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ulations. They play pivotal roles in the pelagic food web and export production, affecting the biogeo-
chemical cycling of carbon and nutrients. Therefore, accurately modeling and visualizing
mesozooplankton community dynamics is essential for understanding marine ecosystem patterns and
informing effective management strategies. However, modeling these dynamics remains challenging due
to the complex interplay among physical, chemical, and biological factors, and the detailed parameter-

Graph neural network .. . . .
Ecosystem dynamics ization and feedback mechanisms are not fully understood in theory-driven models. Graph neural
Mesozooplankton network (GNN) models offer a promising approach to forecast multivariate features and define corre-
Transfer entropy lations among input variables. The high interpretive power of GNNs provides deep insights into the
structural relationships among variables, serving as a connection matrix in deep learning algorithms.
However, there is insufficient understanding of how interactions between input variables affect model
outputs during training. Here we investigate how the graph structure of ecosystem dynamics used to
train GNN models affects their forecasting accuracy for mesozooplankton species. We find that fore-
casting accuracy is closely related to interactions within ecosystem dynamics. Notably, increasing the
number of nodes does not always enhance model performance; closely connected species tend to pro-
duce similar forecasting outputs in terms of trend and peak timing. Therefore, we demonstrate that
incorporating the graph structure of ecosystem dynamics can improve the accuracy of mesozooplankton
modeling by providing influential information about species of interest. These findings will provide
insights into the influential factors affecting mesozooplankton species and emphasize the importance of

constructing appropriate graphs for forecasting these species.
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transferring energy between primary producers and organisms at

higher trophic levels [1—3]. The dynamics of the mesozooplankton

1. Introduction community, including factors such as growth, mortality, and dis-
tribution, shape the structure of the ecosystems and are also used

Mesozooplankton species are important components of marine o evaluate the impact of global change [4,5]. They also play a role in
ecosystems, where they act as grazers of phytoplankton and marine biogeochemical cycles by converting organic matter into
influencers of fish populations, which is an essential pathway for dissolved inorganic carbon and nutrient pools [6]. They are also
responsible for transmitting energy to deep water through diel

vertical migration and can play a significant role in deoxygenating

* Corresponding author. the upper ocean [7,8]. Mesozooplankton communities are highly

** Corresponding author. sensitive to oceanographic conditions, with their life cycles and
E-mail addresses: mcjang@kiost.ac.kr (M.-C. Jang), ssbaek@yu.ac.kr (S.-S. Baek).

https://doi.org/10.1016/j.ese.2024.100514
2666-4984/© 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research
Academy of Environmental Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mcjang@kiost.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ese.2024.100514&domain=pdf
www.sciencedirect.com/science/journal/26664984
www.journals.elsevier.com/environmental-science-and-ecotechnology/
www.journals.elsevier.com/environmental-science-and-ecotechnology/
https://doi.org/10.1016/j.ese.2024.100514
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ese.2024.100514

M. Jeung, M.-C. Jang, K. Shin et al.
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Adam Adaptive moment estimation

ANN Artificial neural networks

Chl-T Total chlorophyll

DFT Discrete Fourier transform

FC Fully connected

GFT Graph Fourier transform

GNN Graph neural networks

GRU Gated recurrent unit

KIOST Korea Institute of Ocean Science and Technology
LSTM Long-short-term memory

NSE Nash—Sutcliffe efficiency

PBIAS Percent bias

RNN Recurrent neural network

StemGNN Spectral-temporal graph neural network
TE Transfer entropy

community responses particularly affected by environmental
changes [9]. Therefore, understanding and modeling the temporal
changes in mesozooplankton abundance and dynamics are crucial
for recognizing patterns in marine ecosystems and developing
effective management approaches [10,11].

Modeling and interpreting mesozooplankton dynamics are
challenging due to their direct and sensitive responses to various
physical, chemical, and biological changes within ecosystems
[12,13]. Therefore, the models must adequately capture the dy-
namics of these interactions. The modeling of zooplankton is
commonly classified into biological, ecosystem, and size-based
models [10], which are extremely sensitive to the parameteriza-
tion of zooplankton, wherein poor parameterization adversely af-
fects model performance [14,15]. Previous research has
significantly advanced the mechanistic modeling of zooplankton by
improving the representation of zooplankton functional parame-
ters [16]. Nevertheless, these models often group different
zooplankton species into the same functional category or distin-
guish them based solely on size [17], making it difficult to under-
stand the individual characteristics and temporal changes of
specific mesozooplankton. To address this issue, individual-based
models have been utilized to simulate the behavior and physi-
ology of specific zooplankton species [18,19]. These models require
high computational costs and extensive species-specific informa-
tion for parameterization and are primarily applied to well-
investigated species [10].

Deep learning methods, such as long-short-term memory
(LSTM), artificial neural networks (ANN), and regression trans-
former models using multivariate input data [20—22], have been
applied to improve forecasting accuracy and reduce computational
costs in modeling zooplankton species. These models differ from
theory-driven models, which compute zooplankton dynamics us-
ing parameters or feedback with variables. Instead, they utilize
data-based information, such as temporal dependencies and
weights from other influential features [23]. Despite their success,
these methods have several limitations. Previous studies have often
trained models to simulate single-target zooplankton species
separately, increasing the number of models with increased target
species [24]. Furthermore, there has been insufficient consideration
of how interactions between input variables affect model outputs
during training [25]. Simulating multivariate time series data is
challenging when relationships between input variables are com-
plex, and the number of target variables increases [26]. To over-
come these limitations, methods that consider the relationships
between input variables to improve model accuracy and inter-
pretability are receiving more attention [27].

The multivariate algae or community forecasting approach can
provide a perspective on biological—-environmental interactions,
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which enables the identification of the interactive effects of mul-
tiple input variables on model responses [28]. The graph theory is a
method to generate the relationships between each variable with
several nodes and edges graphically. This method has been used in
a wide range of applications, such as defining the relationships in
social networks [29,30], financial market [31], and transportation
[32,33]. Due to its high interpretive power, the graph neural
network (GNN) approach has been used in various applications
with complex interactions between variables, as it can effectively
capture spatial relationships [34]. GNNs are ideally suited for traffic
forecasting problems [35], communication networks [36], and
disease transmission [37], which can be represented using non-
Euclidean graph structures. The traditional GNN models are typi-
cally based on fixed (or static) graph structures and cannot capture
temporal evolution [38], rendering them unsuitable for capturing
temporal dynamics in ecosystems. Therefore, advanced GNN
models have been developed to consider the correlation among
multivariate data that exhibit temporal variations [34]. Despite
advances in GNN models, most of them require a dependency graph
as a prior, which is difficult to apply in fields where it is challenging
to fully define the interactions or relationships between variables,
such as biological fields. Cao et al. proposed the spectral-temporal
graph neural network (StemGNN) that performs better by auto-
matically capturing temporal patterns and correlations in the
spectral domain [39]. To the best of our knowledge, limited
research uses GNN models for predicting mesozooplankton com-
munity dynamics and interpreting the impact of various meteo-
rological and environmental factors on forecasting results.

Hence, in this study, we aimed to relate the forecasting perfor-
mance of mesozooplankton communities to the graph structure of
ecosystem dynamics to understand how variables affect forecasting
accuracy. We applied the StemGNN model at various lead times and
with different graph structure scenarios to (1) determine how far
into the future accurate predictions can be made and (2) evaluate
the association between prediction accuracy and input features
consisting of graph structures. Moreover, we compared the
StemGNN model's effectiveness in considering inter-series re-
lationships and temporal dependencies with a developed LSTM
model. We also visualized ecosystem dynamics in graph structures
for the entire period and seasonally to explore temporal changes in
factor influence. Finally, based on our findings, we discuss the re-
sults and limitations and suggest future directions for forecasting
mesozooplankton community dynamics.

2. Materials and methods
2.1. Study site and data acquisition

The Jinhae Bay is a semi-enclosed embayment located on the
Geoje Island, southeastern coast of the Republic of Korea. The
sampling site (34°59'41" N, 128°40'31" E) was selected near the
laboratory (South Sea Research Institute, Korea Institute of Ocean
Science and Technology (KIOST); approximately 300 m from the
sampling site) to acquire in situ water samples at a weekly interval
(Fig. S1). Sampling was conducted at a depth of 8—10 m, with a tide
range of approximately 2.2 m, during high tide (+1 h). Triplicate
vertical tows were performed around high tide using a conical 45-
cm-diameter net with 200-pm mesh to sample mesozooplankton.
Each mesozooplankton species was then counted using Bogorov's
counting chamber under a microscope. Groups of Dinoflagellata,
Cnidaria, Chordata, Chaetognatha, Arthropoda, Copepoda, Mer-
oplankton, and Ichthyoplankton (a total of 30 mesozooplankton
species) were investigated through a long-term monitoring pro-
gram of KIOST [40], which recorded data over ten years from
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January 2001 to December 2020. The environmental (e.g., water
temperature, salinity, pH, chlorophyll, and seven other water
quality constituents) and meteorological (e.g.,
minimum—maximum temperature, rainfall, wind speed, humidity,
and sun duration) factors were also monitored to identify the dy-
namics of mesozooplankton communities under various environ-
mental conditions. We collected 995 data samples of 30
mesozooplankton taxa, 11 environmental factors, and 6 meteoro-
logical factors (Supplementary Materials Tables S1 and S2).

2.2. The overall procedure for modeling and interpretation of
mesozooplankton community dynamics using GNNs

The dynamics of mesozooplankton communities were fore-
casted by incorporating interactions between ecosystem factors.
Modeling and interpreting mesozooplankton dynamics improve
our understanding of linkages among trophic levels and help
examine potential ecosystem mechanisms [5,10]. Mesozooplankton
interact with various nutrients, and the nutrient composition
required for their metabolic growth differs between species [41].
This complexity limits our understanding of mesozooplankton
growth processes and reduces model accuracy [42]. The GNN
method is a powerful deep-learning technique for forecasting
complex, interconnected time series data by leveraging their in-
teractions [43]. Providing an appropriate graph structure is crucial
for determining model performance [44], whereas inaccurately
defining the relationships between input variables can adversely
impact predictive outcomes [45]. To overcome these limitations, it
is essential to apply deep learning methods that automatically
capture the interactions among input variables.

The StemGNN model (Fig. 1a), which automatically captures the
correlations between input variables, was applied using the Python
software (detailed explanations in Section 2.3.1). As mentioned,
forecasting mesozooplankton community dynamics has been
limited despite using other deep learning methods such as ANN
and LSTM. These models are inadequate for capturing spatial re-
lationships (i.e., correlations between input features) in the fore-
casting process [46]. Therefore, the LSTM model was used as a
baseline to compare the performances of the StemGNN model and
to evaluate the effectiveness of considering spatial dependencies in
the StemGNN model. Although the StemGNN model achieves
excellent performance by capturing the dynamic correlations be-
tween input variables, it may present a challenge in interpreting
the model outputs [34]. The interpretation of ecosystem dynamics
can provide rich cognitive insights into the structure of mutually
beneficial relationships and negative correlations such as preda-
tion, consumption, and competition [47]. To explore the in-
teractions within ecosystems, we applied the transfer entropy (TE)
theory for computing nonlinear relationships from time series data
of algal species, water quality constituents, and meteorological
factors (Fig. 1b). TE calculation and graph visualization were per-
formed using the graph and network algorithms functions and
ProcessNetwork application in the MATLAB software [48] (detailed
explanations in the Supplementary Materials).

2.3. Modeling mesozooplankton community dynamics using the
multivariate forecast method

Multiple mesozooplankton species were simultaneously fore-
casted by leveraging the interactions between features rather than
forecasting each species separately. Multivariate forecasting
methods utilize dependencies between input features to improve
model performance [49]. This approach addresses complex
decision-making problems [50,51] and evaluates ecosystem trade-
offs and synergies [52]. Among multivariate models, GNNs have
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Fig. 1. Overall procedure for forecasting mesozooplankton community dynamics using
spectral-temporal graph neural network (StemGNN) and visualizing ecosystem dy-
namics using transfer entropy.

gained attention for their ability to exploit relationships between
multiple time series inputs [53]. This study applied a GNN model
that utilizes the correlations between variables to forecast meso-
zooplankton communities (Fig. 1a).

2.3.1. The StemGNN model

The StemGNN was applied as a forecasting model due to its
powerful ability to forecast multivariate time series data [54]. This
method provides better forecasting performance by jointly
capturing the inter-series correlations and temporal dependencies
[39]. Other current state-of-the-art models also incorporate spatial
and temporal dependencies in traffic forecasting and communica-
tion network prediction; however, most require a dependency
graph as a prior [39]. The key technical contribution of the
StemGNN model is its ability to automatically compute correlations
in multivariate time series data without depending on predefined
topologies, thereby improving its applicability across a wide range
of applications. The StemGNN model applies a global prediction
mechanism, forecasting at the level of the entire graph by consid-
ering information from all nodes and edges within the graph (i.e.,
the input and output dimensions must be equal). Despite the ad-
vantages of enabling the model to understand and leverage in-
teractions between variables, a limitation is that it cannot select
target variables (i.e., all input variables are forecasted and fed into a
sliding window, and a rolling strategy is used to forecast the next
timestep). Nevertheless, it is inadequate to forecast meteorological
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and water quality variables using interactions from meso-
zooplankton species. Before training the model, we modified the
source code of the StemGNN model to ensure that the predicted
values of mesozooplankton species and the observed data for
meteorological and chemical factors were fed into the sliding
window before forecasting the next timestep.

The dataset was partitioned into three subsets for training,
validation, and testing with a ratio of 6:3:1. The parameter settings
were optimized manually as follows: 100 epochs, 14 window size,
64 batch size, and 0.001 learning rate with a 0.7 decay rate after
every five epochs. Forecasting outputs with longer lead times (or
forecasting horizons) are crucial for providing response time to
address algal blooms [55], and the StemGNN model was applied
across different forecasting horizons (or lead times), viz., 1, 7, and 14
days. The StemGNN model was constructed with three layers: the
latent correlation layer, the StemGNN block, and the output layer.
The overall architecture of the StemGNN method is processed as
follows:

(1) The correlations of multivariate time series data in the latent
correlation layer are calculated (Supplementary Material
Fig. S2a). In this layer, the multivariate input data are fed
into the gated recurrent unit (GRU) model that updates the
hidden state in each timestamp t sequentially. When the last
hidden state was updated, the adjacency matrix for con-
structing the graph structure was calculated by the self-
attention mechanism as equation (1):

Q =RWY, K =RWX, W = Softmax (QKT ) (1)
—RWE K=RWE W= vd

where Q and K are the query and key of the inputted weight matrix
W. The output matrix WeRN*N is transformed as an adjacency
matrix for the graph structure.

(2) The constructed graph structure is transferred into the
StemGNN block (Supplementary Material Fig. S2b), designed
to capture the temporal dependencies of multivariate time
series data and joint with inter-series correlation informa-
tion (i.e., the output of the latent correlation layer). Then,
these two information are transformed into a spectral
domain using graph Fourier transform (GFT) and discrete
Fourier transform (DFT). Cao et al. have described more
detailed information regarding the StemGNN block [39].

(3) After calculating the inter-series correlations and temporal
dependencies using GFT and DFT operators, the output is
supplied into the graph convolution layer, and inverse GFT is
performed. The fully connected (FC) sublayers comprise two
types of output layers. The forecasting layer generates the
future values, whereas the backcasting layer improves
multivariate time series data representation power.

(4) The forecasted value is fed into the sliding window, and a
rolling strategy is used for multistep forecasting. This process
is repeated for each forecasting horizon (or lead time) set
until the target date we intend to predict.

2.3.2. Model evaluations

The LSTM model, which can capture the temporal dependency
of input features [22], was developed and used as a baseline for
comparing the performances of the StemGNN model and demon-
strating the effectiveness of capturing correlations between input
variables in the forecasting process of StemGNN. The critical dif-
ference between the StemGNN and LSTM models is that the
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StemGNN model can consider both temporal dependencies and
inter-series correlations [39]. In contrast, the LSTM model considers
only the temporal dependency of input features [56]. The LSTM
model is formulated from the recurrent neural network (RNN) ar-
chitecture. The LSTM network consists of an input layer, an LSTM
layer, a dropout layer, and an output layer. The closed-loop method
was applied to the LSTM model using the predicted value of the
previous time step as input data. However, like the StemGNN
model, only the predicted values of mesozooplankton species were
used for the next step of forecasting, and the observed data for
meteorological and chemical factors were fed into a sliding window
before forecasting the next timestep. The parameter settings for the
LSTM layer were optimized using the adaptive moment estimation
(Adam) optimizer with 2000 epochs, a batch size of 64, and a
learning rate of 0.001. The Adam optimizer is an advanced version
compared with classical stochastic gradient descent methods and is
known for its fast convergence speed [57].

To evaluate the forecasting models (i.e., LSTM and StemGNN),
the Nash—Sutcliffe efficiency (NSE) and the percent bias (PBIAS)
were used as the quantitative objective functions, both of which are
widely used as evaluation criteria in modeling studies [58]. The NSE
is useful for interpreting scale-varying datasets because it de-
termines the relative magnitude of the residual variance compared
with the measured data variance [59]. The PBIAS also provides in-
formation on whether the simulated data are larger or smaller than
the observed data and is useful for long-term simulations [60]. Both
quantitative objective functions were calculated using the
following equations:

Xn: Xi — ;)
NSE=1-":1 (2)
> (Xi—X)?
i=1
55 (X — Yi) x 100
PBIAS (%)=~ 3)
2 Xi

i=1

where X; and Y; are the observed and predicted values, and n is the
number of samples.

2.4. Evaluating model predictions according to different graph
structure scenarios

The effect of input variables within the graph structure on the
predicted output was evaluated using the StemGNN model by
combining the graph components. The composition of graphs (i.e.,
the number of nodes and the correlation between nodes) signifi-
cantly impacts model performance [61]. It provides insights into
the contributions of input variables to the prediction outputs [62].
The five graph structure scenarios described in Table 1 were
derived from two objectives, i.e.,, to evaluate the impact of the
number of nodes and to identify the effects of the predictive power
of nodes. Determining the number of nodes is important in pre-
venting model degradation caused by high dimensionality [63].
Scenarios I and II were structured with single and multiple meso-
zooplankton while retaining environmental factors in the graph
structure. In these scenarios, the performances of the LSTM and
StemGNN models were compared to determine the effectiveness of
capturing the correlations between input variables in the fore-
casting process of the StemGNN model. Scenarios IlI-V were
composed by combining the five mesozooplankton species with
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Table 1
Input features and objectives for five different scenarios.
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Graph structure Objectives
scenarios

Components of graph structure

Scenario |

Scenario Il model performance

Scenario III

Scenario IV nodes on model performance
Scenario V

Assessing the impact of the number of nodes on Meteorological data, water quality data, single target mesozooplankton species®

Meteorological data, water quality data, entire mesozooplankton species

Identifying the impact of the predictive power of Meteorological data, water quality data, five mesozooplankton species with the highest accuracy
Meteorological data, water quality data, five mesozooplankton species with the lowest accuracy
Meteorological data, water quality data, five mesozooplankton species with the highest accuracy and

five mesozooplankton species with the lowest accuracy

2 30 species were individually inputted for prediction.

the highest accuracy (i.e., well-predicted mesozooplankton spe-
cies), the five mesozooplankton species with the lowest accuracy
(i.e., poorly predicted mesozooplankton species), and the ten
mesozooplankton species with both the highest and lowest accu-
racy. This was performed by ranking the forecasting performance of
each mesozooplankton species in Scenario .

3. Results
3.1. Weather records and monitoring data

The meteorological factors and water quality constituents were
collected as node variables of graph structures and the StemGNN
model. Descriptive statistics of the weather and monitoring data
are provided in Table S1 (Supplementary Material). The daily
meteorological data, comprising 7300 records, and the weekly
environmental data, consisting of 995 observations (e.g., meso-
zooplankton species and water quality), were collected from
January 4, 2001, to December 29, 2020. The Jinhae Bay has four
seasons, and the dates for the beginning and end of each season are
as follows: spring runs from March 1 to May 31, summer is from
June 1 to August 31, autumn runs from September 1 to November
30, and winter runs from December 1 to February 28. The study site
receives an average annual precipitation of 873 mm and 45% in
summer but only 149 mm and 8% in winter.

The summary statistics of mesozooplankton species are
described in Table S2 and Fig. S3 (Supplementary Materials). The
mesozooplankton communities were primarily dominated by
groups of Dinoflagellata (Noctiluca scintillans), Arthropoda (espe-
cially Penilia avirostris), and Copepoda (especially Paracalanus par-
vus, Acartia omorii, and Copepodites) (red box in Supplementary
Material Fig. S3a). N. scintillans, P. parvus, and Copepodites main-
tained an abundance rate of >90% during all seasons
(Supplementary Material Fig. S3b), implying that these species
have a relatively low sensitivity to fluctuations in meteorological
conditions, such as substantial changes in rainfall and temperature
over the seasons.

3.2. Forecasting mesozooplankton community dynamics using
GNNs

3.2.1. Forecasting results based on different graph structures

A comparative analysis evaluated the prediction accuracy of 30
different mesozooplankton species based on different graph
structure scenarios (Table 1). The StemGNN model accurately pre-
dicted mesozooplankton species in Scenarios I and II, with average
NSE values of 0.833 and 0.869, respectively. However, the predic-
tive performances for Calanus sinicus and Centropages abdominalis
were excluded from the evaluation due to their poor performance
(negative NSE values; Fig. 2 and Supplementary Material
Tables S3—S4). The graph obtained using the entire meso-
zooplankton (Scenario II) produced more stable results, with NSE

values > 0.8 for most species, whereas Scenario I outcomes were
underestimated and distinctly separated into groups with NSE
values < 0.8 and > 0.9. However, regarding the LSTM model, there
was a significant variation in performance across different meso-
zooplankton species, with Scenarios I and Il showing average NSE
values of 0.479 and 0.411 (without Calanus sinicus and Centropages
abdominalis), respectively (Supplementary Material Table S5).
Compared with the LSTM model, the StemGNN model demon-
strated performance improvements ranging from 73.9% (in Sce-
nario I) to 111.8% (in Scenario II) in terms of average NSE values
(Fig. 3). Although the StemGNN demonstrated improvements in
Scenario II, there was no significant improvement in the LSTM
model, implying that the LSTM model cannot effectively utilize the
interactions between mesozooplankton species during the fore-
casting process.

After forecasting multiple mesozooplankton species using the
graph structures of Scenarios I and II, the five mesozooplankton
species with the highest accuracy and the five mesozooplankton
species with the lowest accuracy were classified to construct the
graph structures for Scenarios IlI—V (Table 1). Forecasting with
Scenarios IlI-V aimed to identify the impact of the predictive po-
wer of the nodes on model performance, determining whether the
model performs better or worse when the graph is constructed
from well-predicted or poorly predicted species. According to the
model performance on Scenario I, the five well-predicted (cirripede
larvae, Sagitta crassa, Penilia avirostris, Noctiluca scintillans, and fish
eggs) and five poorly predicted (Calanus sinicus, Centropages
abdominalis, Podon spp., Pseudodiaptomus marinus, and tunicate
larvae) species were classified by ranking the NSE values (bolded
species in Supplementary Material Table S3).

The forecasting results for the five well-predicted species closely
matched the observed values in both low and high abundances,
with an average NSE of 0.974 (Fig. 4), indicating that the StemGNN
model accurately captured both the temporal trends and peak
abundance timings of these species. These results emphasize the
efficacy of the latent correlation layer within the StemGNN model,
demonstrating remarkable performance without prior knowledge
of the ecosystem's interactions. Conversely, the poorly predicted
species (five of the worst-predicted plankton in Scenario II)
exhibited significant discrepancies, with an average NSE value
of —0.725, including both underestimations and overestimations
(Fig. 5). Among these species, adequate predictive performance was
observed for Pseudodiaptomus marinus, Podon spp., and tunicate
larvae in capturing the peak timing, whereas the peak abundance
was underestimated. However, for Calanus sinicus and Centropages
abdominalis, the model significantly failed to capture both trend
and peak abundance timing. The model output for Centropages
abdominalis in July 2020 emulated the trend for Calanus sinicus
(Fig. 5), indicating the possibility of mutual effects when two nodes
are connected in the graph structure.

Comparisons were made across the five graph structure sce-
narios (Table 1) to investigate the impact of input variable numbers
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Fig. 2. Forecasting performance of the 1-day lead time spectral-temporal graph neural
network (StemGNN) model for 30 mesozooplankton species (Scenarios I and II) during
the test period (01/01/2019—12/29/2020). The species Calanus sinicus and Centropages
abdominalis were excluded due to low Nash—Sutcliffe efficiency (NSE) values that
exceeded the scale of the figure.

and their predictive capacities on model performance (Fig. 6). For
well-predicted species, no significant difference was observed
across input feature scenarios, with the coefficient of variance
averaging 1.9%. This result suggests that these species are weakly
connected or disconnected from poorly forecasted species or offset
negative influences due to their strong relationships with meteo-
rological and water quality factors. Among the poorly predicted
species, the forecasting performance for the group of Calanus sini-
cus and Centropages abdominalis and a group of Podon spp., Pseu-
dodiaptomus marinus, and tunicate larvae exhibited contrasting
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Fig. 3. Comparison of forecasting accuracy (Nash—Sutcliffe efficiency, NSE) and
percent bias (PBIAS) of the 1-day lead time long-short-term memory (LSTM) model
and spectral-temporal graph neural network (StemGNN) model for 30 meso-
zooplankton species (Scenarios I and II) during the test period (January 1,
2019—December 29, 2020). The species Calanus sinicus and Centropages abdominalis
were excluded due to poor NSE and PBIAS values that exceeded the scale of the figure.

results (Fig. 6b). The forecasting performances for Calanus sinicus
and Centropages abdominalis did not improve when well-predicted
species and other mesozooplankton species were applied in the
graph (i.e., negative NSE value for the five graph structure sce-
narios). Forecasting for the group of Podon spp., Pseudodiaptomus
marinus, and tunicate larvae was initially underestimated but
showed improved performance when either well-predicted species
or the entire mesozooplankton species (i.e., Scenarios Il and V)
were applied.

3.2.2. Comparison of forecasting performance across different lead
times

The model performance across different lead times, including
peak timing and temporal trends, was compared with the predic-
tion results of Scenario II across 1-, 7-, and 14-day lead times. In
terms of NSE, forecasting performances consistently improved
when the lead times were shortened from 14 to 1 day (Fig. 7). The
1-day forecasting horizon (blue line in Fig. 7) provided an average
NSE value of 0.869 in the prediction of mesozooplankton species. In
contrast, the 7- and 14-day lead times showed average NSE values
of 0.788 and 0.723, respectively. For PBIAS, as expected, the 1-day
prediction demonstrated the most reliable performance (i.e., close
to the blue line, which implied an unbiased estimation). However,
the PBIAS of 7- and 14-day lead time exhibited inconsistent results.
Forecasting for Pseudodiaptomus marinus was underestimated in
the 7-day lead time (PBIAS: —146.848%) compared with the 14-day
lead time (PBIAS: —60.545%).

3.3. Seasonal changes in interactions within ecosystem dynamics
and lag time

3.3.1. Seasonal changes in ecological variable interactions

The interaction strength within ecosystem dynamics was visu-
alized by the length and width of edges for the entire period and
each season (Fig. 8; Supplementary Material Fig. S6). The graph
structure divided mesozooplankton species from meteorological
and water quality data for the entire period. Specifically, sunlight
duration, rainfall, and total chlorophyll (Chl-T) were identified as
significant factors, each with multiple connections to meso-
zooplankton species (12, 13, and 11 connections, respectively). No
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specific variables were crucial across all four seasons in the sea-
sonal graph structure. Rainfall and sun duration significantly
impacted mesozooplankton species in autumn, summer, and
winter, whereas the effects of meteorological factors decreased in
spring (Supplementary Material Fig. S6). This result suggests that
the impact of environmental conditions on ecological dynamics
varies seasonally.

Thus, we confirmed the variance of influences between factors
under seasonal changes (Fig. 9). This variance was quantified by the
increase (blue bar) or decrease (red bar) in TE values between
variables as seasons changed. Meteorological factors demonstrated
significant seasonal variation, fluctuating by an average of 0.045
bits between seasons, whereas the influence between plankton

species was smaller, fluctuating by 0.015 bits on average. Remark-
ably, the influence of sun duration on various species increased by
0.073 bits on average when transitioning from summer to autumn
(blue-colored bar in Fig. 9a). Moreover, the influence of sun dura-
tion decreased (0.082 bits on average) when the season changed
from autumn to winter, whereas temperature became a more
influential variable in winter (increment of 0.079 bits on average;
blue-colored bar in Fig. 9b).

3.3.2. Lag times between ecological variables

The lag time between each variable was determined by applying
lag times ranging from 1 to 30 days and identifying the maximum
TE value (Supplementary Material equation S(3)). A black bar
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represented the transfer of information between each variable in a
day. Furthermore, a larger portion of the black bar indicates strong
influences within a day. We compared the differences in lag time

Environmental Science and Ecotechnology 23 (2025) 100514

® Meteorological factors e Centropages abdominalis

® Water quality factors

Eurytemora pacifica
® Mesozooplankton species '

®Calanus sinicus

. . ® Acartia omorii
® Acartia steueri cgftia omol

(bolder line represents ® Copepodites

stronger influence)

Strength of influence
l @ Copepod nauplii

@ Tunicéte larvae ® Oithona spp.

POdf” SPP- ePolychagete larvae

a3l &AL o Decapod larvae
eSD &DIN @ Oikopleura spp.
Temp, ... e | /@ Harpacticoids
o- paoumm— =B SUN, ion @ Pseudodlaéthmus marinus
elemp ’ ip' i / Fish eggs 'y %ﬂ%?dr;er‘r?\ larvae
‘W|>nd .§‘03 ° L] ._Molluscan veliger
Humidity Rainfall ® S/phozophores
oDO ] calBvi 10 Paracalanus parvus
PP Pe"”: ay[rfrostns ® Hydromedusae
sop agitta crassa
Chl-T
° .
Noctiluca scintillans ¢ Sagitta enfiata @ Fish larvae
o pH ® Corycaeus affinis

® Evadne nordmanni
Whole period (January to December) ® Acartia erythraea
Fig. 8. The constructed graph structure in the mesozooplankton species group, water
quality, and meteorological factors (nodes) for the entire monitoring period (January 4,
2001—December 29, 2020). The width and length of the line (edges) between the
nodes imply the strength of influences. The meteorological factors include minimum
and maximum air temperature (Temp,;;), wind speed (Wind), relative humidity (Hu-
midity), sunshine duration (Sungyration), and rainfall. The water quality factors include
dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), organic
phosphorus (OP), salinity (Sal), water temperature (Temp), dissolved oxygen (DO),
Secchi disk depth (SD), total chlorophyll (Chl-T), silicate (SiOs), pH, and sodium plus
nickel (NA + NI).

between species by coloring maximized TE from 1 to 30 days from
blue to red. Meteorological factors influenced most meso-
zooplankton species within a shorter period (e.g., >80% of the
maximum TE value was black; upper part of Supplementary Ma-
terials Figs. S7—S9). However, water quality factors require a
medium-to-long delay to influence species and interactions be-
tween mesozooplankton (e.g., the colored bar often exceeds 50% of
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the portion; see the lower part of Supplementary Materials
Figs. S7—S9).

For the five well-predicted mesozooplankton species (cirripede
larvae, Sagitta crassa, Penilia avirostris, Noctiluca scintillans, and fish
eggs), the TE of most variables was maximized with blue or green
bars (Supplementary Material Fig. S7). The difference in TE values
between black and color bars was smaller than that in the poorly
predicted species (i.e., instantaneous influences from other vari-
ables to well-predicted species). This result indicates that most
variables effectively influence these five mesozooplankton species
in less than 15 days. The TE values for the five poorly predicted
mesozooplankton species (Calanus sinicus, Centropages abdomi-
nalis, Podon spp., Pseudodiaptomus marinus, and tunicate larvae)
were maximized with longer lag times, ranging from yellow to red
bar (Supplementary Material Fig. S8). The TE values of meteoro-
logical factors (e.g., sun duration and humidity) were maximized
over 20 days.

4. Discussion

4.1. Understanding temporal distribution and interactions within
ecosystem dynamics

We used graph structures to visually represent seasonal changes
to analyze ecosystem dynamics. Ecosystem dynamics are formed
through interactions between meteorological, water quality, and
other organisms [64], and these variables play crucial roles in
shaping species abundance or richness [65]. Among the meso-
zooplankton species, Noctiluca scintillans and Copepodites were
dominant in both abundance and richness (10,708 cells m~> and
96% abundance rate during the entire period; Supplementary
Material Fig. S3) and may be influential factors for other species.
Copepodites were associated with six different mesozooplankton
species, whereas Noctiluca scintillans demonstrated a relationship
with one species. When species related to Copepodites were
considered, most species belonged to the same taxonomic groups.
This suggests that the relationships between mesozooplankton
species are limited within certain groups due to group-specific
temporal differences in life strategies [66]. These findings support
the need to monitor other biological variables (e.g., phytoplankton
and fish) to consider the biological relationships in the GNN model.

The significance of environmental factors in shaping the abun-
dance and distribution of mesozooplankton species is widely
recognized [9]. Remarkably, the duration of sunlight and rainfall
strongly influences these species. We assume that connections
exist between these factors and mesozooplankton species. Rainfall
drives nitrogen and phosphorus loading, increasing nutrient
abundance [67,68]. Sunlight duration influences phytoplankton
growth by providing energy for photosynthesis [69]. Among the
water quality factors, Chl-T is widely related to mesozooplankton
species (connected with 11 mesozooplankton species). The impact
of Chl-T is well-known, as nutrient loading may initially elevate the
food availability for zooplankton [70]. Salinity and water temper-
ature, which are significant determinants [71], showed no direct
correlation with other mesozooplankton species. Studies have
revealed a major shift in zooplankton dynamics occurs when
certain salinity or water temperature thresholds are reached
[72,73]. Moreover, increased salinity can result in cascading trophic
interactions, indicating that these factors indirectly affect
zooplankton dynamics through upper or lower trophic levels [74].

4.2. Comparison of forecasting accuracy between the LSTM and
StemGNN models

The StemGNN model demonstrated significant improvements
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compared with the LSTM model (Fig. 3), which considers only the
temporal dependencies of input variables by memorizing time se-
ries information. This result suggests that forecasting meso-
zooplankton community dynamics is highly complex and that the
StemGNN model has an advantage in utilizing the interactions
between individual mesozooplankton species to improve model
outputs. Cao et al. also confirmed that the GFT layer, a component of
StemGNN that captures inter-series relationships among input
variables, effectively improves forecasting performance by
leveraging the inter-series information within a graph [39]. More-
over, Lu et al. revealed that GNN models can improve performance
by capturing the interactions between input variables and utilizing
latent properties to model temporal and correlation dependencies
[46]. In this context, forecasting complex, interconnected variables
using graph structures can improve accuracy, making the selection
of appropriate input variables an important process before training
the StemGNN model, which may affect forecasting accuracy.

4.3. Comparison of forecasting accuracy under different graph
structure scenarios

The performances of forecasting accuracy varied according to
the graph structure scenarios (Table 1), which emphasized the
impact of interconnected nodes or the number of input features on
the model outputs. By comparing Scenario I (wherein environ-
mental factors and each mesozooplankton species were applied)
and Scenario II (wherein environmental factors and 30 meso-
zooplankton species were applied), we identified a double-edged
sword effect of forecasting performance between well-predicted
and poorly predicted mesozooplankton species (Fig. 2). In Sce-
nario II, the model's forecasting accuracy for the poorly predicted
mesozooplankton species (i.e., tunicate larvae, Pseudodiaptomus
marinus, Podon spp., polychaete larvae, and Copepod nauplii)
remained insufficient; however, there was a significant improve-
ment in terms of prediction accuracies (e.g., 27% increment of NSE
on average). Conversely, for Noctiluca scintillans, Sagitta crassa,
Penilia avirostris, fish eggs, and cirripede larvae, the forecasting
performance degraded (e.g., a 4% decrement of NSE on average)
when the number of mesozooplankton species was included in the
graph structure (i.e., Scenario II). These data suggest that increasing
the number of connections between mesozooplankton species in
the graph structure does not always improve performance,
depending on the target variable. This may be due to increased
sensitivity to unpredictable variables or outliers when calculating
the total loss function [75,76]. Maurya et al. argued that using more
nodes can result in acquiring meaningless information that does
not improve performance [77]. Furthermore, only meso-
zooplankton was considered a biological variable in our study. We
assume adding variables with upper or lower trophic interactions
(e.g., phytoplankton and fish) would improve the performance.

The output of the StemGNN model reveals that correlated nodes
exhibit temporal variation and peak timing similarities. For
instance, Calanus sinicus and Centropages abdominalis exhibited
similar trends and peak timing despite having different temporal
patterns in observed values, which resulted in worse forecasting
performance (Fig. 5). We also confirmed that Calanus sinicus and
Centropages abdominalis were closely located within the graph
structure for the entire period (Fig. 8). This finding indicates that
closer nodes may strongly influence together, irrespective of tem-
poral patterns or peak timing. This finding is consistent with a
previous study that reported closer nodes indicated similar results
or performance on GNN applications. Qi et al. emphasized that
substantial differences in the abundance or diversity of neighboring
nodes can cause uncertainty [78].
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4.4. Comparison of forecasting accuracy across different lead times

A comparison of forecasting accuracy across different lead times
can provide insights into how far into the future the model can
make accurate predictions [79]. Based on the results of forecasting
accuracies under different lead times (1, 7, and 14 days), the
StemGNN model consistently provided more accurate predictions
when the lead time was shortened (Fig. 7). In terms of NSE, the
model's prediction accuracy degraded from 9.4% to 16.8% on
average when lead times increased from 1 to 7 and 14 days (the
predictive performances for Calanus sinicus and Centropages
abdominalis were excluded due to their poor performance).
Although the model's accuracy decreased, 7- and 14-day forecasts
provided adequate accuracy, with the NSE value being >0.8 for 13
mesozooplankton species across the 14-day lead time. This result
indicates good agreement with observed values regarding trend
and peak timing for several mesozooplankton species. Therefore,
these findings confirm the ability of the GNN model to predict
mesozooplankton dynamics and its potential for bloom detection.

4.5. Further research suggestions

Although the GNN model demonstrated significant perfor-
mance in forecasting mesozooplankton community dynamics,
several issues must be addressed. First, the performance of the GNN
model should be evaluated separately within essential or related
target variables. This study examined model performance varia-
tions when different nodes were applied to the GNN model. Ac-
cording to the results, larger target variables may degrade the
model performance when calculating the loss function. For
instance, increasing the number of target variables can increase the
sensitivity to unpredictable variables (i.e., variables that exhibit
seriously poor performance) or outliers in forecast results when
calculating the total loss function [75,76]. Second, incorporating
additional factors from a broader perspective (e.g., the ocean in our
experiment) into the graph may improve the accuracy of models.
For instance, variables such as phytoplankton and predators are
well-known, influential factors of mesozooplankton [1,80], which
can be considered predictor variables for forecasting meso-
zooplankton. However, we did not consider these factors and used
only Chl-T as a proxy for phytoplankton biomass. Third, the lag time
between each variable should be considered when training the
GNN model. According to the aquatic food chains, biological delay
systems have been of considerable interest for a long time [81]. The
abundance of zooplankton species decreases after a specific lag
time of toxic phytoplankton bloom [82]. Therefore, applying the lag
time to input variables can improve the model's performance by
improving the correlation in specific timing between input and
output variables [83]. Fourth, utilizing GNN explanation tech-
niques, such as GNNExplainer [84], may facilitate the comprehen-
sion of key graph pathways and pivotal node feature information.
This study investigated the significance of interaction between each
node in predicting mesozooplankton dynamics based on the graph
structure. Nevertheless, interpreting the graph structure provides
information only about whether each node is associated, thus
making it difficult to distinguish positive and negative associations
[85]. Finally, monitoring a broader range of mesozooplankton
species could significantly improve the generalization capabilities
of the model and facilitate more meaningful comparisons between
different models. The previous model was specifically developed,
optimized, and evaluated for a limited set of monitored species.
Nonetheless, when applied to other species that are not included in
the training set of the model, the performance of the model may
deteriorate, and comparison between models becomes unfeasible
[42]. Consequently, it is important to develop the model for a

1

Environmental Science and Ecotechnology 23 (2025) 100514

diverse array of species to improve its generalization capability and
enable the evaluation of improvements in future model
developments.

5. Conclusions

Based on the modeling experiment, this study revealed that the
forecasting accuracy for each mesozooplankton species is closely
associated with interactions in the ecosystem dynamics of histor-
ical data. Mesozooplankton dynamics were simulated using the
StemGNN model, and then, the graph network was visualized to
identify the relationship between forecasting performance.
Regarding the closely connected mesozooplankton species, the
forecasting output was also influenced regarding trend and peak
timing, indicating that significant differences among nearby nodes
can introduce uncertainty in forecasting. Increasing the number of
nodes does not always benefit the model performance, which im-
proves sensitivity to unpredictable variables or outliers when
calculating the total loss. The forecasting performance for meso-
zooplankton species was maximized with a 1-day lead time;
however, the accuracy decreased by 9.4—16.8% for the 7- and 14-
day lead times. Despite this decrease, the forecasting output for a
14-day lead time provides good agreement regarding trend and
peak timing. Incorporating additional input features from a broad
perspective, such as grazers and predators, and considering bio-
logical delay times in the GNN model should be addressed in future
work to improve the accuracy of models. These results clarify the
relationship between forecasting performance and interactions
among variables in ecosystem dynamics, emphasizing the impor-
tance of constructing appropriate graphs for forecasting meso-
zooplankton species.
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