the convolutional module. Simi-
larly, in the Transformer-Based Baseline model, the input size is
transformed to B�W � H to accommodate the multi-head atten-
tion mechanism.

Lri ¼
8<
:0:5

��
yi � y0i

�2� ��yi � y0i
��<1��yi � y0i

��� 0:5
��yi � y0i

��>1
(1)

4. Evaluation

This section presents the experiments conducted to evaluate the
efficacy of baseline models in SARIE. All data used in these exper-
iments were from the proposed SARID. The dataset was partitioned
into a training set and a test set at a 7:3 ratio, specifically obtaining
8441 and 3625 audio data samples, respectively. Evaluation and
analysis were conducted on the test dataset. The training and
evaluation tasks were performed on a GPU server equipped with an
Intel® Core™ i7-8700 K C, @3.70 GHz, 64.0 GB of RAM, and an
NVIDIA GeForce RTX 2060 G with 6.0 GB of memory.

4.1. Baseline model analysis

For the evaluation metric, we followed the standard protocol in
the regression model and used mean absolute error (MAE), root
mean absolute error (RMSE), and coefficient of determination (R2).
These metrics are defined as equations (2)e(4). In the equations, n
is the number of samples, yi and y0i are the ith ground truth and the
corresponding estimated value (i ¼ 1;2;…;n), and y is the mean of
all ground truth data. Lower MAE and RMSE values and higher R2

value indicate better prediction performance of the model.

MAE¼1
n

Xn

i¼1

���yi � y0i
��� (2)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�
yi � y0i

�2vuut (3)

R2 ¼1�
Pn

i¼1
�
yi � y0i

�2
Pn
i¼1

ðyi � yÞ2
(4)

Based on the selection of acoustic feature and network archi-
tecturementioned above, the baselinemodels could be divided into
nine combinations: (a) MFCC-CNN, (b) MFCC-LSTM, (c) MFCC-
Transformer, (d) Mel-CNN, (e) Mel-LSTM, (f) Mel-Transformer, (g)
STFT-CNN, (h) STFT-LSTM, and (i) STFT-Transformer. Here, the first
notation (e.g., MFCC) refers to the input of the network, and the
second notation (e.g., CNN) refers to the network. From the results
presented in Fig. 6 and Table 3, it can be concluded that MFCC-
Transformer outperforms other combinations.

For the three deep learning architectures, the Transformer-
based model exhibits significant advantages across various met-
rics. For example, the model with MFCC inputs achieved an MAE of
0.563, RMSE of 0.88, and R2 of 0.765, outperforming CNN and LSTM.
Moreover, analysis of the scatter plot (Fig. 6aec) reveals that the
Transformer-based model's fitted line aligns more closely with the
ground truth line than the other two architectures. The reason
7

might be that the Transformer can capture more comprehensive
features with self-attention than CNN and LSTM, which tend to
focus on capturing a single aspect. Benefiting from this attribute,
the Transformer-based models can effectively harness the rich
structural patterns and intricate relationships present in the audio
data.

For the three acoustic features, the performance of the model
with theMFCC input surpassed that of the models utilizing Mel and
STFT features. For example, in the Transformer-based architecture,
compared to Mel features, MFCC exhibited a notable improvement
in performancemetrics. It demonstrated an enhancement of 16.34%
in MAE, 16.90% in RMSE, and 16.08% in R2. When compared to the
STFT features, MFCC showed a substantial improvement of 20.81%
in MAE, 19.63% in RMSE, and 20.28% in R2. The MFCC-based model
achieved a better fit. In contrast, the STFT-based model tended to
underestimate RI, while the Mel-based model tended to over-
estimate it, particularly at lower RIs (Fig. 6cef, i). This can be
attributed to the sensitivity of Mel filters to low-frequency features,
and as RI decreases, the rainfall soundscape often exhibits lower
frequency characteristics. However, the performance difference
between the two approaches was not significant.
4.2. Baseline model effectiveness analysis

To validate the effectiveness of the baseline model, we con-
ducted a comparative study involving four classical algorithms:
decision tree (DT) [48], random forest (RF) [49], linear support
vector machine (LSVM) [50], and ridge regression model (RRM)
[51]. Using MFCC as the input feature, we selected the Transformer-
based baseline model as our benchmark for comparison. The
objectivewas to predict the RI and cumulative rainfall (CR) for three
different rainfall events.

The performance of the compared algorithms for estimating RI
and CR were provided (Figs. 7 and 8). While these algorithms
generally exhibited similar trends, noticeable differences emerged
in their estimation accuracy. The baseline model consistently out-
performed the other algorithms for RI estimation, demonstrating a
closer fit to the ground truth curve and less variation in outliers.
Regarding CR estimation, the Transformer baselinemodel exhibited
superior performance compared to alternative regression algo-
rithms, despite a slight overestimation on September 15, 2022.
Notably, for the rainfall events on October 5, 2022, and November
21, 2022, the baseline model closely aligned with the reference CR
curve, underscoring its effectiveness in capturing cumulative
rainfall patterns.

Further insight can be gained by observing the estimation errors
of RI and CR (RERI and RECR). TheMAEwas used as the metric, which
can be calculated as follows:

RERI ¼
1
n
�
 Xn

i¼1

��RI0i � RIi
��

RIi

!
� 100% (5)

RECR¼
1
n
�
 Xn

i¼1

��cr0i � cri
��

cri

!
� 100% (6)

where RI0i is the i th reference RI; RIi is the i th predicted RI calcu-
lated by different algorithms; cr0i is the i th reference CR; cri is the i
th predicted CR calculated by different algorithms. The results are
shown in Tables 4 and 5; the best results are highlighted in bold.

Table 4 indicates the estimation error for different rainfall
events for different algorithms. The RERI for the DT algorithm
showed a wide range of errors, ranging from 74.95% to 163.3%. The
error of RERI for the RF algorithm ranged from 25.72% to 42.6%. The



Fig. 6. Rainfall intensity estimation scatterplot of different baseline models.

Table 3
Performance of different baseline models.

Network Acoustic feature MAE (mm h�1) RMSE (mm h�1) R2

CNN MFCC 0.646 1.004 0.694
LSTM MFCC 0.713 1.094 0.637
Transformer MFCC 0.563 0.88 0.765
CNN Mel 0.85 1.291 0.494
LSTM Mel 0.796 1.218 0.55
Transformer Mel 0.673 1.059 0.659
CNN STFT 0.856 1.223 0.546
LSTM STFT 0.816 1.163 0.589
Transformer STFT 0.711 1.095 0.636
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LSVM algorithm exhibited RERI ranging from 20.33% to 111.7%,
while the RRM algorithm showed RERI ranging from 40.00% to
152.18%. In contrast, the RERI for the baseline model ranged from
15.18% to 33.84%, except for the 15:30 to 17:00 time segment on
October 5. Across different rainfall segments, the baseline model
consistently outperformed the other algorithms in estimating RI,
highlighting its overall superior performance.
8

Table 5 presents the RECR in CR estimation. The DT algorithm
showed errors ranging from 3.35% to 24.72%, while the RF algo-
rithm showed errors ranging from 4.9% to 21.87%. The LSVM algo-
rithm had errors ranging from 7.1% to 36.88%. In comparison, the
error of the baseline model ranged from 1.63% to 16.95%. Across all
segments tested, the baseline model consistently outperformed the
other regression algorithms in terms of CR error. In summary, the
results discussed above underscore the effectiveness of the pro-
posed SARIE baseline models in establishing robust mapping be-
tween audio and RI. This demonstrates the potential of SARIE for
accurate and high-resolution rainfall estimation.
4.3. Effect of scenario factors on estimation accuracy

All baseline models essentially operate on a global scale,
extracting rainfall information from the entirety of acoustic fea-
tures. The results presented in Sections 4.1 and 4.2 are based on the
test dataset without considering scenario factors. Given the com-
plex and diverse nature of urban monitoring of soundscapes, it is
crucial to investigate whether these baseline models exhibit biases



Fig. 7. Experimental results of different algorithms in terms of rainfall intensity.
Fig. 8. Experimental results of different algorithms in terms of cumulative rainfall.

Table 4
Rainfall intensity estimation error (%).

Date Time DT RF LSVM RRM Baseline

09e15 18:45e20:00 114.53 38.66 66.73 152.18 27.76
21:50e22:40 98.12 38.10 55.39 134.18 33.84

10e05 15:30e17:00 74.95 25.72 20.33 40.82 25.25
14:55e15:30 163.3 42.6 111.7 40.00 16.50

11e21 22:50e23:30 85.89 34.01 76.03 119.81 15.18

Table 5
Cumulative rainfall estimation error (%).

Date Time DT RF LSVM RRM Baseline

09e15 18:45e20:00 24.72 21.87 10.63 28.75 16.95
21:50e22:40 15.45 14.94 8.98 26.73 6.91

10e05 15:30e17:00 10.14 12.12 36.88 11.27 1.95
14:55e15:30 15.07 17.21 7.1 27.87 1.63

11e21 22:50e23:30 3.35 4.9 36.39 18.99 1.66
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in different scenarios. Variation in environmental factors was
limited primarily because the recorded rainfall events occurred
within the same season, resulting in minimal fluctuations in
meteorological conditions (Fig. 4e). Therefore, in this section, we
focus on assessing biases toward specific baselines and determining
whether the presence of noise affects the accuracy of the results.

We investigated the impact of scenario factors on the perfor-
mance of the baseline models through the following analysis:

First, we calculated the estimation error values of the baseline
models for different underlying surfaces. A box plot was adopted to
present the result (Fig. 9). Among the various combinations tested,
the MFCC-Transformer combination demonstrated superior accu-
racy and stability across most underlying surfaces within the
baseline models. Notably, models operating on softer surfaces such
as “urbanmeadow” and “water” exhibited better performance. This
observation can be attributed to cleaner soundscapes in urban
meadow and water environments.

We then evaluated the baseline model with MFCC as the input
and Transformer as the network on rainfall audio data, both with
and without noise, to assess the impact of different noise condi-
tions. The results were presented (Fig. 10 and Table 6), with all
9

experimental settings matching those in Section 4.1. As depicted,
the model trained on data with noise exhibited a 4.9% decrease in



Fig. 9. Error value of baseline models in different underlying surfaces.

Fig. 10. Rainfall intensity estimation scatterplot of baseline model with/without noise
a, with noise. b, without noise.
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R2, accompanied by increases of 8.6% and 10.1% in MAE and RMSE,
respectively. This suggests that although noise can affect RI esti-
mation, the model's accuracy remains within an acceptable range
without significantly reducing precision.
5. Conclusion

In this study, we introduced SARID, a comprehensive and
diverse surveillance audio dataset, and an effective baseline model
for RI estimation based on surveillance audio. SARID contains
meticulously annotated audio samples organized in a consistent
format. With a substantial amount of data (12,066 sound slices),
diverse data sources (i.e., rainfall, meteorological data, and scenario
information), and detailed annotations, SARID represents a valu-
able resource for advancing research in RI estimation. Our evalua-
tion results demonstrated the effectiveness of the proposed
baseline model in mapping surveillance audio to RI. SARID has the
potential to open up new avenues for research on rainfall obser-
vation applications, particularly in the context of urban surveillance
Table 6
Performance of baseline model with/without noise.

Condition MAE (mm h�1) RMSE (mm h�1) R2

With noise 0.616 0.979 0.729
Without noise 0.563 0.88 0.765
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audio. Despite the promising performance of surveillance audio
data, our study still has some limitations. First, the analysis of un-
derlying surfaces lacks a cross-sectional analysis of the same rain-
fall event. Thus, the impact of different underlying surfaces on the
surveillance of rainfall audio needs further investigation. Second,
some meteorological variables, such as temperature and wind
speed, were not considered. Omitting these factors may cause the
current model to lack the ability to fully sense the rainfall envi-
ronment. Third, the current model uses existing acoustic features
and does not explore whether there are acoustic features that are
more suitable for rainfall observations. Developing an acoustic
signature more suitable for rainfall observation is a challenging
topic worth further investigation.

Looking ahead, several promising avenues exist for future work
with SARID.

(1) Expanding the dataset to include more rainfall audio re-
cordings in different scenarios, especially during extreme
rainfall events. A larger dataset will enhance the robustness
of the models; we are actively working to collect additional
data to further develop SARID.

(2) Improved baseline models: Enhancing the baseline model by
incorporating acoustic signals and environmental factors.
While we used audio files and basic RI annotations in this
study, additional annotations, such as meteorological infor-
mation, could provide valuable insights to improve rainfall
intensity estimation. Moreover, reducing the effect of noise
on the model is one of the future research directions.

(3) Integrating surveillance visual and acoustic data into a
multimodal approach represents a key strategy. Combining
the strengths of both signals offers a promising avenue to
enhance rain measurement accuracy. We expect that this
multi-model integration will be developed in the future to
bring about even stronger performance.
Data availability

The source codes and dataset are available for download at the
link: https://github.com/Meizhen2023/SARID.
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