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Machine learning has been increasingly used in biochemistry. However, in organic chemistry and other
experiment-based fields, data collected from real experiments are inadequate and the current corona-
virus disease (COVID-19) pandemic has made the situation even worse. Such limited data resources may
result in the low performance of modeling and affect the proper development of a control strategy. This
paper proposes a feasible machine learning solution to the problem of small sample size in the bio-
polymerization process. To avoid overfitting, the variational auto-encoder and generative adversarial
network algorithms are used for data augmentation. The random forest and artificial neural network
algorithms are implemented in the modeling process. The results prove that data augmentation tech-
niques effectively improve the performance of the regression model. Several machine learning models
were compared and the experimental results show that the random forest model with data augmen-
tation by the generative adversarial network technique achieved the best performance in predicting the
molecular weight on the training set (with an R2 of 0.94) and on the test set (with an R2 of 0.74), and the
coefficient of determination of this model was 0.74.
© 2022 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Enzymatic polymerization is the polymerization of enzymes as
catalysts, in which low-mass monomers are converted to polymers
of high molecular weight [1]. The traditional chemical polymeri-
zation process usually needs to be conducted under high temper-
ature and pressure and the purity of the resulting polymer may be
low. The enzymatic polymerization process is an alternative to the
conventional polymerization technique to synthesize poly-
caprolactone. Conventionally, polymers are synthesized using
metal or chemical catalysts, which are harmful to the environment.
Hence, the enzymatic polymerization approach is regarded as an
environmentally friendly technique that replaces the metal or
chemical catalysts with enzymes. Enzymatic polymerization, by
contrast, is an ideal process because of its milder reaction condi-
tions and higher polymer purity [2]. Therefore, this emerging
(Z. Chen).
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technique currently has good development prospects in the field of
biochemistry [3]. Biopolymers, the reaction products of enzymatic
polymerization, have been widely used in various fields. Efficient
preparation of biopolymers has become one of the most active
topics of current research [4e6].

Enzymatic polymerization is affected by many factors, of which
temperature and reaction time are the most significant. In addition,
because of the complexity of organic reactions, the relationships
between the products and reaction conditions are usually
nonlinear; this is the reason why molecular weight is difficult to
measure. Some traditional techniques can be used to roughly
measure the molecular weight of the polymerization processdfor
example, gel permeation chromatography and size-exclusion
chromatography [7]dbut they cannot achieve the purpose of ac-
curate and rapid measurement.

Machine learning (ML) is a branch of artificial intelligence that
has becomewidely applied in recent years [8]. The main purpose of
ML is to improve and optimize the performance of computer pro-
grams or algorithms automatically by learning from past data or
experience. ML can construct stable models by learning andmining
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existing data and use these models to predict or classify unknown
data. In particular, since the advent of the era of big data, ML has
enabled the constructed models to make more timely and accurate
predictions than ever before [9]. In the past several years, ML has
also been used in the field of organic chemistry to control the ef-
ficiency of chemical production [10]. Data analysis technology
based onML has become one of the most active research topics and
development trends.

ML usually optimizes an algorithm by continuous training on
large datasets because the use of small datasets may result in
overreliance on the original data and loss of generalization ability
(i.e., overfitting). However, in organic chemistry and other
experiment-based fields, data from real experiments inevitably
suffers from the problem of inadequate dataset size. This is because
the raw materials available for a complete experiment are usually
limited for reasons such as experimental cost. In addition, because
of the current coronavirus disease (COVID-19) pandemic, the situ-
ation is becoming worse. Such limited data resources may result in
the low performance of modeling and affect the proper develop-
ment of a control strategy. In addition, the inconvenience caused by
the pandemic in the past two years has made it more difficult to
obtain sufficient experimental data for ML models. Therefore, a
scientific algorithm is urgently required to realize ML modeling on
small datasets.

A variety of methods have been proposed to solve the above
problems, of which the most well-known is data augmentation.
Data augmentation generates data by transforming or character-
izing the original data. It has been mainly used to avoid significant
errors when constructing prediction models based on small data-
sets. During the past decade, various data augmentation algo-
rithmsdsuch as the variational auto-encoder (VAE) and generative
adversarial network (GAN)dhave been proved to improve the
performance of models [11]. A VAE creates data instances that are
based on the original data distribution, whereas a GAN generates
data by confrontation between two networks. Previous researchers
have reported that the VAE and GAN have achieved great success in
improving the accuracy of classification problems. Franco et al. and
Gallego et al. demonstrated that models constructed after data
augmentation achieve better performance on small datasets when
performing classification prediction [12,13]. In addition, Liu et al.
used a GAN as a sample generator for cancer recognition and
showed that the GAN improved the prediction accuracy of several
classifier models [14]. The VAE and GAN have been proved to
improve the performance of models when solving classification
problems. However, the application of these algorithms to regres-
sion problems has rarely been considered. Ohno et al. discussed the
possibility of the VAE in enlarging regression datasets and pro-
posed the optimal solutions for diverse regression problems [15].
Haidar and Rezagholiradeh also attempted to use a GAN to solve the
regression problem and proposed an improvement plan [16].

Previous researchers have proposed various efficient ML algo-
rithms for data modeling. Researchers have demonstrated that the
random forest (RF) and artificial neural network (ANN) have high
learning efficiency and are widely used in regression prediction. An
RF is a stable prediction algorithm with high prediction accuracy
and low time consumption [17]. It is a supervised algorithm that is
commonly used to solve regression and classification problems.
Zhou et al. successfully predicted biomass in wheat using an RF
algorithm [18]. They also believed that this result was superior to
that of other MLmodels. The ANN has been an active research topic
in ML in recent years. An ANN is a black-box model that learns
complex function relations from given data. Lipik et al. established
amathematical model for synthesizing a variety of polymers, which
mainly took polymerization parameters as variables and calculated
the molecular weight of the polymer well [19]. On this basis,
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Arumugasamy, Uzir, and Ahmad established a nonlinear model
using an ANN to determine the influence of temperature and
impeller speed on large-scale production of enzymatic polymers
[20]. Studies have proved that the RF and ANN are suitable for, and
have made significant contributions to, organic fields.

This paper proposes a feasible ML solution to the problem of
small sample size in the bio-polymerization process. To avoid
overfitting, the VAE and GAN algorithms are used for data
augmentation. The RF and ANN algorithms are implemented in the
modeling process.

2. Data and methods

2.1. Data collection

The experimental data used in this study were provided by re-
searchers from the University of Nottingham Malaysia Campus.
This dataset, which records several conditions of the bio-
polymerization process, includes 42 instances and three parame-
ters: temperature (�C), time (hours), and molecular weight
(g mol-1). The current study focuses on using only one solvent,
namely toluene, and one particular monomer concentration. More
details about the experimental work can be found in Ref. [21].
During the experiment, a specific range of values (temperature
1e100 �C, time 1e7 h) was selected for each parameter, and a
control experiment was designed to measure the molecular weight
of the polymer under various conditions. Because the number of
data instances was insufficient to construct a robust ML model, the
data augmentation methods mentioned above were used to
enlarge the dataset before the ML models were established. To
determine whether the VAE and GAN could also improve the per-
formance on regression problems, the original dataset was also
used to construct models directly, as the base case. The program-
ming language used in this study was Python 3.8. Panda, Tensor-
Flow 2.0, and the scikit-learn library were used for data
preprocessing and modeling.

2.2. Data preprocessing

2.2.1. Data normalization
Data were normalized to remove dimensional effects before

analysis. Normalization enabled all parameters to be mapped to the
homogeneity level. In addition, data normalization contributed to
the stable convergence of weight and bias. This allowed the effi-
ciency of the network to be improved. For each independent variable
data X, the standardized Z-score was adopted, as defined in Eq. (1).

x*i ¼
x� m

s
(1)

where x*i represents the original value of each variable, and m and s

represent the mean and standard deviation of each parameter,
respectively.

2.2.2. Data division
Dividing the dataset into several subsets is critical when con-

structing a model. The original dataset is divided into three subsets,
namely the training set, validation set, and test set. The training set
participates directly in the training process, which is used to
establish models and modify parameters. The validation set is used
to adjust the hyperparameters of the model and prevent the model
from overfitting. The test set is used to evaluate the performance
and robustness of the model [17].

In this study, the normalized dataset was divided into the
original training set (80%) and test set (20%) in the preprocessing



Fig. 2. Structure diagram of VAE.

Table 1
Parameters of the VAE.

Parameter Value
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stage. For the model trained directly with the original data, 80% of
the training set was then selected as the final training set. The
remaining 20%was used as the validation set [17,18]. Conversely, for
the model trained after data augmentation, the original training set
was expanded by the VAE and GAN. Subsequently, 80% of the new
training set was used as the final training set. The remaining 20% of
the new training set was used as the validation set. The purpose of
this was to ensure that the test data would never participate in the
training process. The model design framework is shown in Fig. 1.

2.3. Data augmentation

2.3.1. Development of VAE
The VAE is a widely used data augmentation technique. It is

divided into two parts: an encoding network and a decoding
network. The former outputs the parameters of the Gaussian dis-
tribution, and the latter reconstructs and decodes the ANN ac-
cording to the distribution of input data. The VAE first assumes that
the data obey the Gaussian distribution. The encoding network
then trains a probability distribution, namely a latent space, that
maps the original probability distribution with the training set.
Finally, the decoding network generates more data by selecting the
data points on the created distribution and adding noise. After
sampling by decoding the ANN, the obtained data obey the prior
distribution. When generating data, the logarithmic maximum
likelihood method is used to generate parameter estimates of the
model. The training structure of the VAE is shown in Fig. 2.

In this study, the encoding and decoding network contain four
hidden layers and one output layer, respectively. The hidden layers
change the parameters of the weights for each neuron through a
constant iterative training algorithm, which makes the network
generate the values of each parameter following the distribution of
the actual values. The loss function of this model consists of two
parts: decoder loss and encoder loss. The former is the loss value
from refactoring data, and the latter is the KullbackeLeibler
divergence. This model finally constructs the optimal dataset by
minimizing the loss function. Table 1 presents the parameters of
the VAE iterative training.

2.3.2. Development of GAN
The GAN is currently one of the most promising approaches for

measuring complex distributions. This model combines two spe-
cific models: the generative model and the discriminative model.
The GAN generates data through the interaction of these two net-
works. The generative model maps data to a latent space and cre-
ates new data instances and the discriminative model evaluates the
authenticity of these data; that is, it determines whether these
generated data are from the original data distribution. In contrast to
the VAE, it is not necessary to assume that data follow the Gaussian
distribution. The GAN optimizes the generated data by using a
discriminator network so that the distribution of data directly fits
the distribution of the training data. The training structure of the
GAN is shown in Fig. 3.
Fig. 1. Framework of experimental design.
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Table 2 presents the parameters of the iterative training of the
GAN used in this study. After the dataset has been augmented, the
generated data with the minimum loss function are saved for
training. The statistical and ML algorithms mentioned above are
then used to construct prediction models on the new training
dataset.
2.4. Data modeling

2.4.1. Development of ANN
An ANN usually consist of one input layer, one or more hidden

layers, and one output layer. The layers are connected by various
numbers of interconnected nodes (neurons), and each node rep-
resents a specific output function (or activation function). A
connection between two nodes represents a specific weighted
value for each signal, namely the weight. The ANN finally obtains
the output by calculating the weight of each neuron [22]. The ANN
can obtain the relationship between inputs and outputs by
Augmented data 80%
Encoder layers 4 hidden layers, 1 output layer
Dense 11,22,22,22
Activation (hidden layers and input layer) Leaky ReLU
Batch normalization 0.99
Decoder layers 5 hidden layers, 1 output layer
Dense 22,22,22,22
Activation (hidden layers and input layer) Leaky ReLU
Batch normalization 0.99
Loss function decoder loss and kl loss
Epochs 3000
Batch size 36
Optimizer Adam



Fig. 3. Structure diagram of GAN.

Table 2
Parameters of the GAN model.

Parameter Value

Augmented data 80%
Generator 2 hidden layers, 1 output layer
Dense 512, 1024
Activation (hidden layers and input layer) Leaky ReLU
Batch normalization 0.8
Decoder layers 2 hidden layers, 1 output layer
Dense 512, 256
Activation (hidden layers and input layer) Leaky ReLU
Batch normalization 0.8
Loss Binary_crossentropy
Epochs 8000
Batch size 3
Optimizer RMSprop

Fig. 4. Structure diagram of ANN.

Table 3
Parameters of the ANN.

Parameter Value

Network FANN
Training data Augmented data
Test data Original testing data
Hidden layers 3
Hidden neurons 16
Epochs 1000
Activation (hidden layers and input layer) ReLU
Activation (output layer) Linear
Loss MSE
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assigning weights to each network neuron. Moreover, it optimizes
the model by changing the weights and applying various training
algorithms to reduce errors. The number of neurons in input layers
is determined by the experimental design parameters, and the
number of neurons in the output layer is determined by the
experimental analysis result. In the training stage, the input and
output data participate in the training process so that the ANN can
find the functional relationship between them by calculating the
weight. Various training algorithms can be applied in the training
process to modify the weights and train the network to perform a
given task. The structure of an ANN is shown in Fig. 4.

In this study, the input layer consists of two neurons, corre-
sponding to the two parameters that are to be trained as input
(temperature and time in this case). The output layer contains a
single neuron: the molecular weight. The activation function of
each hidden layer is nonlinear (ReLU), and that function of the
output layer is linear. Various numbers of hidden neurons (between
1 and 20) are used in the hidden layer to train and compare the
results. The purpose of this is to find the optimal number of neurons
in hidden layers, which strongly affects the weights of parameters.
That is, the use of too few neurons is not conducive for the model to
learn internal laws (underfitting), whereas using too many neurons
makes the model more reliant on the training data but unable to
generalize (overfitting). In addition, GAN and VAE data may require
different optimal numbers of neurons. Therefore, the number of
hidden neurons is adjusted separately in the two models. More-
over, the ‘dropout’ function is used to keep some neurons discon-
nected, to make the model less dependent on some local features.
L2 regularization is also used: this function reduces the weight of
each neuron (by weight decay) so that the model can converge
better than without this function. Table 3 presents the parameters
of the ANN iterative training.

2.4.2. Development of RF
RF originated from the bagging algorithm. In the training stage,
4

RF uses bootstrap sampling to sample multiple sub-training sets
from the input training dataset according to the attributes. It then
uses these subsets to train multiple decision trees. Because
different decision trees may output different predicted values, RF
averages the prediction results of multiple internal decision trees to
obtain the final prediction results in the prediction stage. As shown
in Fig. 5, RF determines the results by a majority vote of the mul-
tiple decision trees.

When constructing the RF, the polynomial features were
enhanced before training to ensure that the model could correctly
respond to nonlinear functions [17]. In addition, various different
numbers of trees were applied in this model to find the optimal
parameters. Table 4 presents the parameters of the RF.
3. Results and discussion

3.1. Model optimization

The parameters of themodels have a significant influence on the
prediction results. Therefore, the parameters of each model need to
be adjusted after the initial establishment of the model to obtain
the optimal model. In addition, to evaluate the performance of the
model in the training process, it is necessary to select an appro-
priate evaluation metric and loss function. This study evaluated the
performance of models using mean square error (MSE), which
provides the criterion for the model to find the optimal weight and
bias byminimizing the MSE. The metric of the training model is the
coefficient of determination (R2), which does not affect the pa-
rameters of the model but is a method of evaluating each model
[23]. The MSE and R2 are defined in Eq. (2) and Eq. (3), respectively:

MSE¼1
n

Xn

x¼0

ðPx � AxÞ2 (2)



Fig. 5. Structure diagram of RF. Fig. 6. Variation of MSE with the number of filters.

S. Wei, Z. Chen, S.K. Arumugasamy et al. Environmental Science and Ecotechnology 11 (2022) 100172
R2 ¼1�
Pn

x¼1ðPx � AxÞ2Pn
x¼1ðPx � sxÞ2

(3)

where Px is the experimental value of the xth experiment, Ax is the
actual value, and sx is the average of each experimental value.
Table 5
3.1.1. VAE optimization
It is necessary to select and adjust the number of filters properly

because VAE is sensitive to filters. If there are too few filters, it is
possible for the models to extract insufficient information, which
affects the loss value. However, an excessive number of filters re-
sults in redundancy and wastes time. In this study, the number of
filters was adjusted through the loss function to obtain the most
appropriate number. The number of filters was varied from 1 to 15,
and the lowest loss value was recorded for each run.

Fig. 6 shows that, overall, the MSE decreased as the number of
filters increased. It dropped quickly until the number of filters
reached 4, indicating that the performance of the model rapidly
improved with the increase in the number of filters. However, the
MSE reached its minimum (3.04) with 11 filters and did not
decrease or even increase with more filters. Therefore, the number
of filters was set to 11 to optimize the VAE. Table 5 shows 14 of the
1000 data instances generated by the VAE.

Fig. 7 shows the histograms for each parameter generated by the
VAE. As can be observed, the expanded data closely conform to the
normal or skewed distribution, and this is consistent with the prior
distribution of the VAE algorithm.
Data instances generated by the VAE.

Time Temperature Molecular wt

2.72 71.0 11330.52
2.70 71.3 11272.89
3.1.2. GAN optimization
According to previous work [24], the training of the GAN is

usually challenging. It contains two network models. Thus, there
Table 4
Parameters of the RF.

Parameter Value

Polynomial features 2
Training data Augmented data
Test data Original testing data
N_Estimators 50
Criterion MSE
Random_State None
Max_Depth None
Max_Features Auto

5

are two loss functions. Usually, in image classification problems,
generated datasets are evaluated by direct observation of results,
but this is impossible in the case of regression problems. In this
study, the optimal data generated by the GAN were determined by
considering the distribution of data instances and loss values of the
generative network and discriminative network. Table 6 shows 14
of the 1000 data instances generated by the GAN.

Fig. 8 shows the distribution of each generated parameter,
indicating that the extended dataset approximately satisfies the
requirement of symmetric distribution. It is worth mentioning that,
although the VAE and GAN efficiently created new sample in-
stances based on the distribution, it was difficult to compare these
twomodels directly because the criteria used to assess them are not
consistent. Therefore, the performance of the VAE and GAN was
compared by establishing regression models on two generated
datasets.
3.1.3. ANN optimization
It is essential to choose the appropriate number of neurons in

the hidden layer of the ANN. If there are too few neurons, themodel
may not be able to learn enough information. In contrast, an
excessively large number of neurons may cause overfitting. In this
study, the number of hidden neurons used for the training model
was continuously corrected and evaluated by comparing the loss
values of MSE and R2, as shown in Fig. 9.

Fig. 9 shows that the MSE of the ANN constructed with the
2.68 71.5 11210.73
2.65 71.7 11160.72
3.13 63.3 12961.22
3.11 63.6 12919.06
3.10 63.8 12876.9
3.09 64.1 12834.74
3.07 64.4 12783.07
3.05 64.7 12723.4
3.04 64.9 12663
3.02 65.2 12602.6
3.01 65.5 12542.2
2.99 65.7 12478.3
2.97 66.0 12409.19
2.96 66.3 12338.31



Fig. 7. Histograms of time (a), temperature (b), and molecular weight (c) generated by the VAE.

Table 6
Data instances generated by the GAN.

Time Temperature Molecular wt

1.99 59.3 9426.629
2.00 92.2 23025.64
2.12 65.5 12912.92
2.05 90.4 9323.119
2.12 59.8 16359.54
4.43 57.9 17731.7
5.94 62.7 8732.383
2.24 63.0 13265.61
1.99 92.1 14100.91
5.91 60.4 9269.199
1.98 61.1 15802.4
3.27 91.2 22025.82
6.02 57.8 9243.063
5.88 92.3 25864.12
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original data decreased as the number of neurons increased, and
started to converge at 16 neurons, when the MSE value was 0.4. The
MSE of the VAE þ ANN first decreased as the number of neurons
increased, but it fluctuated noticeably when the number of neurons
reached 4. Subsequently, the MSE continued to decrease and star-
ted to converge until the number of neurons reached 16. TheMSE of
the GAN þ ANN decreased continuously until the number of neu-
rons reached 11 but it did not change significantly as the number
increased further. Moreover, the R2 of the ANN constructed with
the original data, VAE þ ANN, and GAN þ ANN all increased pre-
cipitously up to three neurons and then levelled off, indicating that
the model could not learn enough knowledge when the number of
neurons was less than 3. After adding more neurons, the R2 of the
ANN with the original data and the VAE þ ANN continued to in-
crease and peaked at 16 neurons, but did not change dramatically
after that. The R2 of the GANþANN also increased until the number
of neurons reached 11. Therefore, the ANN with the GAN data
augmentation algorithm (GAN þ ANN) achieved the best perfor-
mance with 11 neurons, when the MSE and R2 were 0.41 and 0.60,
respectively. The best performance for the VAE þ ANN was ach-
ieved with 16 neurons, when the MSE and R2 were 0.26 and 0.73,
respectively.
Fig. 8. Histograms of time (a), temperature (b), an

6

Fig. 10 shows the evaluation curves of the training set and
validation set for the two proposed models, after training for 1000
epochs. As shown in Fig. 10a, the MSE of the ANN trained with the
original data decreased steadily during training until about 800
epochs. Therefore, the optimal model was determined when
trained for 800 epochs, when the minimum MSE values of the
training set and validation set were 0.47 and 0.17, respectively. As
shown in Fig.10b and c, for the VAEþ ANN, the R2 of the training set
increased throughout the training process because the model
attempted to improve the accuracy of prediction continuously.
Therefore, the validation set is particularly important because it
adjusts the hyperparameters of the model and ensures that the
model will not overfit by estimating the performance of the model
in the validation set. Fig. 10b shows that the R2 of both the training
set and validation set increased during the first 400 epochs. How-
ever, this value for the validation set started to decrease after more
epochs were executed, indicating that the fitting to the training
data gradually lost generalization. Therefore, the optimal model
was determined when trained for about 400 epochs, when the
optimal MSE values of the training set and validation set were 0.17
and 0.29, respectively, and the best R2 values of the training set and
validation set were 0.71 and 0.84, respectively.

Fig.10d and e also show that the R2 values of the training set and
validation set increased precipitously in the first few epochs for the
GAN þ ANN. However, R2 did not change significantly when 500
epochs were executed. In addition, the MSE of both sets converged
to a minimum at 500 epochs. Therefore, the optimal model was
determined when trained for 500 epochs, when the optimal MSE
values of the training set and validation set were 0.43 and 0.48,
respectively, and the best R2 values of the training set and valida-
tion set were 0.59 and 0.63, respectively.
3.1.4. RF optimization
The performance of RF is also affected by the “number of trees”

and “number of attributes” parameters. However, because there are
only two input parameters in the dataset used for this study, the
influence of the attributes was not particularly significant. There-
fore, only the influence of the number of trees was considered for
d molecular weight (c) generated by the GAN.



Fig. 9. Variation of MSE (a) and R2 (b) with the number of neurons.

Fig. 10. Evaluation curves: a, R2 of ANN; b, R2 of VAE þ ANN; c, MSE of VAE þ ANN; d, R2 of GAN þ ANN; e, MSE of GAN þ ANN.
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optimizing the RF. Fig. 11 shows the effect of modifying the number
of trees on the training set.

As shown by Fig. 11, the R2 of the RF trained with the original
data was maximized when the number of trees was 100 (0.89).
Because few data were used for training, 100 trees seemed to be
sufficient to train the RF well. In addition, the R2 of the RF with the
VAE augmentation technique (VAE þ RF) reached its maximum
value (0.94) when the number of trees was 200. The RF with the
GAN augmentation technique (GAN þ RF) reached its maximum
value (0.94) when the number of trees was 150. Therefore, the
optimal numbers of trees of the VAE þ RF and GAN þ RF were
determined to be 200 and 150, respectively.
3.2. Comparing the performance of models on the test set

ML models using various algorithms have been established, and
the parameters of each model have been optimized. In this section,
the ability of each model to predict unknown data is discussed. For
this purpose, the test data were used to test the robustness of the
models. Each model was applied to predict the molecular weight of
the test set. The predicted values were then compared with the
actual values to test the performance and robustness of the models,
as shown in Fig. 12. To select the optimal model, the errors in both
the training stage and test stage were considered. The purpose of
this was to avoid the predicted contingency caused by a small test
set. A good model is expected to perform well on the training set
7

first and generalize well to the test set. The R2 values of each model
on the training set and test set are shown in Table 7.

As can be seen in Table 7, the ANN and RF built with original
dataset have poor performance on both training set (with R2 of 0.57
and 0.89, respectively) and testing set (with R2 of 0.77 and 0.60,
respectively). Fig. 12a and b also show the predicted results of the
ANN and RF comparing with the actual values, respectively,
Fig. 11. Variation of R2 with the number of trees.



Table 7
R2 on the training set and test set.

Original VAE GAN

ANN RF ANN RF ANN RF
Train R2 0.57 0.89 0.71 0.94 0.59 0.94
Test R2 0.77 0.60 0.85 0.51 0.63 0.74
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constructed with the original dataset. Obviously, there is a signifi-
cant difference between the predicted and actual values of the ANN.
The predicted molecular weights are mostly greater than the actual
values. The difference between actual and predicted values is also
evident in the RF. In general, the models based on the original
dataset performed poorly, mainly because of the small amount of
data. In addition, these models did not summarize the general rules
in the limited amount of data because of the significant difference
between the data instances.

Table 7 also show that the ANN and RF augmented by VAE
significantly increases the values of R2 on training (0.71 and 0.94,
respectively) and testing set (0.85 and 0.51, respectively), which
indicated that the performances ofmodels are improved. Fig.12c and
d show the molecular weights predicted by the ANN and RF,
respectively, where the VAE was used for data augmentation. These
figures show that the ANN and RF predicted relatively accurate
molecular weights, but some of the predicted values differ signifi-
cantly from the actual values. This is because the VAE has a condition
that conforms the prior distribution and the features of generated
datawill be similar. Therefore, the predicted values of outliers are not
ideal. Basically, the values predicted by the ANN are close to the
actual values. Therefore, it is considered that the ANN performed
well and demonstrated good robustness in this study. In contrast, the
RF performed poorly on the testing set, indicating that RF is not
sufficiently robust. Comparing these models, the ANN performed
better than the RF when the VAE was applied to enlarge the dataset.

Fig. 12e and f show the predicted and actual molecular weights
where GAN was used for data augmentation. The figure shows that
the ANN roughly predicted the actual values but was not sensitive
to the extreme values. That is, the ANN successfully predicted
similar values when the actual molecular weights were close to the
average but excessively high values caused obvious prediction er-
rors. Therefore, the ANNwith the GANwas not sufficiently robust in
this study. The predicted values of the RF were much closer to the
real values, and this model achieved satisfactory performance in
both the training and testing stages. Therefore, it is reasonable to
regard RF as the better model when the GAN was used for data
augmentation.
Fig. 12. Predicted values vs. actual values: a, ANN; b, RF; c,

8

Taking every model into consideration, both the ANN and RF
achieved ideal performance in this study because they could fit
more complex functions by continuous learning. This means that
these models could eliminate the influence of error caused by
extreme values more significantly by constantly adjusting weights
by normalization and training algorithms. Moreover, the ANN with
VAE augmentation performed stably, compared with other ANN,
because VAE generated a model based on the original distribution,
causing the created data to have strong regularity. However, the
ANN with GAN performed poorly because it was difficult to fit the
distribution of the original data. In addition, the RF, with both
augmentation models, seemed to achieve more satisfactory per-
formance. The RF with the VAE model achieved the best R2 in the
training stage (0.95), but its performance on the test set (0.51)
indicated that this model was not sufficiently robust. The RF with
the GAN fitted well on the training set (with an R2 of 0.94) and
accurately predicted the actual values on the test set (with an R2 of
0.74). Therefore, the RF with the GAN is considered to be the best
model.
4. Conclusions

In this study, the data augmentation method and ML modeling
techniques for solving regression problems on a small dataset were
investigated. The results prove that data augmentation techniques
effectively improved the performance of the regression model. In
general, the performance of each variant of the RF was better than
that of the ANN for this study. Among all the models, GAN data
VAE þ ANN; d, VAE þ RF; e, GAN þ ANN; f, GAN þ RF.
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augmentation combined with the RF is considered to be the
optimal model.

This paper proposes a scientific method that could be applied to
ML modeling when handling insufficient data; the method avoids
overfitting so that a more robust model can be constructed. This
enables the bio-polymerization process to be optimized using the
minimum amount of resources, and hence contributes to improved
environmental performance. However, it is worth noting that the
models constructed in this study are not yet perfect, mainly because
the data used have a small numbers of attributes. Although the VAE
and GAN improved the performance of models by generating more
data instances, the generated data were mostly similar because few
attributes were taken into consideration. Therefore, only limited
improvement of the model was achieved. If a dataset including
multiple attributes is used in future work, the data augmentation
technique will greatly improve the performance of models.

Although some models with ideal performance have been
constructed, there is still scope for further improvement. In VAE,
the loss function did not converge to an ideal value (the minimum
value was 3.04). There is no doubt that minimization of the loss
function can improve the efficiency of the prediction model, and
this could be further improved in future research.

In some previous research, several other parametersdsuch as
the use of different solvents and monomer concentrationsdhave
been taken into consideration. In contrast, the current study
focused on only one solvent, namely toluene, and one particular
monomer concentration. The reaction conditions collected in the
dataset have only one typical lactone or polyester monomer,
namely e-caprolactone, and only one typical enzyme, namely
candida antartica lipase B. However, the findings will be very useful
because the prediction model developed can be used for larger-
scale case studies in industry. The model can be used for process
control where there is a need for a model-based control strategy.
This means that, when the polymer PCL of a specific molecular
weight is required, the corresponding temperature and time period
can be optimized without actually conducting the experiment.
Hence, the developed model can be used as a benchmark for
developing similar models for other reaction systems and for sys-
tems with different lactones and enzymatic systems.
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ML: Machine learning
VAE Variational auto-encoder
GAN Generative adversarial network
ANN Artificial neural network
RF Random forest
MSE Mean square error
R2 Coefficient of determination
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PCL: Polycaprolactone
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