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The parameters of activatedg sludge are crucial for the daily operation of wastewater treatment plants
(WWTPs). In particular, mixed liquor suspended solids (MLSS) and apparent viscosity provide metrics for
the biomass and rheological properties of activated sludge. Traditional methods for determining these
parameters are time-consuming, require separate measurements for each index, and fail to provide real-
time data for future ‘smart” WWTPs. Here we show a real-time online microscopic image data analysis
- system that quantitatively identifies MLSS and apparent viscosity. Microscopic videos of activated sludge
ﬁi{i‘:‘//:trg;.slu dge are captured in lab-scale sequencing batch reactors under chemical oxygen demand shock, yielding
MLSS 41482 high-quality images. The Xception convolutional neural network architecture is used to establish
both qualitative and quantitative correlations between these microscopic images and MLSS/apparent
viscosity. The accuracies of qualitative identification for MLSS and apparent viscosity are both higher
than 97%, and the quantitative correlation coefficients are 0.95 and 0.96, respectively. This quantitative
correlation between microscopic images of activated sludge and its physical parameters, specifically
MLSS and apparent viscosity, provides a basis for real-time online measurements of activated sludge
parameters in WWTPs.
© 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Wastewater treatment plants (WWTPs) are crucial components
in the development of a digital water infrastructure [1]. Industry 4.0
integrates technologies such as the Internet of Things, artificial
intelligence, and big data with industrial operations, collectively
supporting the development of digital systems for water networks.
This integration facilitates improvements in the operational effi-
ciency of WWTPs through real-time monitoring, predictive anal-
ysis, and automated control [2]. However, in practical operations,
WWTPs face challenges associated with outdated infrastructure,
limited regulatory environments, and cybersecurity vulnerabilities
[3]. These challenges impede the provision of the real-time foun-
dational data necessary for digital water networks. Mixed liquor
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suspended solids (IMLSS) and apparent viscosity are key parameters
for assessing activated sludge's physical and rheological properties
in WWTPs. Any sudden variations in these parameters could signal
a potential malfunction in a WWTP.

By observing and controlling MLSS, it is possible to regulate the
amount of sludge reflux and excess sludge discharge in real-time.
However, the conventional method of measuring MLSS involves a
gravimetric approach that requires filtration, drying, and weighing,
with at least 2 h required for a single reading. This makes it
impractical for online monitoring purposes. Although MLSS sensing
probes have been developed, they are expensive and require spe-
cific rheological conditions for installation. As a result, the data
from these probes can only be used as a reference in practical ap-
plications, and WWTPs still rely on manual measurements.

The apparent viscosity in aeration tanks reflects sludge char-
acteristics such as the floc size, density, and the biological activity of
bacteria within the flocs [4,5]. The floc size distribution provides a
direct representation of the apparent viscosity [6,7]. However,
different methods of measuring the apparent viscosity yield
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varying results. Therefore, rheological models have been estab-
lished to deduce the apparent viscosity from MLSS [8—12], aiming
to eliminate the viscosity measurement step. This approach, how-
ever, has proven unreliable [13]. Currently, viscometers and rhe-
ometers are used for batch measurements of viscosity [13],
requiring approximately 3 min per sample. Although this delay is
relatively short, it still poses challenges when rapid decision-
making is required.

Real-time, online quantitative measurements of MLSS and
apparent viscosity remain a scientific and technological challenge
for WWTPs. This highlights the need for a new, rapid quantitative
method for assessing these activated sludge parameters.

Microscopic inspection is a vital empirical method for assessing
the state of activated sludge in WWTPs [14]. Traditional optical
microscopy only yields disconnected information about biomass,
and struggles to achieve real-time continuous observations. Thus, it
cannot be used to generate high-frequency data, which are the key
to deciphering massive, in-depth information [15]. Obtaining the
necessary data requires the automatic, real-time, online capture of
microscopic images of activated sludge [16]. Certain characteristics
of these microscopic images have been found to correlate with
sludge parameters [17,18]. In 1997, research on microscopic images
of activated sludge indicated that online monitoring of the average
equivalent circular diameter and average shape factor of activated
sludge flocs could be used to estimate MLSS [19]. Subsequently, Leal
et al. used stereo microscopes to capture segmented microscopic
images of aerobic granular sludge, and extracted specific features
that allowed the suspended solids content to be identified [20].
Khan et al. established models using only floc image characteristics
to calculate MLSS [21], while Campbell et al. identified qualitative
correlations between microscopic images of activated sludge and
apparent viscosity by extracting the filamentous bacteria length
and floc morphology characteristics, noting a significant impact of
filament length on viscosity [22]. Research has also explored the
relationship between changes in floc structure and rheological
properties [23]. Currently, MLSS can be quantified based on
microscopic image features, but there is a low degree of stan-
dardization because image acquisition and feature extraction and
selection are subject to many human influences. The analysis of
apparent viscosity in relation to microscopic images of activated
sludge remains largely qualitative.

Quantitative image analysis is the process of quantifying and
analyzing data within images based on image processing and
analysis algorithms, allowing for a quantitative expression of im-
ages [24]. This technology primarily encompasses image acquisi-
tion, image processing, and image analysis [25]. Image analysis
methods are mainly divided into radiomics and deep learning.
Radiomics involves manually designing and extracting features,
whereas deep learning leverages convolutional neural networks
(CNNs) to extract features and build models. Deep learning mini-
mizes subjective interference, simplifies the feature extraction
process, and enables the learning of more advanced feature rep-
resentations [24]. Thus, this paper explores a deep learning-based
method for the microscopic quantitative identification of MLSS
and apparent viscosity in activated sludge.

In this study, we induced activated sludge bulking in a
sequencing batch reactor (SBR) using stepwise chemical oxygen
demand (COD) shock in the influent and monitored the sludge
performance daily. Using the proposed real-time online micro-
scopic image data analysis system (ROMIDAS), we captured
microscopic videos of the activated sludge, resulting in 41,482
effective images. In-depth analysis of these images enabled quan-
titative correlations between microscopic images of activated
sludge and the MLSS and apparent viscosity, providing a foundation
for real-time online measurements of these parameters in WWTPs.
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2. Materials and methods
2.1. Experimental setup

This study used a cylindrical SBR made of organic glass with an
effective radius of 10 cm and an effective height of 40 cm. The
influent and effluent pipes connect to the SBR at heights of 35 and
20 cm, respectively (Fig. 1). Two peristaltic pumps (Langer BT100-
2], China) were used to control the inflow and outflow. The SBR
bottom was equipped with a microporous aeration disc, which was
controlled using an ACO-006-type aeration pump and an LZB-4WB-
type gas flowmeter, ensuring that the dissolved oxygen stabilized at
6.0—7.0 mg L~ during the latter stages of aeration. An upflow
mixer was used to keep the sludge adequately suspended. The
experimental procedure was adjusted to effectively observe the
sludge bulking phenomenon in the later stages of the experiment.
The reactor effluent was first collected in an effluent bucket,
allowed to settle for 1 h, and then discharged through a valve
located at a height of 15 cm. All processes were controlled by
timers, following a predetermined schedule.

In this setup, each SBR discharged 380—400 mL of sludge daily,
with a sludge retention time of 25—27 days. The specific opera-
tional parameters and modes of the reactor are detailed in Table 1.
The total cycle duration of the reactor was 4 h, beginning with
stirring at the same time as the inflow, thus entering the anoxic
phase. The reactor operated for six cycles per day, with no idle
periods.

One SBR was designated as the control (O#) and the other was
used as the experimental reactor (1#). For the control, the influent
COD was maintained at 600 mg L~! with a C:N:P ratio of 100:5:1. In
the experimental reactor, the influent COD was incrementally
increased from 600 to 900, 1200, 1500, and finally 1800 mg L™\,
Prior to reaching the 1800 mg L~! stage, the C:N:P ratio was
maintained at 100:5:1; after the influent COD had reached
1800 mg L™, the C:N:P ratio was adjusted to 100:5:3 (Table 2) to
enhance the possibility of bulking.

2.2. Analytical methods

The MLSS was determined using the gravimetric method. A
specific volume of activated sludge suspension was filtered through
a quantitative filter paper, dried at 105 °C, and then weighed.
Apparent viscosity was measured using a digital rotary viscometer
(NDJ-8S, Shanghai Fangrui, China), with measurements taken using
the number 0 rotor at 60 rpm for 1 min before reading the values.
The sludge-settling velocity 5 or 30 min (SVs or SVso) denotes the
volume percentage occupied by sludge after the mixed liquor from
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Fig. 1. Diagram of the experimental system setup. The real-time online microscopic
image data analysis system (ROMIDAS) continuously captures video images of acti-
vated sludge, which is transported from a sequencing batch reactor (SBR). PC refers to a
personal computer.
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Table 1

SBR parameters.
Parameters Index Period Time (h)
Sludge age 25—-27 days Inflow 0.25
Effective volume 0L Hypoxia 1
Volume exchange rate 40% Aerobic 2
Dissolved oxygen 6.0-7.0mg L' Precipitate 0.75
Temperature 20—-25°C Effluent 0.25

Note: Hypoxia: This phase involves low oxygen levels, promoting denitrification to
remove nitrogen from the wastewater; Aerobic: During this phase, the reactor is
aerated to support aerobic bacteria in breaking down organic matter and oxidizing
ammonia to nitrates; Precipitate: In this stage, the mixed liquor is allowed to settle,
separating solids from the clear supernatant, which can then be decanted.

the aeration tank was left to settle in a graduated cylinder for 5 or
30 min. The sludge volume index was determined using the ratio
method (SVao/MLSS), while the specific oxygen uptake rate was
measured using the dissolved oxygen meter method [26]. The total
COD, soluble COD, ammonium nitrogen (NH.*-N), and orthophos-
phate (PO.>~-P) of the influent and effluent were measured using
the previously mentioned methodology [27].

2.3. ROMIDAS

ROMIDAS consists of a sample reflux system, a pressing system,
a motion system, and a microscopic image acquisition and analysis
system. The sample reflux system includes an inlet tube, a stepper
motor-driven single-channel peristaltic pump, a three-channel
mini electromagnetic valve, and a reflux tube. The peristaltic
pump has a flow rate of 400 mL min~', ensuring that the sludge
suspension is transferred from the reactor to the pressing compo-
nent in less than 3 s in a uniformly mixed state. The electromag-
netic valve dispenses 28 uL per drop, with an interval of 300 s
between drops.

The pressing system comprises upper and lower transparent
pressing conveyor belts (TCPBs) and rubber rollers, producing a
TCPB with the activated sludge sample. The motion system com-
prises the produced TPCB, synchronous wheels, rubber belts, and a
stepper motor. The stepper motor operates with a speed of 25 r
min~}, driving the drive wheel to rotate at an extremely low speed,
thus pulling the TPCB forward at a speed of 1.8 cm min~. This
ensures that the field of view inside the microscope moves forward
at an appropriate speed to maintain image clarity.

The microscopic image acquisition and analysis system com-
prises fixed rollers, a microscope, and an electronic eyepiece. The
fixed roller secures the TPCB on a focal plane, ensuring the micro-
scope can obtain clear microscopic images of the activated sludge in
real-time. The microscope has an actual magnification of 100 x and
uses a halogen lamp as a light source. The electronic eyepiece has a
resolution of 1824 x 1216. As the intensity of the halogen lamp
changes during use, the exposure time for image capture can be
manually adjusted from 20 to 40 ms, depending on the light in-
tensity of the day. The white balance is set with fixed parameters
(red: —71; green: —47; blue: 0) to achieve the optimal image cap-
ture effect.

Table 2
Actual influent parameters.
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2.4. Dataset

2.4.1. Total dataset

During the experiment, a total of 3.19 TB of microscopic videos
of activated sludge was acquired from the experimental and control
groups, with a frame rate of 30 fps and a resolution of 1824 x 1216
pixels. A timed frame extraction algorithm (extracting one image
every 50 frames) was used to create the image dataset. After
manually filtering out blank and blurred frames, a standardized
collection of 41,482 images was compiled. This comprehensive
dataset formed the foundation of the experiment. The distribution
of MLSS and apparent viscosity in this complete dataset is depicted
in Fig. 2 and Table 3.

2.4.2. Classification dataset

Based on the quartiles of the total dataset, MLSS and apparent
viscosity were divided into four levels to establish an image clas-
sification dataset. This approach was intended to identify the
qualitative correlation between the microscopic images of activated
sludge and the MLSS or apparent viscosity, as detailed in Table 3.
MLSS was classified of ‘less than5gL~",'5—7gL~",“7—9 gL', and
‘greater than 9 g L~". Apparent viscosity was classified as ‘less than
2 cp’, 2—3 cp’, ‘3—4 cp’, or ‘greater than 4 cp’.

The duration of model training is directly related to data volume.
To accelerate the determination of the correlation between the
microscopic images and activated sludge parameters, the ran-
dom.sample() function was used to randomly extract images from
the total classification dataset. Two data subsets, labeled as simple
and formal, were constructed (Table 4). The simple dataset was
employed to explore the correlation between the microscopic im-
ages and activated sludge parameters, whereas the formal dataset
was used to validate the findings from the previous step and
establish a qualitative correlation between the microscopic images
and activated sludge parameters.

2.4.3. Regression dataset

Considering the impact of COD step shocks on the sludge status,
an image regression dataset was established based on the time
points of the overall experiment for model training. Fifty images
per day were extracted to form a test dataset; the remaining 36,682
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Fig. 2. Distribution of the total dataset. a, Mixed liquor suspended solids (MLSS) ranges
from 3.999 to 12.353 g L~!; b, Viscosity ranges from 1.70 to 5.60 cp. The line represents
the estimate of the probability density function, and the bars represent the distribution
density of each data point.

Parameters COD 600 (Days 1—31) COD 900 (Days 32—35) COD 1200 (Days 36—40) COD 1500 (Days 41—43) COD 1800 (Days 44—70)
COD (mg L) 487-899 799-983 1142-1178 1468—1574 1729-1937

NH.-N (mg L) 29-48 36-41 53-67 75-106 102-133

PO.*--P (mg L) 5-9 6-10 11-14 14-26 55—63
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Table 3 Table 5
Distribution of total dataset. Regression training dataset.
Parameters Min 25% 50% 75% Max Name Train-R-1 Train-R-2 Train-R-3
MLSS (g L) 3.999 5.762 6.803 8.883 12.353 Number of images 10498 8908 17276
Apparent viscosity (cp) 1.70 2.56 3.32 415 5.60 Stage COD 600 COD 600—COD 1500  COD 1800
MLSS (g L™1) 5.743-8.883  4.522-8.623 3.999-12.353
Viscosity (cp) 2.65-5.60 1.82-3.16 1.70—-4.86
images were divided into three groups according to the stage of the
experimental process and used to create training datasets. During Table 6
training, the ratio of training to validation images was maintained Ra e
A A S N egression test dataset.
at 9:1, as detailed in Table 5. The test set was divided into Test-R-1, - —
Test-R-2, and Test-R-3, corresponding to the same experimental Reactor Test Name MLSS (g L) Viscosity (cp)
stages, and the images were categorized as either 0#SBR or 1#SBR 0#SBR Test-R-0-1 5.743—8.570 2.65-4.86
for identification purposes (Table 6). Test-R-0-2 4.522-6.533 1.82-2.62
Test-R-0-3 3.999-6.238 1.70-2.65
. 1#SBR Test-R-1-1 5.843-8.883 3.13-5.60
2.5. Modeling Test-R-1-2 5.036-8.623 2.60-3.16
Test-R-1-3 8.369—12.353 3.02-4.86
2.5.1. Classification and regression model
Since the advent of deep learning, various CNN architectures
have emerged. From the classic VGG16, the field has progressed to
developing lightweight neural networks such as MobileNet V1, M \
introduced residual blocks in ResNet50, employed depthwise %\‘%‘v’%”i
separable convolutions in Xception, and incorporated dense layers \ Nl Classification model
p pton, p Y < A< Softmax activation

in DenseNet121. This study explored the performance of eight deep
learning architectures: VGG16, MobileNet V1, Inception V3,
ResNet50, ResNet101, InceptionResNet V2, Xception, and Dense-
Net121 [28].

The classification model determines the qualitative correlation
between images and parameters, while the regression model es-
tablishes the quantitative correlation. The classification model uses
image features extracted through CNN architectures. These features
are then passed through a GlobalAveragePooling2D module to
flatten the data into a one-dimensional format. Subsequently, a
dense layer with four units and the Softmax activation function is
added to achieve multi-classification. For the regression model, a
terminal dense layer with one unit and the ReLU activation function
is used to fulfill the objective of regression. The model architecture
is shown in Fig. 3.

2.5.2. Model training

Considering computational limitations, the images were batch-
normalized from their original dimensions of 1824 x 1216 to
228 x 152 for model training, with the batch size set to 50. The
training methods were divided into transfer learning and tradi-
tional training.

Transfer learning uses pre-trained weights from past datasets as
the initial weights and combines this with retraining on the current
dataset to reduce the overall training duration. In this study, the
pre-trained weights of the eight CNN architectures specified in
section 2.5.1 were directly employed; these were pre-trained on
ImageNet. Transfer learning was employed to train models for each
architecture. During the training of each epoch, the learning rate
decayed according to:

Learning rate = [nitial learning rate x e—0-1xepoch (1)

Traditional learning was also employed, with no pre-set initial

Table 4
Classification dataset.

Parameters Dataset-C-Simple Dataset-C-Formal
Number per level 1100 3000

Number per index 4400 12000
Train:Val:Test 9:1:1 4:1:1
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Fig. 3. Classification and regression model.

weights in the CNNs. This was because most images in the
ImageNet collection are of natural scenery, people, animals, food,
and movie posters, which differ significantly from sludge micro-
scopic images. The learning rate decay function in equation (1) was
again employed during the training process.

2.5.3. Evaluation metrics

Model training attempts to minimize the loss function and
identify the optimal model parameters. In this study, the classifi-
cation model employed the categorical_crossentropy as the loss
function, using accuracy as the performance metric. The results are
presented using a confusion matrix.

For the regression model, the outputs are continuous and likely
to deviate from the true values. Thus, accuracy is not a suitable
metric. Instead, the Huber loss and mean absolute error (MAE) were
used to evaluate the training process. In this paper, the identifica-
tion results are visualized using violin plots, and the coefficient of
determination (R?) is used to assess the fit between the median of
the identification results and the true values.

3. Results and discussion
3.1. MLSS

3.1.1. Qualitative identification

The MLSS-C model was constructed using Xception, with the
architecture detailed in section 2.5.1. The initial weights were set to
those obtained using ImageNet, and the initial learning rate was set
to 0.1%. The training process and identification results for MLSS-C
based on Dataset-C-Simple and Dataset-C-Formal are depicted in
Fig. 4. MLSS-C trained on Dataset-C-Simple achieved an identifi-
cation accuracy of 99.50% on the Dataset-C-Simple test set (Fig. 4b),
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Fig. 4. Training and testing of MLSS-C with Dataset-C-Simple/Formal. a, Training of MLSS-C; b, Testing of MLSS-C for Dataset-C-Simple; ¢, Testing of MLSS-C for Dataset-C-Formal.
Accuracy of ‘less than 5 g L™, 5—7 g L™"",‘7-9 g L™", and ‘greater than 9 g L™ is 99.9%, 92.4%, 87.2%, and 99.4%, respectively; misrecognition focuses on the ‘5—7 g L™ and

7—9 g L~ groups. MLSS: mixed liquor suspended solids. Acc: accuracy.

Table 7
Training parameters for MLSS-R.
Parameters MLSS-R-1 MLSS-R-2 MLSS-R-3
Applied Dataset Train-R-1 Train-R-1 Train-R-1
Train-R-2 Train-R-2
Train-R-3
Initial weight ImageNet MLSS-R-1 MLSS-R-2
Initial learning rate (%o) 1 0.3 0.05

preliminarily confirming a qualitative correlation between micro-
scopic images of activated sludge and MLSS. MLSS-C trained on
Dataset-C-Formal achieved an identification accuracy of 97.2% on
the Dataset-C-Formal test set, further establishing this qualitative
correlation. Model selection and parameter adjustments are
detailed in the Supplementary Materials.

3.1.2. Quantitative identification

An image regression model was constructed using Xception; the
specific architecture is detailed in section 2.5.1. MLSS-R-1, MLSS-R-
2, and MLSS-R-3 models were trained using the Train-R dataset
(Table 7).

The pre-trained weights from ImageNet were used as the initial
weights in the training of MLSS-R-1 based on the Train-R-1 dataset
and an initial learning rate of 0.1%. Subsequently, the training
datasets Train-R-2 and Train-R-3 were incrementally added, and
the weights from models MLSS-R-1 and MLSS-R-2 were used as the
initial weights for each subsequent training stage to reduce the
training duration. MLSS-R-2 and MLSS-R-3 were then trained un-
der initial learning rates of 0.3%o0 and 0.05%o, respectively, with the
decay process given by equation (1). The model training process is
illustrated in Fig. 5.

MLSS-R-1, MLSS-R-2, and MLSS-R-3 were used to recognize the
test sets Test-R-0 and Test-R-1. The identification results of each
model are presented in Fig. 6. In the identification of Test-R-0-1 and
Test-R-1-1, model MLSS-R-1 achieved R? values of 0.98 and 0.89,
respectively, between the median of the identification results and
the true values. For Test-R-0-2 and Test-R-1-2, however, the R?
values between the median of the identification values and the true
values dropped to —4.83 and —0.06, respectively. In both cases,
there was a relatively good front-end fit but only a similar variation
trend for the back end. The discrepancy in R? values is hypothesized
to be caused by the MLSS fluctuation range in the Test-R-1-2 images
being greater within the range of Train-R-1 than in Test-R-0-2. This
indicates that the model's ability to recognize unknown ranges is
lower than for known ranges. Hence, there may be a quantitative
correlation between microscopic images of activated sludge and
MLSS, but the richness of the dataset limits the model's
performance.

After progressively enriching the training dataset, models MLSS-
R-2 and MLSS-R-3 were developed. MLSS-R-3 achieved R? values of
0.95 and 0.97 for Test-R-0 and Test-R-1, respectively, indicating a
strong quantitative correlation between microscopic images of
activated sludge and MLSS. Thus, for a fixed reactor or WWTP, the
theoretical basis for quantitative identification of MLSS based on
video segments has been established.

3.2. Apparent viscosity

3.2.1. Qualitative identification

The Viscosity-C model was constructed in the same way as
MLSS-R. The initial weights were set to those obtained from
ImageNet, and the initial learning rate was set to 0.1% (Fig. 7a).
When trained on Dataset-C-Simple, Viscosity-C achieved an
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Fig. 5. Training of MLSS-R. a, Training of MLSS-R-1, requiring 50 epochs to stabilize; b, Training of MLSS-R-2, requiring 15 epochs to stabilize; ¢, Training of MLSS-R-3, requiring 10

epochs to stabilize. MAE: mean absolute error.
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R? = 0.97. As the dataset becomes richer, the performance of MLSS-R-2 and MLSS-R-3 gradually improves compared with MLSS-R-1. The blue and purple lines indicate a designation
of ‘true’ for 0#SBR and 1#SBR, respectively. The single violin plot represents the test results of 50 samples from a single day. The model-building and testing process utilized three
distinct periods. As only the final two sub-figures employed the complete period, they are the sole instances for which the total R? was computed.
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Fig. 7. Training process and identification results for the apparent viscosity-based Dataset-C-Simple and Dataset-C-Formal. a, Training of Viscosity-C; b, Testing of Viscosity-C for
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Acc: accuracy.

Table 8
Training parameters for Viscosity-R.
Parameters Viscosity-R-1 Viscosity-R-2 Viscosity-R-3
Applied Dataset Train-R-1 Train-R-1 Train-R-1
Train-R-2 Train-R-2
Train-R-3
Initial weight ImageNet Viscosity-R-1 Viscosity-R-2
Initial learning rate (%o) 1 0.5 0.1

identification accuracy of 99.25% with the Dataset-C-Simple test
set, preliminarily confirming a qualitative correlation between
microscopic images of activated sludge and apparent viscosity
(Fig. 7b). Viscosity-C trained on Dataset-C-Formal achieved an
identification accuracy of 97.2% with the Dataset-C-Formal test set,
further establishing the qualitative correlation between micro-
scopic images of activated sludge and apparent viscosity.

3.2.2. Quantitative identification

Viscosity-R was constructed in the same way as MLSS-R. The
Train-R-1, Train-R-2, and Train-R-3 datasets were successively
added, and the weights from ImageNet, Viscosity-R-1, and
Viscosity-R-2 were used as initial weights for each training stage
(Table 8). Initial learning rates of 1%, 0.5%o, and 0.1%. were used to
train Viscosity-R-1, Viscosity-R-2, and Viscosity-R-3, respectively
(Fig. 8). The specific training process and the model identification
results are illustrated in Figs. 8 and 9.

Similar to the performance of MLSS-R on the test set scenarios,
Viscosity-R produced a higher degree of fit when the actual values
were within the training set parameter range (Fig. 9). This is
particularly evident in the identification results of Viscosity-R-1,
where the R? values were —12.48 for Test-R-0-2 and —1.18 for

Test-R-1-2. In the MLSS case, the parameter fluctuations in the test
set were entirely outside the training set range, resulting in no
correlation between the identification and actual values. In
contrast, Test-R-1-2 contained parameter fluctuations (2.60—3.16
cp) that were closer to those of the training set (2.65—5.60 cp) than
Test-R-0-2 (1.82—2.62 cp), leading to identification values that were
better aligned with the actual values. Additionally, Viscosity-R-3
demonstrated strong performance, with R? values of 0.99 and
0.96 for Test-R-0 and Test-R-1, respectively, further establishing a
quantitative correlation between microscopic images of activated
sludge and apparent viscosity. This aligns with the hypothesis
derived from the performance analysis of the initial two models.

4. Conclusion

This study has enhanced the acquisition of foundational data for
WWTPs by developing the ROMIDAS system, which automates and
standardizes the real-time capture of microscopic images of acti-
vated sludge. Models for both qualitative and quantitative identi-
fication of MLSS were established, achieving a qualitative
identification accuracy of 97.2% and a quantitative fitting with an R?
value of 0.95. Similarly, models for the qualitative and quantitative
identification of apparent viscosity were developed, with a quali-
tative identification accuracy of 97.2% and a quantitative fitting
with an R? value of 0.96. These models demonstrate the strong
quantitative correlation between microscopic images of activated
sludge and MLSS or apparent viscosity, providing a foundation for
real-time online measurement of these parameters in WWTPs.

The data used for model training were exclusively derived from
microscopic videos of activated sludge suspension during the
normal operation of an SBR as captured by ROMIDAS. As a result,
the models struggled to identify the MLSS and apparent viscosity of
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Fig. 8. Training of Viscosity-R. a, Training of Viscosity-R-1, requiring 40 epochs to stabilize; b, Training of Viscosity-R-2, requiring 25 epochs to stabilize; ¢, Training of Viscosity-R-3,

requiring 10 epochs to iteratively stabilize. MAE: mean absolute error.
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are the sole instances for which the total R* was computed.
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artificially diluted or concentrated activated sludge, where the
microscopic structure of the flocs does not change significantly.
Future work will attempt to enrich the training dataset and explore
the correlation between microscopic images of activated sludge
and other parameters (such as the sludge volume index and specific
oxygen uptake rate) under various impact factors.
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