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Physical, chemical, and biological processes within sewers significantly alter sewage composition during
conveyance. This leads to the formation of sulfide and methanedcompounds that contribute to sewer
corrosion and greenhouse gas emissions. Reliable modeling of these compounds is essential for effective
sewer management, but the development of machine learning (ML) models is hindered by differences in
data accessibility and sampling frequencies of water quality variables. Here we present a mechanistically
enhanced hybrid (ME-Hybrid) model that combines mechanistic modeling with data-driven approaches.
This model harmonizes datasets with varying sampling frequencies and generates synthetic samples for
ML training, thereby enhancing the monitoring of methane and sulfide in sewers. The optimal ME-
Hybrid model integrates the backpropagation neural network with mechanistic frequency harmoniza-
tion. We demonstrate that the ME-Hybrid model outperforms pure ML and linear interpolation in
capturing fluctuating trends and extremes of sulfide concentrations, achieving a coefficient of deter-
mination (R2) of 0.94. Synthetic samples generated through mechanistic augmentation closely approx-
imate real samples in modeling performance, statistical distribution, and data structure. This enables the
model to maintain high predictive accuracy (R2 > 0.76) for sulfide even when trained on only 50% of the
dataset. Additionally, the ME-Hybrid model successfully assesses sewer methane concentrations with an
R2 of 0.94, validating its applicability and generalization ability. Our results provide a reliable method-
ological framework for modeling and prediction under data scarcity. By facilitating better monitoring and
management of sewer systems, the ME-Hybrid model aids in the development of strategies that mini-
mize environmental impacts, enhance urban resilience, and ultimately lead to sustainable urban water
systems.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Urban sewer systems, described as the veins of cities, are
responsible for collecting and transporting sewage to wastewater
treatment plants for purification [1,2]. These underground sewers
are essential for safeguarding public health and the environment by
protecting groundwater quality, preventing contamination, and
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upholding fundamental safety standards [3,4]. Despite their sig-
nificance, sewer systems face challenges such as inadequate regu-
lation and maintenance due to lacking accurate water quality
assessments [5]. Corrosive damage, primarily due to sulfidic ac-
tivity, threatens the sewer infrastructure, reducing its lifespan and
increasing the risk of leaks [6,7]. The organic components in sewers
are degraded during conveyance, resulting in a low carbon-to-
nitrogen ratio, which impedes nutrient removal in conventional
secondary treatment processes in wastewater treatment plants
[8,9]. Furthermore, methane emissions, which significantly
contribute to the greenhouse effect and pose an explosion risk, are
often underestimated [1,10]. Therefore, developing robust water
quality monitoring methods in sewers is essential for sustainable
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water resource management [11].
Recent advancements in machine learning (ML) technologies

have introduced considerable potential for applications in the
environmental field. Many studies have employedML techniques to
analyze water, soil, and atmospheric data [12e14]. In the context of
sewer system failures, including leaks [15,16], blockages [17,18], and
overflows [19], substantial ML-based studies have already been
conducted. Furthermore, ML techniques have been utilized to
detect the accumulation of fats and oils in sewer networks [20],
predict microbial-induced corrosion [21], and simulate the trans-
formation of dissolved organic matter in sewage [22]. However, as
decision-making tools, ML models heavily rely on high-quality and
abundant data for calibration to minimize uncertainties. Data
collection challenges have hindered the widespread use of ML
models calibrated with real-world data [23]. Sulfide and methane
production in sewers is influenced by a combination of hydraulic
conditions, water quality, and sewer structure [9], making the
absence of models calibrated with real-world data even more
pronounced. Due to limitations in sensor acquisition, installation,
maintenance, and failure, datasets with small sample sizes and
irregular sampling frequencies impede the successful development
of ML models for predicting sulfide and methane concentrations
[24,25]. Thus, innovative approaches are needed to address the
challenges of modeling sewer water quality with constrained
datasets.

Data augmentation techniques help mitigate challenges related
to data scarcity by enriching datasets by generating additional data
[26,27]. Based on distribution theory, perturbation analysis, or
neural network models, these techniques have proven effective in
various experimental scenarios [3,27]. Wang et al. employed the
distribution-based StyleGAN2-ADA algorithm to generate artificial
algae images, addressing issues of data imbalance and insufficient
training images, which significantly enhanced the efficiency of ML
in algae classification [28]. Similarly, Dong et al. proposed a novel
framework for wastewater prediction in constructed wetlands,
where virtual samples generated using the PSOVSG method
improved the prediction accuracy for ammonium nitrogen and
chemical oxygen demand [3]. Although these methods have been
shown to improve ML performance, the generated synthetic data
cannot exceed the information in the original samples, and it re-
mains challenging to interpret the relationships between the
generated variables and other factors. Mechanistic models of
sewers can simulate variations in wastewater quality and elucidate
transformation processes between components based on estab-
lished equations. Their key advantage lies in their ability to cali-
brate reaction kinetics with only a small amount of data [29,30].
Mechanistic models have been successfully applied to simulate
sulfide and methane generation under varying sewage conditions
[31,32] and biofilm growth [33,34] and to predict the impact of
chemicals on sewer microbial communities, thereby optimizing
dosing strategies [35]. Sun et al. used a biofilm model to simulate
the effects of different sulfate and soluble chemical oxygen demand
concentrations on sulfide andmethane yield parameters [31]. Liang
et al. developed a sewer process model that effectively simulated
the impact of nitrate on sulfide control [33]. Nevertheless, existing
studies typically focus on simulations under stable hydraulic con-
ditions, with minimal variability in environmental factors such as
temperature (T) and retention time (RT). Real sewers are subject to
highly complex and variable conditions. Unlike ML models, mech-
anistic models cannot incorporate arbitrary variables, making it
difficult to account for these missing variables. This limitation
renders the model calibration time-consuming and less efficient
[25,36].

Notably, hybrid models that combine mechanistic models with
ML techniques represent an advanced approach capable of
2

leveraging the strengths of both methods [37,38]. Due to data
acquisition limitations within sewers, such methods' application in
sewer water quality management remains relatively limited. Liang
et al. recently integrated ML algorithms with a sewer process
model, using the process model to generate large amounts of
synthetic data for ML to predict and control hydrogen sulfide [39].
Nonetheless, considering the spatial variability across different
sewers, all mechanistic models must undergo calibration and
validation with field data before practical application. When ML
models effectively capture such spatial variations, modeling time
can be significantly reduced. Furthermore, many studies overlook
details such as data collection frequency. Due to varying difficulty
levels in obtaining data, collection frequencies often differ. For
instance, easily measured parameters such as flow velocity (u), pH,
and oxidation-reduction potential (ORP) contrast with resource-
intensive variables like sulfate and methane concentrations [40].
Li et al. employed smoothing techniques to transform dense data-
sets into uniformly distributed time intervals and supplemented
sparser datasets via linear interpolation [41]. However, the down-
sized dataset may affect model training accuracy and impair model
performance [26]. The interpolation technique may fail to capture
the intricate interactions between variables, potentially distorting
the data structure [42]. In such cases, mechanistic models can act as
a form of data augmentation by generating additional samples to
fill gaps in the dataset, thereby increasing the volume of under-
represented data [43]. ML methods can identify complex, nonlinear
relationships that mechanistic models cannot fully capture [44].

This study developed a mechanistically enhanced hybrid (ME-
Hybrid) model that predicted sulfide concentrations in sewers by
combining the mechanistic model with ML techniques. The ME-
Hybrid model was designed to handle datasets with different
sampling frequencies and to elevate prediction accuracy. This
research is threefold. Initially, the advantages of the ME-Hybrid
model over pure ML models and linear interpolation were
assessed, and the effects of multiple ML algorithms were investi-
gated within this framework. Subsequently, the study explored the
contribution of incorporating the mechanistic model into the
hybrid model and provided a detailed interpretive analysis.
Furthermore, the study elucidated the impact of data constraints
and framework adaptability on the hybrid model. Leveraging the
convergence of ML and expert knowledge offers novel insights and
methodological advances that have potential to enhance water
quality management in sewers.

2. Materials and methods

2.1. Description of the dataset collection

We built five laboratory-level sewer systems to simulate sewage
quality transformation processes (Supplementary Material Fig. S1).
The devices were cylinders made of Plexiglas and were equipped
with water inlets, water outlets, and sampling ports. The mixing
disturbance of sewage was carried out by motor-driven agitators.
The motor speeds of five systems were set to 40, 80, 120, 160, and
200 rpm, resulting in u-values of 0.06, 0.11, 0.17, 0.22, and
0.28 m s�1, respectively, which were consistent with u-values
observed in actual sewer trunks [45]. The sewage was collected
weekly from a local septic tank (Shenzhen, China) and mixed with
configured sewage as simulated sewage for the experiments. See
Text S1(Supplementary Material) for details of sewage quality.

The sewer system initially utilized a continuous flow intake
pattern, with the hydraulic residence time set at 12 h. After 100
days of operation to stabilization, a batch intake mode with a 12-h
cycle was implemented. Total chemical oxygen demand (TCOD),
sulfate, sulfide, and methane were measured inside the reactors at
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RTs of 2, 4, 6, 8, 10, and 12 h. They were considered as low-
frequency variables. Before analysis, sewage was collected from
the reactor outlet and replenished with equal sewage. The con-
centration of TCOD was determined via the rapid digestion-
spectrophotometric method. A quantitative amount of sewage
was taken to a brown headspace bottle, and mercuric chloride was
added to inhibit microbial activity. After 24 h of standing, gas phase
methane was measured via gas chromatography (GC-8890 Agilent,
United States) equipped with a flame ionization detector. The gas-
phase methane concentration was subsequently converted to
methane concentration in the sewage based on the gas-liquid
equilibrium [40]. Quantitative sewage was mixed with sodium
hydroxide and antioxidant solution in sampling vials and corked
without leaving space above the liquid to prevent sulfide volatili-
zation or oxidation. The sulfide concentrationwas then determined
using the methylene blue spectrophotometric method [46]. An
appropriate volume of sewage was treated with zinc chloride to
form the zinc sulfide precipitate. After filtration through a 0.45 mm
cellulose acetate membrane, the sulfate concentration was quan-
tified using ion chromatography (ICS-2000 Dionex, United States).
T, ORP, dissolved oxygen (DO), and pH of the sewage were
measured using a multi-parameter analyzer (HQ2100 Hach, United
States) at hourly intervals. These indicators, along with u and
sewage RTs, were used as high-frequency variables. Overall, 240
high-frequency data and 120 low-frequency data were collected.
The statistical analysis is presented in Table S1 (Supplementary
Material).

2.2. Mechanistic model

In this study, the SeweX [47] model was optimized by intro-
ducing the release of hydrogen sulfide andmethane from the liquid
to the gaseous state. We used the improved model as the mecha-
nistic model. The mechanistic model encompasses the critical steps
of hydrolysis, fermentation, acidification, sulfation, and methano-
genesis and can be used to simulate the contamination trans-
formations in sewers (Supplementary Materials Tables S2eS5).
These kinetic parameters were set based on the results of previous
studies and mainly followed the default values used by Sun et al.
[31]. However, several critical parameters, such as TCOD hydrolysis,
sulfide production, and methane production rates, were calibrated
using the simulated annealing algorithm, and the detailed pro-
cedure is referenced (Supplementary Material Text S2). Table S6
(Supplementary Material) presents the program code used to
identify the optimal values of the mechanistic model parameters
based on the simulated annealing algorithm. The code was imple-
mented with Python 3.8, utilizing key libraries such as NumPy,
SciPy, and Matplotlib.

2.3. Machine learning algorithm

Machine learning algorithms exhibit marked performance dif-
ferences due to factors such as algorithmic assumptions, data dis-
tributions, and dataset sizes [48,49]. We selected eight typical ML
algorithms to evaluate the applicability of the proposed framework
for multiple algorithms and identify the optimal algorithm
(Supplementary Material Fig. S2). These algorithms included linear
regression (LR1), logistic regression (LR2), support vector regres-
sion (SVR), decision tree (DT), random forest (RF), back propagation
neural network (BPNN), recurrent neural network (RNN), and long
short-term memory (LSTM).

Specifically, LR1 assumes a linear relationship between sulfide
and factors such as DO and pH. It employs the least squares method
to minimize the squared differences between the actual and pre-
dicted sulfide values. LR2 is the generalization of LR1, which
3

typically uses a logistic likelihood loss function. SVR is a geomet-
rical approach that achieves maximum fitting by determining the
optimal hyperplane in a high-dimensional space composed of
multiple features, such as TCOD, sulfate, and ORP. This method aims
to bring sulfide sample points as close as possible to this hyper-
plane [50]. DT makes decisions through a tree-like structure, which
includes several internal and leaf nodes [51]. The internal nodes
represent attribute tests that affect sulfide concentrations. Each
node contains a set of samples divided into sub-nodes based on the
results of attribute tests. Ultimately, the leaf nodes correspond to
the decision results of sulfide concentrations. RF is an ensemble
model consisting of numerous DTs, where the final sulfide con-
centration is made by averaging or voting based on the results of
each DT [52]. The BPNN, RNN, and LSTM are three neural network
models. The BPNN consists of an input, hidden, and output layer. It
is trained using a backpropagation algorithm. This algorithm iter-
atively updates the parameters by transferring the sulfide predic-
tion error backward to the neurons [53]. The RNN is a neural
network specialized in processing sequential information, where
recursive connections in the network nodes allow previous water
quality information to be remembered. The LSTM is a variant of the
RNN and is designed with three gating mechanisms to address the
problem of gradient vanishing and gradient explosion faced by
traditional RNNs when dealing with long sequence data [41].

2.4. Development of the mechanistically enhanced hybrid model

Three modeling strategies were developed for comparison
(Fig. 1). The first strategy (M1) model was to develop the ML model
only using high-frequency data. The input variables were u, RT, ORP,
DO, pH, and T. These indicators were measured or calculated by
sensors in the actual sewers. The output was sulfide concentration,
which was later changed to methane concentration to validate the
framework's applicability (Section 3.5). The purpose was to test the
viability of using easily accessible indicators for assessing sewage
quality. The second strategy (M2) model was to develop the ML
model using the full range of indicators, adding TCOD and sulfate as
inputs, compared to the M1 model. The M2 model employed
downsampling techniques to align high-frequency data with low-
frequency data. The final strategy was the ME-Hybrid model. It
initially used the same dataset as the M2 model. The intermediate
process then generated virtual data for ML training through the
mechanistic model. Data on RT, TCOD, sulfate, sulfide, and methane
were employed to calibrate the mechanistic model. The simulated
annealing algorithm optimized the kinetic parameters of the
mechanistic model to achieve the best model simulation effects
(Supplementary Material Text S2). The mechanistic model was
used to generate virtual data for TCOD, sulfate, sulfide, and
methane at the desired RTs, which were used to boost the sampling
frequency for low-frequency data. The ME-Hybrid model combined
the mechanistic model and ML, where the input and output in-
dicators for ML were the same as for the M2 model.

The dataset was randomly divided into a training set (70%) and a
test set (30%). For the ME-Hybrid model, synthetic samples were
utilized for training data, while the mechanistic model was cali-
brated using only the training set to prevent test set leakage. Each
variable was normalized to range between 0 and 1 to ensure uni-
formity in the scale of data points, thereby enhancing the efficiency
and stability in processing and analyzing the data. For the devel-
opment of eight ML algorithms, the grid search algorithm was
employed to traverse key hyperparameter combinations and select
the optimal model configuration (Supplementary Material
Table S8). In this process, ten random splits of the dataset were
tested considering the impact of dataset splitting on the model
results. We calculated these models' root mean square error (RMSE)



Fig. 1. Schematic diagram of the mechanistically enhanced hybrid (ME-Hybrid) model compared to the first strategy (M1) and the second strategy (M2) models for processing
datasets with different sampling frequencies. RT: retention time, ORP: oxidation reduction potential, u: flow velocity, DO: dissolved oxygen, T: temperature, TCOD: total chemical
oxygen demand, ML: machine learning, SHAP: Shapley additive explanations, SA: simulated annealing, MA: methanogenic archaea, SRB: sulfate-reducing bacteria.
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values. Subsequently, the hyperparameter with the smallest
average RMSE was selected as the model hyperparameter.

Three regression-based metrics were used to assess model
performance: coefficient of determination (R2), RMSE, and mean
absolute percentage error (MAPE). This study quantitatively
revealed the importance of various indicators in predicting sulfide
concentrations through Shapley additive explanations (SHAP)
analysis [54,55]. This is achieved by calculating the average of the
absolute SHAP values for all samples. The swarm summary plot is
colored by the level of feature values to illustrate the indicators and
their impact on the prediction results. Supervised clustering is the
hierarchical clustering of data points based on their SHAP in-
terpretations. As the SHAP values quantify the contribution of each
feature to each sample, supervised clustering can help to identify
sets of samples that exhibit similar model behaviors, thereby
facilitating the analysis and explanation of the predictions in spe-
cific scenarios.
3. Results and discussion

3.1. Performance and evaluation of the M1 and M2 models

The efficacy of ML models in predicting sulfide concentrations
was competent, and a further improvement in accuracy was still
necessary (Fig. 2). The M2 models performed more robustly than
the M1models, achieving a maximum R2 value of 0.84 compared to
4

0.76. The RMSE andMAPE decreased from 0.87 mg S L�1 and 0.07 to
0.71 mg S L�1 and 0.057, respectively. This comparison suggests
that the inclusion of low-frequency variables brought predictive
capability. Sulfate and TCOD concentrations were identified as
pivotal determinants in sulfide prediction, owing to their role in
reducing sulfate to sulfide by sulfate-reducing bacteria. Significant
differences between eight models were observed despite utilizing
the same training set (Fig. 2). Within the scope of developed M1
and M2 models, SVR, DT, and RF demonstrated higher accuracy
than other algorithms. The R2 of M2-SVR, M2-DT, and M2-RF
reached 0.84, 0.75, and 0.76, respectively. M2-SVR may offer ad-
vantages due to its simple structure and low complexity of
parameter tuning, and it is particularly adept at sulfide prediction
tasks through its kernel techniques and optimal hyperplane
[48,56]. Conversely, the M2-BPNN achieved an inferior R2 value of
0.71. The deep learning models (M2-RNN and M2-LSTM) were
further degraded, with their R2 of 0.66 and 0.68, RMSE of
1.05 mg S L�1 and 1.01 mg S L�1, and MAPE of 0.081 and 0.086,
respectively (Fig. 2). These models struggle to capture sulfide
fluctuations and exhibited larger errors for extreme values (Fig. 3),
demonstrating that deep learning models do not invariably
outperform SVR, particularly with small datasets [26]. Despite
improvements with the addition of low-frequency data, LR1 and
LR2 did not achieve R2 values above 0.50, and their MAPE remained
over 0.10. These models cannot track the continuous fluctuations of
sulfide concentrations (Fig. 3).



Fig. 2. Performance evaluation of eight machine learning algorithms for sulfide prediction within the framework of the first strategy (M1), the second strategy (M2), and the
mechanistically enhanced hybrid (ME-Hybrid) models, respectively. a, Coefficient of determination (R2); b, Root mean square error (RMSE); c, Mean absolute percentage error
(MAPE). LR1: linear regression, LR2: logistic regression, SVR: support vector regression, DT: decision tree, RF: random forest, BPNN: back propagation neural network, RNN:
recurrent neural network, LSTM: and long short-term memory.

Fig. 3. Comparison of sulfide observations with predictions made by linear regression
(LR1), support vector regression (SVR), and back propagation neural network (BPNN)
algorithms in the framework of the first strategy (M1), the second strategy (M2), and
the mechanistically enhanced hybrid (ME-Hybrid) model. The predictions of the other
five algorithms are shown in Fig. S3 (Supplementary Material).
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3.2. Performance and insights of the mechanistically enhanced
hybrid model

The number of mixed datasets was doubled by generating
synthetic samples using the mechanistic augmentation technique.
The hybrid dataset was then fed into the ML model. Incorporating
the mechanistic model improved the accuracy of most ME-Hybrid
models (Fig. 2). Deep learning algorithms leveraged their
5

powerful network structure and learning capabilities to gain
excellent model performance, with R2 values surpassing 0.85 and
MAPE confined to within 5.5%. The hybrid model based on the
BPNN performed the best, with an increase in R2 by 11.8% to 0.94
compared to the M2-SVR model. Additionally, RMSE and MAPE
were reduced to 0.43 mg S L�1 and 0.041, respectively (Fig. 2),
indicating that ME-Hybrid-BPNN was adept at predicting local
peaks and troughs in sulfide concentrations (Fig. 3). The RNN and
LSTMmodels were also significantly improved due to the inclusion
of synthetic data. Their R2 increased from below 0.7 to around 0.9,
and their MAPE reduced by more than 30%. However, the hybrid
framework was not applicable to all ML algorithms. The perfor-
mance of the LR1 and LR2 models declined after integrating the
mechanistic model. This decline was due to two main factors: The
inclusion of synthetic samples increased the complexity of the
dataset, and the assumption of a linear relationship between sulfide
and the input variables was not realistic.

Fig. 4a demonstrates the absolute value of the relative error of
the BPNN algorithm, and it can be found that the M2-BPNN model
had greater errors for low sulfide samples, even more than 30%, in
both the training and test sets. The ME-Hybrid model, on the other
hand, effectively overcame this shortcoming with all relative errors
of less than 15%. After adding the generated samples to the original
dataset, the percentage of samples with low sulfide samples in the
hybrid dataset increased (Supplementary Material Fig. S4), which
prompted the BPNN model to optimize the prediction pattern of
low sulfide samples. Furthermore, this study verified the feasibility
of linear interpolation (Fig. 4b). The performance of the
interpolation-based models was comparable to that of the M2
model. The most effective algorithm was SVR, which achieved
sulfide prediction with an R2 of 0.85, RMSE of 0.69 mg S L�1, and
MAPE of 0.063. The BPNN and LSTM models with interpolation
processing did not show significant performance improvements
compared to the ME-Hybrid models. For the BPNN algorithm using
interpolation, the R2 was 0.71, RMSE was 0.96 mg S L�1, and MAPE
was 0.094. In contrast, the ME-Hybrid-BPNN model increased the
R2 by 32.4%, and RMSE and MAPE decreased by 54.9% and 52.2%,
respectively. The R2 of the RNNmodel using interpolation achieved
0.81, but this was still lower than the 0.89 attained by the ME-
Hybrid-RNN model. The box plot analysis illustrated in Fig. 4c re-
veals that both real and synthetic sulfide datasets exhibit similar
distribution characteristics, but the synthetic data have a wider
range of distributions. For example, the synthetic samples con-
tained low sulfide concentrations that were not observed. The



Fig. 4. Explanation of the mechanistically enhanced hybrid (ME-Hybrid) model performance enhancement. a, Absolute values of the relative error in predicting sulfide concen-
trations by back propagation neural network (BPNN) algorithm under the second strategy (M2) and ME-Hybrid models. b, Performance comparison for interpolation-based models
and ME-Hybrid models to predict sulfide concentrations. c, Box plots and distributions of the real samples and synthetic samples. d, Distribution of the real and synthetic samples
on PC1 and PC2. R2: coefficient of determination, RMSE: root mean square error, MAPE: mean absolute percentage error, PC: principal component.
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prediction for samples with low sulfide concentrations was
improved due to the hybrid dataset (Supplementary Material
Fig. S5). Moreover, the principal component (PC) analysis indi-
cated that the PC distributions of the two datasets fail to distinguish
significantly (Fig. 4d). The first two PCs (PC1 and PC2) are linear
combinations of the original variables, which highlights that the
synthetic samples preserve the relationships between the real
sample variables and mimic the real-world observations.
3.3. Interpretive analysis of the mechanistically enhanced hybrid
model

The ME-Hybrid model, complemented by interpretable ML
techniques, can explain predictions. This increases the potential of
the hybrid model as a decision-making tool [57]. The impact and
contribution of various variables to the ME-Hybrid model was
elucidated by integrating correlation analysis, feature importance
assessment, summary bee-swarm plot, and supervised clustering
heatmap. The correlation heatmap revealed that RT, sulfate, pH, and
TCOD were the four most impactful variables on sulfide concen-
trations (Fig. 5a). A positive correlation was registered between RT
and sulfide (0.74), suggesting a temporal dimension to sulfide
production. Conversely, sulfate, pH, and TCOD were inversely
related to sulfide concentrations (�0.70, �0.56, and �0.50,
respectively), indicating the conversion dynamics of these
6

components in sewers.
The SHAP analysis revealed the intricate dynamics of variables

within the ME-Hybrid model. The order of factors affecting sulfide
was RT > ORP > Sulfate > TCOD > u > DO > pH > T (Fig. 5b). The
mean SHAP value of 0.137 for RT was significantly higher than the
other factors. The increase in sulfide and methane is mainly due to
increased hydraulic residence time, which has been confirmed
[58,59]. Along the sewer line, there was a gradual transition from
fermentation reactions to methanogenesis and sulfate reduction
reactions, resulting in higher sulfide concentrations at the end of
sewers [2]. ORP was the second most significant factor affecting
water quality. Its ease of measurement makes it a critical indicator
for developing soft measurement models for water quality. Deng
et al. found that lower ORP values were more favorable for the
production of sulfides [60], but this was not entirely consistent with
the results shown in the swarm plot (Fig. 5c). They observed ORP
values ranging from �100 to �270 mV. Considering the applicable
ORP ranges for sulfate reduction (�50 to �250 mV) and methane
production (�175 to�400mV) [61], the ORP range observed in this
study (�259 to �348 mV) suggested that as ORP increases, there
might be a shift from methane production to sulfate reduction
process. The importance of sulfate and TCOD was reasserted, con-
firming the superiority of theM2model compared to theM1model
in predicting sulfide concentrations. Typical sewage usually con-
tains limited sulfate and sufficient organic substrate, highlighting



Fig. 5. Interpretive analysis of the mechanistic-enhanced hybrid model. a, Heatmap of Pearson correlation coefficients between model variables. b, Ranking of the importance of
input variables for sulfide prediction. c, Global Shapley additive explanations (SHAP) interpretation by the summary bee-swarm plot. d, Supervised clustering heatmap for samples.
u: flow velocity, RT: retention time, ORP: oxidation reduction potential, DO: dissolved oxygen, T: temperature, TCOD: total chemical oxygen demand.
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sulfate's greater role than TCOD in sulfide production [62].
Increased u positively influenced the production of sulfide. On the
one hand, sulfate-reducing bacteria predominantly reside in the
surface layer of the biofilm [63]. Increasing the u reduces the
thickness of the interfacial diffusion boundary layer, thereby
enhancing the transport of sulfate, which is a limiting factor for
sulfide production rates [45,64]. On the other hand, this study
observed that the u has different patterns of influence on sulfate
reduction and methanogenic activity (Supplementary Material
Fig. S10). Methanogenic bacteria are mainly present in the inner
layer of the biofilm [63]. The rough biofilm structure and the low
oxygen transfer efficiency may be more favorable for the survival
and competition of methanogenic bacteria at a lower u.

Fig. S7 (Supplementary Material) illustrates the feature impor-
tance rankings and the corresponding SHAP summary plots for the
M1-SVR and M2-SVR models. Both models successfully identified
the importance of RT and ORP. Nonetheless, in the M1 model, sul-
fate and TCOD were not included as inputs. The absence of
important metrics caused the M1 model to lower the predictive
performance for sulfide. In contrast, the M2 model failed to
adequately capture the importance of TCOD and sulfate. The
importance shares of sulfate and TCOD in the ME-Hybrid model
were 9.7% and 8.6%, respectively, while their importance percent-
ages were 6.9% and 7.1% in the M2-SVRmodel, respectively. The M2
model overemphasized the significance of RT and neglected key
water quality indicators. The inclusion of synthetic data promoted
the importance of low-frequency metrics. As shown in Fig. S7d
(Supplementary Material), the distributions of all points on both
7

sides of the centerline for sulfate and TCOD were insignificant or
even disordered. In other words, after data augmentation using the
mechanistic model, the mapping relationships of sulfate and TCOD
for sulfide were identified with clearer distributions on both sides
of the centerline. Supervised clustering produced an array with the
same dimensions as the original data by transforming it into SHAP
values. The direction and strength of the feature's influence on
sulfide concentration were indicated by different colors (Fig. 5d).
The sulfide output results (f ðxÞ) showed that the left segment
clustering was a grouping of high sulfide concentration samples,
with RT, ORP, and sulfate mainly having positive effects. As the
SHAP values of ORP and sulfate turned negative, the modeled re-
sults in themiddle sectionwere pulled down. Lower RT levels in the
latter section were the most important reason for limiting sulfide
concentrations.

3.4. Assessment of the mechanistically enhanced hybrid model
under data constraints

The scarcity of datasets is the primary challenge for ML model
development, which directly determines the effectiveness of the
developed model [12]. Faced with this limitation, the ME-Hybrid
model leveraged the mechanistic augmentation to expand the
training dataset. This study kept the synthetic sample size consis-
tent with the original dataset. It revealed the potential of the ME-
Hybrid model under data constraints by adjusting the ratio of the
training and test sets.

Despite the limitation of the dataset size, the ME-Hybrid model
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demonstrated strong adaptability and accuracy. As the proportion
of the training set decreased from 70% to 30%, the ME-Hybrid
model's R2 decreased from 0.94 to 0.49, RMSE increased from
0.43 mg S L�1 to 1.32 mg S L�1, and MAPE increased from 0.041 to
more than 0.10 (Fig. 6). It is worth noting that to facilitate adequate
learning and prevent underfitting, the allocation of the training set
typically spans between 70% and 80%. Nevertheless, this study
found that even with a training set proportion of 50%, the ME-
Hybrid model still achieved commendable performance, with the
R2, RMSE, and MAPE values of 0.76, 0.89 mg S L�1, and 0.083,
respectively (Fig. 6). This was attributed to the mechanistic model
generating synthetic samples for training the ML model. The real
sample volume constituted only one-third of the mixed dataset
used for ML training. The mechanistic model exhibited a similar
trend, with R2 values plunging from 0.87 to 0.30 and RMSE and
MAPE increasing from 0.64 mg S L�1 and 0.058 to 1.54 mg S L�1 and
0.148, respectively. When the training set proportion fell below
50%, the R2 of the mechanistic model dropped below 0.50, and the
MAPE exceeded 0.10. With the reduction in training sample size,
the mechanistic model may not be calibrated. The low-quality
synthetic data negatively affected the ME-Hybrid model. In sum-
mary, the results underscore that the ME-Hybrid model is well-
suited for data constraints and can maintain acceptable accuracy
on small-scale datasets. Nonetheless, the ME-Hybrid model may be
compromised when the amount of data is extremely limited and
insufficient to support the mechanistic model.
Fig. 7. Generalization capability of the mechanistically enhanced hybrid (ME-Hybrid)
model. a, Comparison of the methane observations with predictions made by the M1-
SVR model, M2-SVR model, and ME-Hybrid-BPNN model. b, Performance evaluation
for methane prediction. SVR: support vector regression, M1-SVR: the first strategy
model based on SVR, M2-SVR: the second strategy model based on SVR, ME-Hybrid-
BPNN: the ME-Hybrid based on back propagation neural network, R2: coefficient of
determination, RMSE: root mean square error, MAPE: mean absolute percentage error.
3.5. Applicability of the mechanistically enhanced hybrid model

The ME-Hybrid model exhibited robust performance for sulfide
concentrations. Nonetheless, the potential for its application to
alternative targets remains to be explored. Methane is a significant
contributor to climate change [1], but its emissions from sewers
have been underestimated in prior assessments [10,65]. There is a
risk of explosion when the methane concentration in the air ex-
ceeds 5%. Therefore, the effective assessment of methane concen-
trations is a non-negligible part of sewer management [65].

Eight ML algorithms were employed in the M1, M2, and ME-
Hybrid models, respectively (Supplementary Material Fig. S9).
The ME-Hybrid model predicted methane more accurately
compared to the M1 and M2 models. The optimal ML algorithms
under the three frameworks were M1-SVR, M2-SVR, and ME-
Hybrid-BPNN. The predictive performance metrics R2, RMSE, and
MAPE of M1-SVR for methane were 0.82, 0.75 mg L�1, and 0.354,
respectively. These values of M2-SVR were 0.84, 0.70 mg L�1, and
Fig. 6. Coefficient of determination (R2, a), root mean square error (RMSE, b), and mean abso
hybrid (ME-Hybrid) model and mechanistic model under different proportions of training
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0.331, respectively. Compared to the M2-SVR model, the perfor-
mance of the ME-Hybrid-BPNN model was improved significantly,
with a 15.8% increase in R2 (0.94) and reductions of 44.9% in RMSE
(0.42 mg L�1) and 43.4% in MAPE (0.193) (Fig. 7b). Notably, in the
test set, the highest methane concentration is 16 times higher than
the lowest concentration (Fig. 7a), suggesting that the ME-Hybrid
model was effective in capturing methane concentration fluctua-
tions and demonstrated robust resilience against disturbances.
Further analysis revealed no significant difference between the
performance of M1 and M2 models in methane prediction
(Supplementary Material Fig. S9). SHAP analysis identified RT, u,
DO, and pH as the four highly correlated variables with the
methane concentrations. Their importance ranking further
emphasized the status of these high-frequency variables as the
main factors (Supplementary Material Fig. S10). This finding sug-
gests that methane production is more sensitive to indicators such
lute percentage error (MAPE, c) for sulfide prediction by the mechanistically enhanced
set.
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as u, pH, and DO, reflecting the stringent requirements of meth-
anogenic bacteria for environmental conditions. In summary, the
ME-Hybrid model accurately assessed methane concentrations and
provided interpretable insights into the determinants, demon-
strating this proposed framework's flexibility and adaptability.

3.6. Environmental implications and outlooks

The imbalance in variable availability hampers the effective
integration of datasets for ML modeling, thereby impeding efficient
sewer management [13]. Conventional interpolation methods are
inadequate for time series data with missing values exceeding a
25% threshold [42]. To address this issue, this study developed a
mechanistic model to augment low-frequency sampling data, uti-
lizing ML to capture the nonlinear relationships. The mechanistic
model successfully simulated matter dynamics across time scales
without synchronizing metrics at a single point in time [66].
Mechanistic augmentation techniques generated complete and
independent samples and addressed gaps in the datasets with
different sampling frequencies [43,67]. This study demonstrated
the potential of mechanistic augmentation techniques, which
exhibited greater credibility and interpretability than statistical
methods or black-box models [68,69], as the mechanistic model
maintained the nonlinear relationships guided by knowledge [70].
Notably, the ME-Hybrid model demonstrated high data utilization
efficiency and achieved satisfactory performance when the share of
the training set was only 50% (Fig. 6). This highlighted the feasibility
of improving model performance through data resource allocation
in data-constrained situations [71]. The advantage of hybrid model
is attributed to combining two modeling paradigms. The mecha-
nistic augmentation increased the diversity of information in the
hybrid dataset by generating samples that were not observed, such
as sewage-characterizing changes in a early period [28]. ML models
can learn patterns from synthetic samples while accounting for the
effects of variables not present in the mechanistic model [56].

Applying the proposed ME-Hybrid model in real-world sewers
is anticipated to reduce the need for spatial sample collection and
enhance the accuracy of water quality predictions. The RT simu-
lated in this study effectively reflects variations in sewer length. In
long sewage segments, intensive sampling typically necessitates
substantial human and material resources. Traditional interpola-
tion methods are unsuitable for acquiring mid-segment water
quality data. The mechanistic model in this study can increase
sewer sampling points and thewater quality data required for these
points, further enabling ML to effectively train and predict water
quality changes along the sewer. Therefore, this model can poten-
tially be an important tool for managing or mitigating sewer
corrosion and greenhouse gas emissions. Although the ME-Hybrid
model has successfully assessed sulfide and methane concentra-
tions in sewers, its extension to other areas of water environment
management, such as wastewater treatment scenarios, is urgently
desired and expected. In these scenarios, fundamental principles
such as carbon conversion and nitrogen conversion could be
available in existing mechanistic models [67,72], and the sampling
frequency of the variables is usually not uniform [24,41]. This
hybrid framework is expected to address frequency discrepancies
in datasets through its mechanistic component and enhance the
prediction of wastewater treatment targets using ML algorithms,
which may improve the efficiency of raw data utilization and help
manage water treatment processes.

Admittedly, while the findings presented in this study are sig-
nificant, it is important to acknowledge its limitations. Although
the ME-Hybrid model is theoretically expected to improve the
performance of ML models, the experimental results indicated only
modest gains. Specifically, for the prediction of sulfide and
9

methane, the R2 values increased by 11.8% and 15.8%. This outcome
was primarily attributed to the dataset's limitations. The sampling
frequency of high-frequency data was only twice that of low-
frequency data, and the increase in data collection frequency
from 2 h to 1 h through the mechanistic model was insufficient to
significantly improve prediction performance. Therefore, when
applying theME-Hybrid model to real-world sewers, methods such
as Monte Carlo simulation or stochastic perturbations could be
employed to fully leverage the data generation capabilities of
mechanistic models. Alternatively, increasing the frequency of raw
data collection may provide the ML model with richer dynamic
information. These improvements will yield greater performance
gains in more complex dynamic systems.

4. Conclusion

This study presented the ME-Hybrid model by integrating the
mechanistic and ML models and evaluated its effectiveness using
sulfide and methane concentrations in sewers as representatives.
The mechanistic component could generate samples to fill gaps in
the original data, thereby harmonizing datasets with irregular
sampling frequencies. This potential surpassed interpolation and
has been underappreciated in previous research. It was demon-
strated that mechanistic samples can effectively substitute real
samples. The accuracy of the ML model was significantly improved
by incorporating mechanistic samples into the ML model training
set. This reduced the dependence of model training on real sample
size. This work offered insights into enhancing model development
in data-constrained situations, highlighting the promising inte-
gration of mechanistic knowledge with ML approaches to analyze
environmental systems. Future research should evaluate the
applicability of the ME-hybrid model across diverse scenarios.
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