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Effective risk assessment and control of environmental antibiotic resistance depend on comprehensive
information about antibiotic resistance genes (ARGs) and their microbial hosts. Advances in sequencing
technologies and bioinformatics have enabled the identification of ARG hosts using metagenome-
assembled contigs and genomes. However, these approaches often suffer from information loss and
require extensive computational resources. Here we introduce a bioinformatic strategy that identifies
ARG hosts by prescreening ARG-like reads (ALRs) directly from total metagenomic datasets. This ALR-
based method offers several advantages: (1) it enables the detection of low-abundance ARG hosts
with higher accuracy in complex environments; (2) it establishes a direct relationship between the
abundance of ARGs and their hosts; and (3) it reduces computation time by approximately 44e96%
compared to strategies relying on assembled contigs and genomes. We applied our ALR-based strategy
alongside two traditional methods to investigate a typical human-impacted environment. The results
were consistent across all methods, revealing that ARGs are predominantly carried by Gammaproteo-
bacteria and Bacilli, and their distribution patterns may indicate the impact of wastewater discharge on
coastal resistome. Our strategy provides rapid and accurate identification of antibiotic-resistant bacteria,
offering valuable insights for the high-throughput surveillance of environmental antibiotic resistance.
This study further expands our knowledge of ARG-related risk management in future.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Global overuse of antibiotics has promoted the prevalence of
antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria
(ARB), leading to the ineffectiveness of antibiotic treatments for
pathogenic bacterial infections [1,2]. ARGs can proliferate in the
microbial community via horizontal gene transfer (HGT) and
further increase the number and diversity of ARB across phyloge-
netic boundaries, thus inducing an acutely growing concern [3,4].
Previous studies indicated that the environmental microbiome acts
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as the reservoir of ARGs that can be horizontally transferred back to
human and animal pathogens [5e7]. Thus, it is essential to deter-
mine ARG hosts in the environments when evaluating the potential
risk of antibiotic resistance to human health [8] and proposing
feasible policies for ARG pollution control [9].

Cultivation-based methods for identifying ARB, common in
clinical studies, have limitations due to only a small fraction of ARB
isolated [10]. Recent advancements in molecular techniques have
led to the exploration of culture-independent methods for identi-
fying ARG hosts, such as correlation analysis, metagenomics,
fluorescence-activated cell sorting (FACS), and single-cell fusion
polymerase chain reaction (epicPCR) [9,11]. FACS and epicPCR can
pinpoint ARG locations at the cellular level but are hindered by
complexity and low throughput, limiting their use in large-scale
environmental studies. Previous studies mainly utilized correla-
tion analysis and metagenomics to explore ARGehost relationships
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in various environments [9]. Correlation analysis determines ARG
hosts by assessing correlations between ARG abundance and spe-
cific microbial taxa [12,13]. However, while convenient and cheap,
it has vital limitations such as high uncertainty or even spurious
correlations of ARGehost links, which are susceptible to dataset
sample size and normalization methods [9,14]. Metagenomics,
involving shotgun sequencing of total DNA, offers comprehensive
information on ARGs and microbial communities [15]. Generally,
sequenced short reads will be assembled into long-read contigs or
drafted into metagenome-assembled genomes (MAGs) to obtain a
series of ARG-carrying contigs (ACCs) or MAGs via functional
annotation; then taxonomies are assigned to them using phyloge-
netic biomarkers [16e18]. Nevertheless, this data processing with
higher computational requirements is time-consuming, especially
for mass environmental datasets. Additionally, the number of un-
used reads after assembly could increasewith the complexity of the
microbial community due to the limits of sequence coverage and
depth, leading to insufficient recovery of low-abundance genomes
[19]. Hence, we hypothesize that ARG-host information can be
obtained directly from metagenomic short sequences, and to the
best of our knowledge, such ideas and computation methods for
identifying ARG hosts have not yet been explored.

In this study, we developed and implemented a metagenomic
strategy based on prescreening ARG-like reads (ALRs) to profile the
overall composition of ARG hosts in the environment. We used the
synthetic and actual metagenomic sequencing data to evaluate and
validate the proposed method for the ARG-host identifications. The
actual datasets came from engineered and natural systemswe have
studied before, including wastewater treatment plants (WWTPs),
coastal effluent-receiving areas (ERAs), and Hangzhou Bay (HZB), a
heavily polluted bay in the East China Sea. BothWWTPs and coastal
environments are regarded as hotspots for ARG spread in microbial
communities [20]. However, previous studies mainly focused on
the distribution and composition of ARGs from WWTPs to coastal
environments, while host information on ARGs remains unclear.
Uncovering the characteristics of ARG hosts more efficiently could
greatly help evaluate human activities' impact on environmental
resistome and its potential risk to human health [21]. Based on the
ARG detection in our previous studies [22,23], we employed met-
agenomic sequencing for 11 wastewater and 42 coastal sediment
samples. More importantly, we proposed a first-of-its-kind fast
bioinformatic pipeline to obtain the composition of ARG hosts
directly from metagenomic short reads. Finally, we evaluated the
validity of the proposed method by comparing the three ARG-host
identification strategies.

2. Materials and methods

2.1. Sample collection and metagenomic sequencing

The sampling sites in the WWTPs and HZB are shown in Figs. S1
and S2 (Supplementary Materials). W1 and W2 treat domestic and
industrial wastewater from Shangyu County (the south coast) and
Jiaxing City (the north coast). Shangyu (SY) and Jiaxing (JX) ERAs
directly receive the treated wastewater from W1 and W2, respec-
tively. HB1eHB10 are sampling sites from the inner bay to the outer
bay. In October 2020, 11 wastewater samples were collected and
filtered through 0.22 mm membranes for biomass collection.
Wastewater samples are directly linked to coastal environments,
which represent the potential ecological impacts of WWTPs. In
April 2018, 42 surficial sediment samples (0e5 cm deep, single
sample at each SY and JX site, triplicate samples at each HB site)
were collected using a grab sampler (Van Veen, Hydro-Bios, Ger-
many). All the samples were stored at �80 �C for further analysis.
The total DNA extraction and its quality determination were
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conducted according to a previous study [23]. High-quality DNA
was sent to the company (Guangdong Magigene Biotechnology Co.,
Ltd.) for library construction and 150 bp pair-end shotgun
sequencing on an Illumina HiSeq 2500 platform. We obtained
186 Gb (gigabase pairs) of raw data for wastewater samples and
510 Gb for sediment samples. Raw reads were filtered with the
KneadData pipeline [24] to obtain 29.7e66.2 million clean reads in
these metagenomic datasets.

2.2. ARG-host identification based on prescreening ARG-like reads
from metagenomic datasets

We proposed a new strategy for identifying the ARG hosts based
on prescreening ALRs from metagenomic short reads (Fig. 1). This
strategy included assembly-free (ALR1) and assembly (ALR2)
analysis pipelines.

(1) ALR1 pipeline: Clean reads were first searched against the
Structured Antibiotic Resistance Genes (SARG, v2.2) database
[25] to identify the potential matched reads using UBLAST
[26,27] (e-value �10�5). Then, these matched reads were
further aligned against the SARG database using BLASTXwith
the default parameters (e-value �10�7, sequence identity
�80%, and hit length �75%) for identifying target reads and
ARG classification [25]. The target reads were taxonomically
assigned by using Kraken2 (v2.0.8-beta) [28] with the GTDB
database (r89), which depended on exact k-mer matching
and lowest common ancestor (LCA) algorithms. Candidate
ARG-carrying taxa with more than ten sequences were
retained for further analysis.

(2) ALR2 pipeline: The potential matched reads obtained in the
ALR1 pipeline were assembled to contigs (>500 bp) by using
MEGAHIT (v1.1.3) [29] with recommended parameters.
Prodigal (v2.6.3) [30] with a meta-model was used to predict
the open reading frames (ORFs). The protein sequences of
ORFs were searched against the SARG database with BLASTP
(v2.6.0) under an e-value �10�5. The alignment results with
identity �80% and query coverage �70% were identified as
ARG-like ORFs [17]. The relative abundance of genes (Tran-
scripts Per Kilobase Million, TPM) was generated by Salmon
(v0.13.1). A contig was considered an ACC if it carried at least
one ARG-like ORF. Kraken2 (v2.0.8-beta) [31] with the GTDB
database (r89) was used to obtain the taxonomic annotation
of the ACCs. CoverM (v0.6.1) was employed to calculate the
relative abundance of each ACC (average sequence number).
2.3. ARG-host identification based on metagenomic read assembly

Clean reads of each metagenomic dataset were directly assem-
bled to contigs (>500 bp) via MEGAHIT (v1.1.3). The subsequent
steps concerning gene prediction, annotation, quantification, and
taxonomic assignment were the same with the ALR2 pipeline.

2.4. ARG-host identification based on metagenomic draft genome
assembly

Following the assembly, the MAGs were recovered from contig
groups via the metaWRAP pipeline (v1.2.1) [32]. Consolidated
MAGs (completeness >50% and contamination <10%) were pro-
duced from all the recovered MAGs. dRep (v2.6.2) [33] was applied
to obtain a non-redundant MAG set with recommended parame-
ters (-sa 0.95, -nc 0.30). The ARGs carried by MAGs were identified
with BLASTP (v2.6.0) and the SARG database (e-value �10�5,
identity �80%, and query coverage �70%). Finally, the taxonomic



Fig. 1. Analysis pipeline for identifying ARG hosts based on different metagenomic strategies. MAGs, metagenome-assembled genomes. ORFs, open reading frames.

Z. Su, A.Z. Gu, D. Wen et al. Environmental Science and Ecotechnology 23 (2025) 100502
assignment of ARG-carrying MAGs (ACMs) was performed by the
GTDB-Tk (v1.0.2) [34]. The relative abundance of ACMs (genome
copies/ppm reads) was calculated by the Quant_bins command in
the metaWRAP pipeline (v1.2.1).

2.5. Identification of pathogenic antibiotic-resistant bacteria

To identify the potential pathogen in the ARG-carrying bacterial
community, the taxonomic results of different pipelines were
assigned to a bacterial pathogen database, which contained 538
pathogenic species [16].

2.6. Synthetic metagenomic datasets and assessment of different
strategies for identifying ARG hosts

Synthetic metagenomic datasets of varying complexity from the
Critical Assessment of Metagenomic Interpretation study were
employed to test different strategies. The source genomes from
“low” (RL), “medium” (RM), and “high” (RH) diversity datasets were
first conducted to ARG and taxonomic annotation. These genomes
carrying ARGs were regarded as the “gold standard” for ARG host
identification pipelines in this study. Then, we analyzed the short
reads generated from the RL, RM, and RH datasets through different
pipelines to obtain ARG host information. We adopted the
following terms and definitions to determine the quality of results:
true positive (TP), true negative (TN), false positive (FP), and false
negative (FN); positives (P) ¼ TP þ FP, negatives (N) ¼ TN þ FN,
sensitivity ¼ TP/(TP þ FN), specificity ¼ TP/P, and
accuracy ¼ TP þ TN/(P þ N).

To further test the performance of different pipelines for iden-
tifying the target taxa, different reads were generated from a
3

methicillin-resistant Staphylococcus aureus (strain MRSA252, NCBI
Accession BX571856) at different genome coverages (100X, 50X,
20X, 10X, 5X, 2X, and 1X) by InSilicoSeq (v1.3.1) [35]. These reads
were added to the RH metagenomes and reanalyzed through
different pipelines. Three methicillin resistance ARGs (mecA, mecI,
andmecR1) in the chromosomal genome ofMRSAwere detected for
host assignment in each pipeline, and the above three were not
observed in the original RH metagenomes.

2.7. Visualization

Circos (http://circos.ca/) was applied to visualize the corre-
spondence between the taxa and carried ARGs. OrthoFinder
(v2.3.12) [36] was adopted to identify the homology relationships
between sequences and to obtain the homologous genes of ACMs.
We constructed three maximum likelihood phylogenetic trees us-
ing IQ-TREE (v1.6.12) [37] and visualized the trees using iTOL (v5).
The co-occurrence networkwas visualized via Gephi (v0.9.2). Other
figures were mainly drawn via the ggplot2 package in R (v3.6.3).

3. Results

3.1. Efficiency of different metagenomic strategies for identifying
ARG hosts from synthetic datasets

We assessed standard metagenomic datasets with varying mi-
crobial diversities using four ARG-host identification pipelines.
Comparisons were made between the pipelines' ARG-host anno-
tations and known information to evaluate identification efficiency.
We observed decreasing identification efficiency for ARG hosts as
taxonomic annotation levels increased from phylum to species

http://circos.ca/
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(Fig. 2). The ALR1 pipeline showed high sensitivity, particularly in
low-diversity datasets (RL), with 100% sensitivity at various taxo-
nomic levels. However, its specificity was low due to a high number
of false positives, reducing accuracy. In contrast, the ACM pipeline
had high specificity but low sensitivity, affecting accuracy. The
ALR2 and ACC pipelines demonstrated high sensitivity, specificity,
and accuracy for ARG-host identification. Notably, the ALR2 pipe-
line had the highest accuracy (83.9e88.9%) for ARG-host identifi-
cation in high-diversity datasets (RH) across different taxonomic
levels. To assess the identification efficiency of different pipelines
for target ARG hosts, we created a test dataset with ARB of varying
abundance levels and analyzed them using four pipelines. Table S1
(Supplementary Material) showed that the ALR1, ALR2, and ACC
pipelines annotated the target bacterium (Staphylococcus aureus) at
phylum, genus, and mainly species levels, while the ACM strategy
only provided species-level annotation. The ALR1 pipeline exhibi-
ted some identification efficiency for the target bacterium at
extremely low abundance (1X), whereas the ALR2 and ACC pipe-
lines detected them at 2X genome coverage, with detections sta-
bilizing after 5X. The ACM pipeline only detected them at 5X
coverage. The number of target bacterium detected by ALR1
correlated closely with its genome coverage.
3.2. Composition of ARG hosts in the wastewater and coastal
sediment samples

We focused on HZB and surrounding WWTPs to study the
connection between ARGs and hosts in wastewater and sediment
samples using various metagenomic approaches. With the ALR1
pipeline, we found that potential ARG-matched reads accounted for
Fig. 2. Performance of different analysis pipelines on identifying ARG hosts at different taxo
and RH are “low,” “medium,” and “high” diversity datasets, respectively. ALR1, assembly-
pipeline based on prescreening ARG-like reads. ACC, analysis pipeline based on assemblin
genome-assembled genomes.
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approximately 0.020e0.171% of all clean sequences in the samples
(Supplementary Material Table S2). Using the ALR2 pipeline, we
identified 943 contigs with ARGs out of 4540 contigs
(SupplementaryMaterial Table S3), andwith the ACC pipeline,1656
contigs out of 2,717,142 contained ARGs (Supplementary Material
Table S4). The ACM pipeline revealed 44 MAGs with ARGs out of
1391 non-redundant MAGs (Supplementary Material Table S5).
Analysis at the short-read level showed dominant resistance genes
like multidrug, bacitracin, macrolideelincosamideestreptogramin
(MLS), sulfonamide, aminoglycoside, b-lactam, and tetracycline,
with a notable presence of unclassified resistance genes in ERA and
HZB (Supplementary Material Fig. S3). The WWTP samples
exhibited significantly higher ARG richness and abundance than
the ERA and HZB samples. The ALR1, ALR2, ACC, and ACM pipelines
identified 370, 140, 331, and 40 ARG host taxa across all samples,
respectively (Supplementary Material Fig. S4). ALR2 had the lowest
proportion of uniquely identified taxa (42.9%). The number of ARG
hosts identified by the four pipelines in the WWTPs was higher
than that of ERAs and HZB, indicating that WWTPs had a higher
diversity of ARB (Supplementary Material Table S6). As shown in
Table S7 (Supplementary Material), all the ARG-carrying taxa in
different samples could be annotated at the phylum level by four
pipelines, and at least 61.11% of taxa were annotated at the genus
level (HZB samples, ALR2 pipeline). The ALR1, ALR2, and ACC
pipelines identified Gammaproteobacteria and Bacilli as primary
ARG hosts in various samples (Fig. 3). Gammaproteobacteria were
dominant in WWTP, while Bacilli were more prevalent in coastal
sediments. Gammaproteobacteria decreased from WWTP to ERA
and HZB, while Bacilli increased in ERA according to the ACC
pipeline. Many reads in the WWTP samples lacked genus-level
nomic levels from Critical Assessment of Metagenomic Interpretation datasets. RL, RM,
free analysis pipeline based on prescreening ARG-like reads. ALR2, assembly analysis
g ARG-carrying contigs. ACM, analysis pipeline based on binning ARG-carrying meta-



Fig. 3. Composition of ARG hosts at class level in the wastewater and coastal sediment
samples based on ALR1, ALR2, and ACC pipeline. WWTPs, wastewater samples in
wastewater treatment plants. ERAs, sediment samples in effluent-receiving areas. HZB,
sediment samples in Hangzhou Bay. Others, other hosts. ALR1, assembly-free analysis
pipeline based on prescreening ARG-like reads. ALR2, assembly analysis pipeline based
on prescreening ARG-like reads. ACC, analysis pipeline based on assembling ARG-
carrying contigs.
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taxonomic information. Pseudomonas_E was the major ARG-
carrying genus in the WWTPs, while Staphylococcus was domi-
nant in coastal sediments (Supplementary Material Fig. S5). The
ACM pipeline detected 44 ACMs, with 27 being Gammaproteo-
bacteria, mainly in WWTPs (Fig. 5a; Supplementary Material
Table S8). Two ACMs identified as Bacilli in ERA and HZB carried
the highest number of ARGs (17 and 15, respectively).
3.3. The corresponding relationships between ARGs and their hosts

Fig. 4 illustrates the relationship between ARG composition and
host information in different environmental samples. The ALR1,
ALR2, and ACC pipelines observed a decrease in the number of ARGs
carried by Gammaproteobacteria from WWTPs to ERAs and HZB,
while Bacilli showed an increasing trend. In WWTPs, Gammapro-
teobacteria predominantly carried genes for multidrug, MLS, beta-
lactam, aminoglycoside, sulfonamide, and bacitracin resistance. In
ERAs and HZB, Gammaproteobacteria mainly carried multidrug
resistance genes, while Bacilli carried multidrug, beta-lactam,
tetracycline, and bacitracin resistance genes. Assembly-based
methods (ALR2 and ACC pipelines) effectively identified host in-
formation for aminoglycoside and sulfonamide resistance genes in
theWWTP samples. The ACM pipeline detected 63 ARG subtypes in
44 ACMs, with multidrug, beta-lactam, aminoglycoside, MLS, and
tetracycline resistance genes being the most common. The bacA
gene, conferring bacitracin resistance, was most frequently detec-
ted among the 44 ACMs (40.9%, Fig. 5b), indicating its stable pres-
ence in various ARB [38]. Multiple ACMs in WWTP effluent carried
multidrug resistance genes like multidrug-ABC-transporter, mexD,
andmexF, along with high-risk resistance genes such as tetX,mcr-5,
aph(6)-I, catB, and floR. Coastal sediment Staphylococcus aureus
genomes harbored beta-lactam resistance genes mecA, mecI, and
mecR1, suggesting resistance to methicillin antibiotics. These ACMs
also carried other high-risk resistance genes (emrB-qacA, mepA,
norA, tetM, and ermB), posing a potential "superbug" (MRSA) threat
to human health.
5

3.4. Identification of potential pathogenic antibiotic-resistant
bacteria

Pathogenic antibiotic-resistant bacteria (PARB) enriched with
ARGs in the environment pose a significant threat to human health
when they spread to clinical settings [39]. This study compared
ARG-host annotation information at the species level with a list of
common pathogenic bacteria to identify potential PARB in various
samples. Fig. 6a exhibits 26 potential PARB across different samples,
primarily belonging to Gammaproteobacteria. The ALR1 and ACC
pipelines identified the highest number of PARB, followed by the
ALR2 and ACM pipelines. The highest number of PARB was iden-
tified in WWTPs, followed by ERAs and HZB. The main PARB in
WWTPs included Ralstonia pickettii, Aeromonas caviae, Legionella
pneumophila, Klebsiella pneumoniae, Bacteroides uniformis, and
Aeromonas hydrophila. In ERAs, Staphylococcus aureus and Entero-
bacter cloacae were prominent, while Staphylococcus aureus was
prevalent in HZB. The study also analyzed the relative abundance of
PARB and their carried ARGs in different samples. Fig. 6b shows that
the relative proportion of PARB and their ARGs in WWTPs was
relatively low across all four analysis pipelines. The ALR1 and ALR2
pipelines indicated an increase in PARB from WWTPs to ERAs and
HZB, along with a similar trend in the relative abundance of carried
ARGs. The ACC pipeline revealed that while PARB in ERAs consti-
tuted 98.1% of the total ARG-host abundance, only 11.5% carried
ARGs. The relative abundance of PARB and ARGs they carried in HZB
accounted for more than 50%. The ACM pipeline highlighted that
PARB and their carried ARGs in ERA samples accounted for 100%, as
only one ACM identified was PARB.

4. Discussion

4.1. Advantages of ALR-based metagenomic strategies for ARG-host
identification

Compared to the established ACC- and ACM-basedmethods, our
new strategy based on ALRs showed the following three advan-
tages: First, although all three strategies can quantify ARG host
abundance, only the ALR-based strategy enables the covering of
ARG hosts with low abundance. The assembly process of
sequencing data and the complexity of the dataset significantly
influence the performance of four identification pipelines. ALR1
bypasses the assembly process and directly annotates ARG-like
sequences, enabling the detection of extremely low-abundance
hosts with high sensitivity (Fig. 2; Supplementary Material
Table S1). However, this pipeline also exhibits higher false posi-
tives, reducing specificity in host identification. On the other hand,
the metagenomic binning-based pipeline (ACM) aims to recon-
struct complete bacterial genomes, resulting in relatively conser-
vative host identification with high specificity but limited
comprehensive detection of hosts, particularly in samples with
high microbial diversity. This pipeline faces challenges in identi-
fying low-abundance species or genes due to the limitation of
sequencing depth [15], thereby impacting the final accuracy of host
identification. The ALR2 and ACC pipelines offer more balanced
solutions; both assemble short sequences into longer ones (contigs)
to optimize sensitivity and specificity for host identification,
yielding high identification accuracy (Fig. 2). Nevertheless, ALR2
mitigates the influence of numerous irrelevant sequences before
assembly, not only saving computational time but also enhancing
detection accuracy, as evidenced in RH datasets (Fig. 2). Therefore,
the ALR2 pipeline may provide a comprehensive understanding of
the ARG-host information in the complex environmental samples.

Second, our ALR-based strategy directly correlates ARG abun-
dance with ARG hosts. In our study, the ACC-based pipeline in the



Fig. 4. The corresponding relationship between taxonomic (class level) and functional annotation in the wastewater and coastal sediment samples based on ALR1, ALR2, and ACC
pipeline. MLS, macrolideelincosamideestreptogramin. Others, other ARG types. WWTPs, wastewater samples in wastewater treatment plants. ERAs, sediment samples in effluent-
receiving areas. HZB, sediment samples in Hangzhou Bay. ALR1, assembly-free analysis pipeline based on prescreening ARG-like reads. ALR2, assembly analysis pipeline based on
prescreening ARG-like reads. ACC, analysis pipeline based on assembling ARG-carrying contigs.
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ERA samples identified potential PARB accounting for 98.1% of total
ARG hosts, but only 11.5% of total ARG abundance was attributed to
ARGs carried by PARB (Fig. 6b). This mismatched result indicated
that some host bacteria with high relative abundance might not
carry a higher abundance of ARGs. Thus, assembling many unre-
lated sequences in this pipeline might prevent us from gaining
insight into the actual contribution of the host to ARGs. By anno-
tating ARG sequences without interference from unrelated infor-
mation, our approach avoids this problem to a certain extent, as it
6

captures as many hosts as possible, while the relative abundance of
hosts also reflects the occurrence of ARGs.

Third, the ALR-based strategy requires significantly less
computational time and resources than the ACC and ACM strate-
gies. In this study, to extract ARG-host information from synthetic
and actual datasets, ALR-based pipelines (especially ALR2) showed
lower computation hours requirements than the ACC and ACM
pipelines (Supplementary Material Table S9). We also found that
ALR-based pipelines demonstrated greater advantages in high-



Fig. 5. a, Phylogenetic assignment of ARG hosts based on ACM pipeline. b, Co-occurrence network between ACMs and their carried ARGs. The nodes with different colors represent
ACMs and different ARG types. The node size represents the node degree. The connecting edge between two nodes indicates the affiliation. For instance, sul1 was linked to
sieff.bin.15, indicating that sieff.bin.15 harbors the resistance gene sul1. The width of the edge corresponds to the number of individual host-ARG pairs. ACMs, ARG-carrying
metagenome-assembled genomes. MLS, macrolideelincosamideestreptogramin. Others, other ARG types. ACM, analysis pipeline based on binning ACMs.

Fig. 6. a, Identification of pathogenic antibiotic-resistant bacteria (PARB) based on different analysis pipelines. b, The relative abundance of PARB and their carried ARGs in the
wastewater and coastal sediment samples. WWTPs, wastewater samples in wastewater treatment plants. ERAs, sediment samples in effluent-receiving areas. HZB, sediment
samples in Hangzhou Bay. ALR1, assembly-free analysis pipeline based on prescreening ARG-like reads. ALR2, assembly analysis pipeline based on prescreening ARG-like reads. ACC,
analysis pipeline based on assembling ARG-carrying contigs. ACM, analysis pipeline based on binning ARG-carrying metagenome-assembled genomes.
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complexity datasets (RH and wastewater samples), saving
computational time by 67e96% (Supplementary Material Table S9).
The latter two strategies were time-consuming and computation-
ally intensive due to complex analysis steps for many irrelevant
7

sequences [15,40]. In the new ALR-based pipeline, by prescreening
the potential ARG reads, more than 99% of irrelevant sequences
were removed [41]. This allows for the direct and accurate identi-
fication of ARG hosts in a significantly reduced time frame, even
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with sequence assembly steps in the ALR2 pipeline. Kraken, uti-
lizing k-mers and the LCA algorithm, offers rapid and accurate
taxonomic information assignment for metagenomic short reads,
surpassing classifiers like Megablast and MetaPhlAn [31]. Further-
more, it enhances speed fivefold and reduces memory usage by 85%
[28], enhancing the computational efficiency of taxonomic anno-
tation for ALRs.

In summary, the ALR-based strategy offers benefits such as
speed, comprehensiveness (including extremely low-abundance
hosts), and enhanced accuracy for ARG-host identification in
complex datasets. This may be more suitable for rapid and
comprehensive ARG-host screening of environmental samples. If
other researchers focus on habitats with low microbial diversity or
aim to study the genomic traits of specific major ARG hosts and the
genetic background of ARGs, the combination of the ALR- and ACM-
based strategies may be a good choice.

4.2. Identification of primary ARG hosts in human-impacted
environments

From a "One Health" perspective, WWTP effluent discharge
significantly impacts AMR development in coastal environments,
potentially leading to the transfer of coastal ARGs or ARB to humans
and posing a risk to public health [42]. Effective tools are needed to
rapidly and accurately identify small numbers of ARB in these
diverse and complex bacterial communities [43]. This study used
the new ALR-based metagenomic strategy to analyze ARG-host
composition in WWTPs and coastal environments, comparing its
efficacy with other metagenomic approaches.

All metagenomic strategies confirmed that ARGs were mainly
present in Gammaproteobacteria and Bacilli (Figs. 3 and 5a). This
observation can be attributed to (1) the dominance of Gammap-
roteobacteria and Bacilli in the study area [44], (2) the majority of
antibiotic-consuming bacteria within these classes displaying
intrinsic resistance to multiple antibiotics [45], and (3) the close
relationship between clinical human pathogens within these clas-
ses and ARGs (Fig. 6b) [3,9,17]. Comparing the two classes, Gam-
maproteobacteria contributed a higher diversity of ARB than Bacilli
in this study. For Gammaproteobacteria, many diverse genera, such
as Acinetobacter, Pseudomonas, Citrobacter, Escherichia, Enterobacter,
and Thauera, contributed a high proportion to ARGs, especially in
the WWTP samples. These microbes are closely associated with
clinical diseases, fecal pollution, and biological wastewater treat-
ment processes [42,46,47]. For Bacilli, Staphylococcus aureus
emerged as the supercarrier of ARGs in the coastal sediment sam-
ples, which have been proven to adapt to high-salt conditions and
exhibit heightened antibiotic resistance [48,49]. Regarding the ARG
types carried by both classes, multidrug resistance genes, which
play important roles in regulating the expression of antibiotic
resistance and the transport of cellular metabolites [50,51], were
dominant ARGs in both Gammaproteobacteria and Bacilli. Other
ARG types like MLS, sulfonamide, aminoglycoside, beta-lactam, and
tetracycline resistance genes presented differently in the two
classes (Fig. 4). The ACM-based results also revealed that Gam-
maproteobacteria and Bacilli carried different types of ARGs
(Fig. 5b), indicating that the horizontal transfer of ARGs might be
impeded between them. This supports a previous hypothesis that
phylogeny rather than HGT determines the composition of envi-
ronmental resistome effectively [13,51]. Nevertheless, the ARG-
carrying characteristics of environmental ARB might also have
local ecological relevance [52]. Moreover, within the same class or
habitat, more potential transfer events of high-risk ARGs between
non-pathogenic and pathogenic species should be given great
concern (Fig. 5b).

Notably, the relative composition of ARG hosts annotated as
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Gammaproteobacteria and Bacilli varied significantly in theWWTP,
ERA, and HZB samples, suggesting its indicative value for health
risks and the ecological impacts of anthropogenic activities (i.e.,
wastewater discharge). The WWTP samples exhibited higher di-
versity of both ARGs and ARB compared to the ERA and HZB sam-
ples, highlightingWWTPs as significant sources of ARGs and ARB in
coastal environments [23,42]. Our previous study revealed that
wastewater discharge could drive the spread of ARGs and boost the
antibiotic resistome risk in coastal areas [53]. The relative contri-
bution of Gammaproteobacteria to ARGs decreased fromWWTPs to
ERA and HZB, which could also indicate the influence of wastewater
discharge on antibiotic resistome characteristics in coastal envi-
ronments. More specifically, in the effluent-receiving waterbodies,
the presence of certain PARB belonging to Gammaproteobacteria
(e.g., Acinetobacter sp. And Pseudomonas sp.) were regarded as the
indicators of wastewater-related pollution [54e56]. The truth
behind it was that wastewater-borne PARB normally showed
multiple resistance to harsh conditions and persistently spread in
effluent-receiving environments [42,57]. Meanwhile, wastewater
effluent could decrease the diversity of microbial communities in
coastal areas [58], thereby reducing the degree of niche overlap and
allowing PARB to achieve competitive advantages [59]. On the
other hand, the occurrence and distribution of ARG hosts also
varied with natural processes [47]. In less impacted areas like HZB,
most ARGs are enriched in specific microbes (Staphylococcus
aureus), suggesting limitations on ARG spread imposed by phy-
logeny and natural factors [42,53]. A recent study identified that
some human pathogen bacteria, harboring many ARG combina-
tions, were natural supercarriers in a river basin [60]. Therefore, the
health risks of ARG hosts in natural environments should not be
ignored.

4.3. Technological limitations and future perspective

We acknowledge a few limitations of the ALR-based strategy.
First, short sequences (150 bp) obtained through next-generation
sequencing provide limited genetic information, leading to more
false positives in species and gene annotation. To overcome this, we
introduced the ALR2 pipeline, incorporating sequence assembly for
improved accuracy compared to the ALR1 pipeline. Second, the
ALR-based strategy, particularly the ALR1 pipeline, struggles with
identifying hosts for highly mobile ARGs like aminoglycoside and
sulfonamide resistance and faces challenges in detecting
multidrug-resistant bacteria with multiple ARGs (Fig. 4) [61]. Third,
unlike ACC- and ACM-based strategies, the ALR-based approach
encounters difficulties in further analyzing the functional infor-
mation within ARGs' flanking sequences and identifying the
genomic characteristics of ARGehost interactions, hindering
comprehensive evaluation of environmental risks posed by ARB.
We must acknowledge that the sequence-based phylogenetic
assignment to the species level of all the pipelines is often chal-
lenging, especially for identifying potential pathogens. Frequent
horizontal transfer of ARGs within microbial communities might
also lead to some mismatches between ARGs and their hosts based
on metagenomic sequencing methods.

Nowadays, the emergence of third-generation sequencing
technology allows one to obtain increasingly longer sequence
lengths, potentially eliminating the need for assembly. High-
throughput chromatin conformation capture (Hi-C) metagenome
sequencing has also been suggested to link mobile genes with
bacterial genomes more broadly [62]. These protocols provide new
avenues for improving the identification of ARG hosts. However,
new techniques are still under development, especially for envi-
ronmental monitoring, and we must recognize that they still have
the shortcomings of sequencing errors, operational complexity, and
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high costs. Currently, metagenomics based on second-generation
sequencing technology continues to dominate relevant studies.
Therefore, thoroughly exploring the analysis methods using
second-generation sequencing data remains crucial. With the
growing genomic data and bioinformatics advancements, studies
have delved into the phylogenetic affiliation of ARGs, making un-
derstanding clearer and more stable [3,63,64]. Thus, by leveraging
the advantages of the ALR-based strategy and increasing relevant
empirical knowledge, the wide and large-scale environmental
screening of ARG hosts can be achieved to support the imple-
mentation of the "One Health" framework.

5. Conclusion

This study proposed a new metagenomic strategy to identify
ARG hosts based on prescreening ALRs. We compared the new
strategy with two assembly-based metagenomic strategies by
synthesizing standardized datasets. The results showed that the
new strategy demonstrated advantages in detection accuracy and
computation time for identifying ARG hosts in high-complexity
datasets and could establish direct connections between the
abundance of ARGs and their hosts. All metagenomic strategies
confirmed that ARGs weremainly carried by Gammaproteobacteria
and Bacilli in the WWTPs and coastal sediments. Their relative
composition varied significantly in the different environmental
samples, suggesting their indicative value for health risks and the
ecological impacts of wastewater discharge. Our proposed strategy
could contribute to a more comprehensive understanding of the
risk of environmental antibiotic resistome and provide new in-
sights about assessing the impact of anthropogenic activities on
environments.
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