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Rapid urbanization, alongside escalating resource depletion and ecological degradation, underscores the
critical need for innovative urban development solutions. In response, sustainable smart cities are
increasingly turning to cutting-edge technologiesdsuch as Generative Artificial Intelligence (GenAI),
Foundation Models (FMs), and Urban Digital Twin (UDT) frameworksdto transform urban planning and
design practices. These transformative tools provide advanced capabilities to analyze complex urban
systems, optimize resource management, and enable evidence-based decision-making. Despite recent
progress, research on integrating GenAI and FMs into UDT frameworks remains scant, leaving gaps in our
ability to capture complex urban flows and multimodal dynamics essential to achieving environmental
sustainability goals. Moreover, the lack of a robust theoretical foundation and real-world operationali-
zation of these tools hampers comprehensive modeling and practical adoption. This study introduces a
pioneering Large Flow Model (LFM), grounded in a robust foundational framework and designed with
GenAI capabilities. It is specifically tailored for integration into UDT systems to enhance predictive an-
alytics, adaptive learning, and complex data management functionalities. To validate its applicability and
relevance, the Blue City Project in Lausanne City is examined as a case study, showcasing the ability of the
LFM to effectively model and analyze urban flowsdnamely mobility, goods, energy, waste, materials, and
biodiversitydcritical to advancing environmental sustainability. This study highlights how the LFM
addresses the spatial challenges inherent in current UDT frameworks. The LFM demonstrates its novelty
in comprehensive urban modeling and analysis by completing impartial city data, estimating flow data in
new locations, predicting the evolution of flow data, and offering a holistic understanding of urban
dynamics and their interconnections. The model enhances decision-making processes, supports
evidence-based planning and design, fosters integrated development strategies, and enables the
development of more efficient, resilient, and sustainable urban environments. This research advances
both the theoretical and practical dimensions of AI-driven, environmentally sustainable urban devel-
opment by operationalizing GenAI and FMs within UDT frameworks. It provides sophisticated tools and
valuable insights for urban planners, designers, policymakers, and researchers to address the com-
plexities of modern cities and accelerate the transition towards sustainable urban futures.
© 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sustainable urban development has long been a key focus in
addressing the growing challenges posed by rapid urbanization,
resource depletion, and ecological degradation. These intertwined
problems demand holistic solutions that mitigate their impacts and
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leverage opportunities for creating smarter and more sustainable
urban environments. To tackle these complex challenges and
problems, sustainable smart cities are increasingly leveraging
cutting-edge technologies and embracing innovative strategies for
achieving environmental sustainability goals. At the forefront of
these advancements, Artificial Intelligence (AI) and Urban Digital
Twin (UDT) technologies stand out for their transformative capa-
bilities [1e8] particularly in driving innovation in and for envi-
ronmental planning and design within the dynamic landscape of
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sustainable smart cities [9e11]. An UDT is a dynamic, virtual rep-
resentation of urban environments that integrates real-time data
and advanced modeling techniques to simulate, analyze, predict,
and optimize urban systems. In this study, UDT serves as a platform
for modeling complex urban flows, facilitating data-driven deci-
sion-making for sustainable smart city planning and design. Com-
plementing UDT, AI encompasses a broad spectrum of sophisticated
models and algorithms that enable computer systems to emulate
human cognitive processes, such as learning, reasoning, and
problem-solving. For this research, AI enhances UDT's analytical
and predictive capabilities of UDT by analyzing complex urban data,
modeling interconnected systems, and generating actionable in-
sights for enhancing environmental planning and design practices
in sustainable smart cities.

A diverse range of models and techniques from various AI sub-
domains are being increasingly applied to transform urban plan-
ning [12e16] and design [17e19] in sustainable smart cities [9]. In
the realm of UDT, AI drives the creation of dynamic, real-time city
models that support predictive analytics, scenario testing, and
system optimization [20e23]. Predictive analytics is critical for
proactive planning and design, enabling cities to adapt to evolving
challenges, identify bottlenecks, and enhance urban efficiency.
Moreover, AI-driven UDT enables the anticipation of urban trends,
the evaluation of planning strategies, and the identification of
optimal solutions, providing a comprehensive foundation for
adaptive and sustainable urban systems. Its capabilities enhance
urban dynamics [24] and strengthen urban resilience [25,26],
empowering planners, designers, and stakeholders to make
evidence-based decisions to promote the vision of sustainable
smart cities. Furthermore, by addressing critical aspects of envi-
ronmental sustainabilitydsuch as resource allocation, infrastruc-
ture development, transportation optimization, pollution
reduction, energymanagement, and biodiversity conservationdAI-
driven UDT provides a comprehensive framework for optimizing
and planning these urban environments (see Ref. [11] for a detailed
review).

In light of the above, recent advancements in AI sub-
fieldsdparticularly Machine Learning (ML), Deep Learning (DL),
Computer Vision (CV), and Natural Language Processing (NLP)dare
increasingly being adopted by sustainable smart cities to tackle the
wicked problems associated with planning and design within the
UDT framework. Integrating AI models from these subfields em-
powers planners and designers to address intricate tasks by uti-
lizing AI-driven analytical tools or UDT systems. These applications
includemanaging and analyzing vast datasets, uncovering patterns,
and generating actionable insights to enhance decision-making
processes across multiple urban domains.

In addition to the common AI subfields or subdomains, the
advent of Generative AI (GenAI) represents a new frontier to
transform urban planning [27e32] and design [32e40] processes
and practices. GenAI is a class of AI models that create new content,
such as images, text, code, or simulations, by learning patterns from
existing data. Within this work, GenAI is leveraged to enhance UDT
functionalities by generating realistic urban flow data and scenarios
and providing predictive insights. GenAI models, such as Genera-
tive Adversarial Networks (GANs) [41,42] Variational Autoencoders
(VAEs), [43e45], Transformers [46e48], and DiffusionModels (DM)
[49,50], enable the automatic generation of design alternatives and
scenarios, fostering creativity and innovation in city planning and
design while enhancing the capabilities of UDT to simulate diverse
urban systems and explore various urban futures. They are pro-
gressively integrated into UDT's modeling and simulation func-
tionalities [51e53]. Although their practical application in UDT
within the context of urban planning and design remains limited, it
is evolving rapidly [9,29,54], signaling a promising future where
2

these tools could play a crucial role in transforming urban envi-
ronments into more efficient, sustainable, and livable spaces.

Moreover, AI is undergoing a significant shift with the emer-
gence and adoption of Foundation Models (FMs) or Pre-trained
Foundation Models (PFMs). The difference between FMs and
PFMs lies in their training status and how they are positioned for
further application or use. FMs are large-scale AI models trained on
massive amounts of diverse data. They are designed to be task-
agnostic, meaning they are not specialized for a particular appli-
cation during initial training but can be adapted for many down-
stream tasks [55, 56, 79, 80, 127]. PFMs refer specifically to FMs that
have already undergone extensive pre-training on large, diverse
datasets. They are ready for downstream applications or fine-
tuning for specific tasks, making them practical tools for solving
real-world problems without needing massive computational re-
sources to train from scratch [46,57e59]. Further, as large-scale
neural networks, FMs use advanced architectures to learn
general-purpose features and representations, which can be
adapted to perform a wide range of specific tasks [32,37,60e62],
such as text generation, code generation, image generation, and
knowledge graph construction. These examples highlight the
versatility of FMs, showcasing their potential to drive advance-
ments in GenAI applications across diverse domains. As a broader
category of models, FMs can include GenAI as a subset, a specialized
application of AI that often leverages the capabilities of FMs for
generating novel data.While GenAImodels can technically perform
without FMs, their performance and versatility may be limited,
especially in tasks requiring a large amount of data or prior
knowledge.

Furthermore, the potential integration of GenAI and FMs with
UDTdgiven their synergistic computational and analytical capa-
bilitiesdpresents promising opportunities to revolutionize city
planning and design. Specifically, incorporating GenAI and FMs into
the functionalities of UDT is viewed as a strategic approach to
addressing the critical challenges faced by its existing computa-
tional processes and simulation models. These challenges include
limited scenario exploration, analysis and interpretation of un-
structured data, decision-making support (alternative solutions),
complexity and integration, realism and visualization [8,63e67],
inadequate data availability [68,69], data inconsistency and inac-
curacy [65,68,70,71], and computational constraints requiring
multilevel integrated models [72,73].

The focal point of this study is the need for amore enhanced and
nuanced approach to managing spatial data, conducting analysis,
and performing simulations within the UDT framework. This stems
from the inherent limitations of current UDT frameworks, partic-
ularly their challenges in effectively capturing spatial dynamics and
space vitality, both of which are essential for urban planning and
design [21,74e77]. Additionally, the complexities of urban flows,
which include the movement of people, goods, energy, and infor-
mation, require advanced models to accurately simulate and pre-
dict these interrelated dynamics to inform effective urban
management and decision-making. Without addressing these
challenges, UDT may struggle to provide accurate representations
of urban systems and precise predictions, hindering the ability of
planners and designers to make informed decisions and enhance
sustainable development practices. Therefore, incorporating GenAI
and FMs into UDT aims to enhance its computational and analytical
capabilities, allowing for more comprehensive and insightful data-
driven analyses and simulations to propel sustainable and resilient
urban development.

GenAI can reduce the costs, time, and labor associated with
collecting scenario-specific data, generating relevant scenarios,
creating three-dimensional (3D) city models, and improving multi-
scale urban design processes for predictive analytics and decision-
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making [54]. Moreover, FMs offer powerful tools for advancing
sustainable smart cities by transforming how they are envisioned,
designed, and planned, enabling more efficient and data-driven
urban development strategies and practices. FMs play a crucial
role in advancing GenAI and present vast opportunities and chal-
lenges across multiple domains [78e80]. In particular, the pre-
training phase in FMs allows them to capture rich representations
of the input data, which can then be fine-tuned on labeled datasets
for specific domains [60,62,79]. By fine-tuning FMs on these tasks
or domains, state-of-the-art performance can be achieved with
minimal data and computational resources [55,60,79,81]. FMs
represent unprecedented opportunities to enhance urban planning
and design practices, leading to smarter, more resilient and livable
cities.

However, despite recent progress in GenAI and FMs, significant
gaps remain in their integration into UDT frameworks as data-
driven urban planning and design systems. Specifically, there is a
limited understanding of how these emerging technologies can
enhance decision-making processes by effectively capturing critical
urban flowsdsuch as mobility, goods, energy, waste, materials, and
biodiversitydto advance environmental goals in sustainable smart
cities. Integration challenges, including harmonizing diverse urban
data systems, developing scalable architectures, and ensuring sys-
tem interoperability, underscore the complexity of implementing
FMs, GenAI, and UDT in real-world urban settings. Research on
operationalizing these emerging technologies as a unified system
remains scant. This gap emphasizes the urgent need for practical
methodologies tailored to urban flows and spatial dynamics,
essential for accelerating the development and implementation of
effective UDT solutions.

From a theoretical perspective, existing scholarly frameworks in
sustainable smart city planning and design and UDT have recently
laid the groundwork for integrating GenAI and FMs into data-
driven decision-making processes. However, these efforts remain
predominantly conceptual and exploratory in nature, as they are
still in the early stages of development, with researchers working to
refine and expand their scope [9,54,82]. A notable gap in current
frameworks is the absence of a structured theoretical foundation to
guide the integration of GenAI and FMs into UDT systems, limiting
the ability to address the complexities of urban flows and multi-
modal dynamics, especially in modeling and analyzing critical do-
mains essential for advancing environmental sustainability goals.

To address the identified gaps, this study introduces a pioneer-
ing Large Flow Model (LFM), grounded in a robust foundational
framework and designed with GenAI capabilities. It is specifically
tailored for integration into UDT systems to enhance predictive
analytics, adaptive learning, and complex data management func-
tionalities. This advancement aims to drive progress in sustainable
smart city planning and design. To validate its applicability and
relevance, the Blue City Project in Lausanne City is examined as a
case study, showcasing the ability of the LFM to effectively model
and analyze urban flows and address the spatial challenges asso-
ciated with current UDT frameworks. Given the interconnected
nature and developmental stage of the subprojects within the Blue
City initiative, this study focuses primarily on the design and
ongoing development phases of the LFM, with implementation and
testing planned as subsequent steps in the progression towards the
operational LFM.

The development of the LFM is anchored by two interrelated
elements: the foundational framework and the conceptual design.
The former serves as the overarching theoretical basis, organizing
the core ideas, structural relationships, and objectives that guide
themodel's development. Operating at a high level, it addresses the
"why" and "what" of the LFM's existence, focusing on the guiding
principles and relationships necessary for achieving its intended
3

goals. In contrast, the latter translates this theoretical foundation
into a practical, functional model. It focuses on the "how" of
implementing the ideas outlined in the foundational framework,
detailing the structuring of the LFM's components and their func-
tionality. It specifies actionable elements such as workflows, pro-
cesses, and tools for real-world application by operationalizing
theoretical relationships. Together, the foundational framework
and the conceptual design create a cohesive strategy that ensures
the LFM is theoretically sound and practically applicable.

The remainder of this study is structured as follows: Section 2
presents a state-of-the-art review that analyzes and synthesizes
the conceptual and practical foundations of the study, culminating
in a foundational framework developed from the insights gained
through this review. Section 3 provides a comprehensive overview
of the Blue City Project, along with its eight interconnected sub-
projects. It employs this initiative as a case study to elucidate the
project's scope, progress, and impact, while explaining this study’s
association with Subproject 8. Section 4 outlines the research
methodology, focusing on the design and ongoing development
phases of the LFM. Section 5 introduces the pioneering LFM, de-
tailing these two phases as key results. Section 6 provides a
comprehensive discussion, encompassing a summary of findings
and their interpretation, a comparative analysis, implications,
limitations, challenges, recommendations for future research and
development, and an account of the positioning, scope, and scal-
ability of the LFM. Finally, Section 7 concludes the study by sum-
marizing the findings, highlighting key contributions, and offering
closing remarks.

2. State-of-the-art review: conceptual and practical
foundations

This section lays the groundwork for the study by exploring the
intersection of AI and its subfields with urban planning and design
and UDT frameworks in the dynamic context of sustainable smart
cities. It highlights the transformative roles of ML, DL, CV, NLP, and
GenAI, focusing on the potential of GenAI and FMs. The review
provides theoretical and practical foundations, setting the stage for
developing the foundational framework for the LFM. By examining
how GenAI and FMs can enhance decision-making and drive
innovation in urban planning and design through their integration
with UDT frameworks, the section identifies key research gaps and
opportunities for advancing sustainable urban development.

2.1. Thematic literature review and its structured process

A thematic literature review is a structured approach to exam-
ining existing research, focusing on identifying, analyzing, and
synthesizing recurring themes or patterns within the literature.
This approach organizes the body of work into central themes or
categories, providing a cohesive narrative that highlights trends,
synthesizes findings, and identifies gaps in knowledge. Often used
as a foundational step in research or framework development, a
thematic literature review categorizes prior studies under thematic
headings and integrates insights from these categories to inform
conceptual framework development. This methodological
approach is particularly valuable for addressing complex, inter-
disciplinary topics, as it provides a structured pathway for con-
necting diverse findings into a unified understanding.

This subsection outlines the primary approach to developing a
conceptual framework for the LFM tailored for UDT. This review
focuses on synthesizing insights and findings from recent theo-
retical and empirical studies on AI, GenAI, FMs, and UDT applica-
tions within the dynamic context of sustainable smart city planning
and design. It serves as the basis for identifying research gaps and
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informing the conceptual design of the LFM within the Generative
Spatial AI (GSAI) framework. By addressing these gaps, the study
positions the LFM as a pioneering approach for modeling complex
urban flows and enhancing decision-making processes in urban
planning and design. Here, the conceptual design refers to how the
foundational framework guides the definition of the specific ar-
chitecture and functionality of the LFM, as detailed in Section 6.
This distinction ensures a clear connection between the theoretical
underpinnings developed through the thematic literature review
and their practical application in the proposed model.

The thematic literature review explores the integration of AI,
GenAI, and FMs with UDT, highlighting their transformative po-
tential in advancing sustainable urban development through
planning and design. This review provides the foundation for the
conceptual framework and ensures alignment with the state-of-
the-art in the field by identifying potential applications and crit-
ical challenges. It expands on the discussion in the introduction,
drawing upon its foundational insights to contextualize the study
and underscore its relevance within the broader scientific
discourse.

The review followed a structured process (Fig. 1) to ensure the
inclusion of relevant and high-quality studies. Peer-reviewed
journal articles, conference proceedings, and books published pri-
marily between 2020 and 2024 were sourced from established
academic databases, including Scopus, Web of Science, Science-
Direct, and Springer Link. The search was conducted using carefully
chosen keywords and their combinations to comprehensively cover
the intersections among these domains. The selected keywords
included combinations such as “Urban Digital Twin” OR “Digital
Twin” AND “Generative Artificial Intelligence” OR “Artificial Intel-
ligence”; “Foundation Models” OR “Pre-trained Foundation
Models” AND “Urban Digital Twin” OR “Digital Twin”; “Sustainable
Smart Cities” OR “Smart Cities” AND “Generative Artificial Intelli-
gence” OR “Artificial Intelligence”; “Urban Planning” OR “Urban
Design” AND “Generative Artificial Intelligence” OR “Artificial In-
telligence”; and “Generative Artificial Intelligence” OR “Artificial
Intelligence” AND “Environmental Sustainability” OR “Urban Sus-
tainability.” These strategic keyword pairings ensured a thorough
and targeted search, capturing the essential literature at the
confluence of advanced technologies and sustainable urban
development.

The inclusion criteria ensured that the selected studies offered
comprehensive insights into integrating AI, GenAI, and UDTs in
sustainable smart city planning and design, as well as emerging
FMs. Specifically, the review prioritized studies or publications
addressing the foundational principles and applications of AI and
GenAI models in urban planning and design, focused on the inte-
gration of AI and GenAI with UDT as decision-support tools for
sustainable smart cities, covering FMs as applied to different do-
mains with high potential to advance sustainable urban develop-
ment, highlighting environmentally sustainable and resilient smart
city practices related to UDT and urban planning and design, and
emphasizing the challenges and opportunities of multimodal data
Fig. 1. A flow diagram outlining the step-by-step pro
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integration in UDT systems. Peer-reviewed articles published in
English between 2020 and 2024 are primarily selected to ensure
academic rigor and relevance. The review excluded studies unre-
lated to the focal topics, non-peer-reviewed, duplicate and redun-
dant, and those with an overly narrow foundational and practical
focus or those published before 2020.

The review ensures the inclusion of the most up-to-date de-
velopments and technological advancements in this interdisci-
plinary field by limiting the search to recent publications. A total of
313 articles were initially identified through the search process.
After a rigorous abstract screening and the application of pre-
defined inclusion and exclusion criteria, 127 articles were selected
for final analysis. The extracted data was analyzed qualitatively to
identify recurring themes and common challenges across the
studies. Emerging trends in technology integration and methodo-
logical innovations were highlighted. Insights from the analyzed
data were synthesized to draw connections, identify opportunities,
and construct a coherent narrative, bridging theoretical un-
derpinnings with practical applications. This synthesis process also
involved integrating diverse findings to illuminate underexplored
areas and provide a comprehensive understanding of the state-of-
the-art at the intersection of AI, GenAI, and UDT applications in
sustainable smart city planning and design and relevant insights
into FMs. This approach provided a robust foundation for identi-
fying the critical gaps and opportunities necessary for developing
and enhancing the conceptual framework of the LFM, ensuring
alignment with the environmental objectives of sustainable smart
cities.
2.2. Artificial intelligence for sustainable smart city planning and
design

AI refers to a branch of computer science and engineering
dedicated to developing systems and algorithms capable of per-
forming tasks that typically require human intelligence. These tasks
include, but are not limited to, learning (e.g., data analysis and
pattern recognition for predictive modeling in urban planning),
reasoning (e.g., logical deduction and decision-making in real-time
traffic management), problem-solving (e.g., optimizing energy
distribution in smart grids), perception (e.g., image recognition in
autonomous vehicles), and natural language understanding and
generation (e.g., analyzing public feedback and extracting com-
munity sentiments for aligning urban projects with residents'
needs and preferences and generating textual descriptions for city
layout proposals). AI systems achieve these capabilities by
leveraging various models and techniques, enabling adaptability
and automation in diverse domains, including urban planning and
design. Prominent subfields of AI, such as ML, DL, CV, NLP, and
GenAI, provide specialized models and techniques that have been
widely applied to urban planning [11e16,27e29,31,32,83] and
design processes [18,19,32,34,36e40,54,84,85]. These advanced AI
tools catalyze innovation and improve efficiency in sustainable
smart city planning and design across various domains of
cess of developing the foundational framework.
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environmental sustainability [9,10].
With their unique capabilities, ML, DL, CV, NLP, and GenAI

converge to address diverse challenges in sustainable smart cities.
ML provides the foundational learning framework, DL extracts
intricate features from data, CV interprets visual information, NLP
enables understanding and generation of human language, and
GenAI enriches the process with its capability to generate novel
content and adapt to evolving urban challenges, collectively
enhancing the planning and design of sustainable smart cities. As
evidenced by the aforementioned studies, each of these five sub-
fields or subdomains possesses distinct AI principles, algorithms,
and applications. Moreover, these subfields frequently intersect,
with methodologies and techniques from one domain being
adapted to solve problems in another. Indeed, they have been
combined to solve more complex problems in urban planning and
design [15, 16, 18, 29, 32, 37, 39, 54, 83, 86e88]. For example, DL
architectures, such as Generative Adversarial Networks (GANs),
Convolutional Neural Networks (CNNs), Recurrent Neural Net-
works (RNNs), Long Short-Term Memory Networks (LSTMs), and
Transformers, have become foundational for various tasks such as
text summarization, language understanding, image generation,
and sequence modeling [48,89e92]. This synergy fosters collabo-
ration and innovation, driving the development of advanced AI
systems equipped to tackle complex challenges in sustainable
smart city planning and design. An in-depth analysis and discus-
sion on these aspects is provided in Bibri [9], a study that in-
vestigates the transformative potential of AI and its five subfields in
advancing sustainable smart city planning and design. One notable
gap identified in this study is the lack of comprehensive research on
the combined applied domains of ML, DL, CV, NLP, and GenAI.

Sustainable smart cities are urban areas that prioritize envi-
ronmentally friendly practices, economic prosperity, and social
equity while leveraging data-driven technologies to enhance effi-
ciency, connectivity, and the quality of life for residents. These cities
aim to achieve sustainability across various dimensions, including
energy use, transportation, waste management, water conserva-
tion, green spaces, digital infrastructure, and public services by
integrating smart technologies, innovative policies, and community
engagement. Key focus areas include [93e99]:

(1) Environmental sustainability: Emphasizing renewable en-
ergy sources, energy efficiency, transportation decarbon-
ization, circular economy practices, air quality improvement,
climate resilience strategies, and the protection and resto-
ration of biodiversity and ecosystems.

(2) Economic sustainability: Promoting green job creation,
fostering innovation and entrepreneurship, ensuring long-
term economic growth, supporting local businesses, and
reducing economic inequality through equitable resource
distribution.

(3) Social Sustainability: Prioritizing affordable and accessible
housing, enhancing public health and well-being, promoting
cultural diversity and inclusivity, strengthening community
networks, and ensuring digital inclusion by bridging the
digital divide.

Addressing these interconnected dimensions enables sustain-
able smart cities to create resilient, inclusive, and livable urban
environments that meet the needs of current and future genera-
tions while minimizing environmental impact and maximizing
resource efficiency. However, the focus has recently shifted towards
addressing environmental sustainability more explicitly, reflecting
growing concerns about climate change, resource depletion, and
biodiversity loss [93,100e103]. This shift underscores the urgent
need for advanced AI-driven technologies and solutions that
5

prioritize environmental sustainability goals over the socioeco-
nomic benefits of urbanization in sustainable smart cities
[1e7,10,104e106].

AI models and techniques enable policymakers, planners, and
designers in this rapidly evolving urban landscape to analyze vast
datasets, derive valuable insights, andmake informed decisions. ML
models and techniques remain the most extensively utilized tools
in smart cities to advance environmental sustainability goals, as
evidenced by numerous studies [1,2,107e115] compared to DL, CV,
NLP, and GenAI [1,2,104]. As these models become increasingly
sophisticated and versatile, they hold immense promise for driving
innovation in various domains of sustainable smart cities. Overall,
the intelligence of AI lies in its capacity to iteratively learn from
data, analysis results, and feedback, enhancing decision-making
and optimizing outputs. This process mirrors the fundamental
logic of urban planning and design practices: gathering informa-
tion, analyzing it, and producing plans or designs to address envi-
ronmental challenges while improving overall urban systems.
Leveraging this iterative learning capability enables AI-driven ap-
proaches to adress complex problems, adapt to evolving conditions,
and contribute to more informed and sustainable planning and
design solutions.

2.3. Generative artificial intelligence models

GenAI, as a class of deep learning models, is designed to
generate new data or content that mimics the characteristics of a
given input data distribution by identifying and learning the un-
derlying patterns within the data. Leveraging advanced architec-
tures, notably GANs, VAEs, Diffusion Models, and Transformer-
based models, GenAI produces realistic, coherent, and contextu-
ally appropriate outputs, including text, images, audio, code, and
videos. DL, which lies at the core of GenAI, has driven significant
advancements in generative models, including GANs [41,42], large-
scale GANs [116], VAEs [44], Transformers [117], and flow-based
models [118,119], enabling GenAI's transformative capabilities
across diverse domains. These models operate by explicitly
modeling data distributions or implicitly generating samples
through adversarial or probabilistic frameworks. For example,
GANs can generate realistic samples from latent space without
relying on distributional assumptions, making them versatile for
applications like image synthesis, image translation, and domain
adaptation [120]. Compared to other deep generative models, GANs
offer notable advantages, including generating higher quality and
sharper images than VAEs [42]. Large-scale models such as BigGAN
leverage vast computational resources to generate diverse high-
resolution images. Transformers, which are known for their self-
attention mechanisms, excel in sequential data tasks such as text
generation. Flow-based models directly model data distribution,
offering efficient sampling and high-fidelity image generation

VAEs are particularly relevant to the development of the LFM
due to their ability to efficiently encode and generate complex,
high-dimensional data in a structured latent space. They play an
important role in enabling the modeling, prediction, and simula-
tion of diverse urban flows by capturing essential spatial and
temporal patterns within incomplete datasets. VAEs are probabi-
listic generative models that encode data into a compressed latent
space and decode it to create new, similar data instances.
Leveraging neural networks with encoder-decoder architectures
enables VAEs to capture essential data features in a simplified
latent space, enabling efficient data representation and generation.
Regularization during training ensures that the latent space retains
desirable properties, supporting the creation of coherent and
meaningful outputs [121]. Kingma and Welling [44] introduced a
scalable algorithm for stochastic variational inference, enabling



J. Huang, S.E. Bibri and P. Keel Environmental Science and Ecotechnology 24 (2025) 100526
VAEs to train efficiently on large datasets with continuous latent
variables. Subsequent research has explored both strengths and
vulnerabilities of VAEs. Lu and Chen [45] emphasize adversarial
robustness, identifying vulnerabilities in VAEs' latent spaces, such
as discontinuities and mismatches with the true data manifold,
which can expose them to adversarial attacks. The authors suggest
that adversarial training can improve the resilience of generative
autoencoders, particularly in applications like communication and
compressed sensing, where robust encoding is critical. Meanwhile,
Connor et al. [43] address limitations in the latent space structure
by proposing the VAE with Learned Latent Structure (VAELLS).
Incorporating a learnable manifold model enables VAELLS to refine
the latent space, improving data modeling accuracy and enabling
class-specific transformations. Themodel's success in synthetic and
real-world datasets demonstrates its potential to better capture
complex data patterns.

Concerning this study, while VAEs offer significant advantages
in probabilistic modeling and data generation, Autoencoders (AEs)
leverages a deterministic architecture, specifically designed to
address the spatial, temporal, and multimodal complexities of ur-
ban flow data. This approach ensures robust representation and
reconstruction of diverse urban dynamics within the UDT frame-
work. One of the strengths of the Blue City Autoencoder (BCA) is its
ability to process diverse types of data found in urban environ-
ments, including street, flow and satellite data. This versatility is
crucial for capturing the full spectrum of urban dynamics. The BCA
is trained in an unsupervised manner; it learns to capture the un-
derlying structure and patterns in the datawithout relying on input
and output data.

Recent research highlights the evolution, challenges, and ap-
plications of AEs and their advanced variants in DL and generative
modeling. Li et al. [122] provide a foundational, comprehensive
survey on AEs, emphasizing their evolution, taxonomy, and appli-
cations in domains. The authors identify AEs as robust tools for
unsupervised learning, particularly for feature extraction and
dimensionality reduction, and domain-specific adaptations. How-
ever, it also highlights challenges such as limited scalability and
interpretability, proposing future integration with advanced DL
paradigms as a potential solution.

Pham et al. [123] propose a novel autoencoder inspired by
Principal Component Analysis (PCA), designed to improve the or-
ganization and control of latent spaces in generative models. By
arranging latent dimensions by importance and ensuring statistical
independence, the PCA-AE disentangles intrinsic attributes of data
without requiring labels. The study demonstrates the PCA-AE’s su-
periority in disentangling data features compared to other ap-
proaches and its applicability to pre-trained GANs.While Pham et al.
[123] demonstrate how principles of PCA can be integrated into
autoencoder design to enhance latent space organization, Fournier
and Aloise [124] investigate PCA's comparative performance of
autoencoders and traditional dimensionality reduction techniques,
such as PCA, in the context of classification tasks. Specifically, their
study evaluates the flexibility and computational efficiency of
autoencodersdspecifically deep and variational autoenco-
dersdrelative to PCA using benchmark image datasets. The findings
reveal that while PCA and autoencoders produce comparable clas-
sification accuracy when the dimensionality is sufficiently high, PCA
is computationally far more efficient, being two orders of magnitude
faster than neural network-based autoencoders. This work un-
derscores PCA’s continued relevance as a practical and efficient
dimensionality reduction technique, particularly for applications
where computational resources are limited.

Crowley [125] examines the foundational role of autoencoders
in generative networks, focusing on their utility for signal recon-
struction and their contribution to self-supervised learning. The
6

study demonstrates how modifications to the loss function,
informed by concepts from information theory, enable autoen-
coders to discover data categories unsupervised. Additionally, it
explores the relationship between autoencoders, VAEs, and GANs,
highlighting their complementary roles in modern generative
frameworks. This exploration connects the theoretical un-
derpinnings of autoencoders to their practical applications in dis-
entangling latent features, as demonstrated in Pham et al.’s [123]
PCA-AE. Expanding on this, Ghosh et al. [126] present an alternative
to VAEs by proposing a regularized deterministic autoencoder
framework. The study critiques VAEs for their theoretical and
practical limitations in generative modeling and offers a simpler,
deterministic model with equivalent advantages. By introducing
regularization schemes and an ex-post density estimation step,
their approach achieves high-quality data generation and disen-
tangled latent spaces, rivaling or outperforming VAEs in applica-
tions like image synthesis and molecular modeling.

Overall, these studies illustrate a trajectory of innovation in
autoencoder research, moving from foundational surveys and
challenges to specialized adaptations that improve latent space
organization, generalization, and scalability. They demonstrate
how autoencoders, as versatile tools, continue to evolve through
refinements in architecture, application domains, and integration
with broader generative modeling frameworks.

2.4. Foundation models and their pretrained subset

GenAI and FMs are complementary technologies that can be
used together to create more sophisticated AI systems capable of
generating new data, understanding existing data, and performing
various tasks across different domains. FMs represent the broader
conceptual category of models that serve as a baseline architecture
or framework that can be adapted to diverse tasks through addi-
tional training or fine-tuning. As such, they encompass the foun-
dational knowledge and structure that supports various AI tasks
across different domains and data modalities. PFMs, a specialized
subset of FMs, have already undergone the pre-training phase to
build a generalized understanding from extensive and diverse
datasets. They are fine-tuned for specific domains or tasks, serving
as an efficient and robust starting point and reducing the need for
large datasets and computational resources during downstream
applications.

Notable examples of PFMs and FMs include Large-scale Lan-
guage Models (LLMs) like GPT-3 (Generative Pre-trained Trans-
former 3) [57], BERT (Bidirectional Encoder Representations from
Transformers) [46], and Text-To-Text Transfer Transformer (T5)
[59], Contrastive Language-Image Pre-training (CLIP) [58], as well
as generalist geospatial AI [60], geo-FMs [61, 80, 127], joint FMs
[56], and geographic diverse models [55]. As PFMs, LLMs such as
GPT-3, BERT, T5, and CLIP are trained on extensive datasets using
self-supervised learning techniques and later fine-tuned for
specialized tasks. Generalist geospatial AI and Geo-FMs are FMs
tailored to geospatial or geographical data, and their training may
or may not involve pre-training as a standalone process. However,
when fine-tuned, they would fall into the PFM category. Joint FMs
and geographic diverse models are FMs designed to address spe-
cific modalities or domains, and they can operate either as FMs or
PFMs depending on their implementation and application context.

FMs represent a transformative class of large-scale neural net-
works, designed to learn general features and representations from
vast amounts of data using unsupervised or self-supervised
learning techniques [78,79,81]. These models can be adapted to a
wide range of downstream AI tasks through methods such as fully
sampled fine-tuning, few-shot transfer, zero-shot transfer, and
linear probing, enabling applications in novel text, images, and
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objects [60,62,79].
FMs provide a reasonable and efficient parameter initialization

for a wide range of downstream applications [81], including se-
mantic segmentation, content generation, and information
retrieval. They can adapt to new domains with minimal task-
specific data during fine-tuning or transfer learning stages [56].
For example, the development of multimodal FMs for GeoAI pre-
sent promising opportunities and exceptional performance in tasks
across urban geography, geospatial semantics, and remote sensing
[79].

Overall, FMs are powerful and versatile tools, enabling a broad
spectrum of AI-driven solutions spanning diverse domains and
tasks. Their ability to provide robust pre-training and support
specialized adaptation underscores their key role in advancing AI
research and applications. Distilled from the aforementioned
reviewed studies, Table 1 provides a concise summary of the key
attributes distinguishing FMs and PFMs, emphasizing their
respective contributions to advancing AI applications.

This comparison highlights the theoretical strengths of FMs and
the practical advantages of PFMs, illustrating their complementary
roles in enabling scalable, versatile, and efficient AI-driven solu-
tions across diverse domains, including urban planning and design.

The insights from the distinctions and capabilities of FMs and
PFMs form the foundational basis for the conceptual design of
LFMs. Utilizing the generalization, scalability, and versatility of
these models, the LFM is designed to address the complexities of
urban flows and enhance decision-making processes within UDT
frameworks, aligning with the environmental objectives of sus-
tainable smart city planning and design.
2.5. Artificial intelligence for sustainable smart city planning,
design, and digital twin

As a complex computational model, UDT integrates real-time
data from various sources, such as sensors, the Internet of Things
(IoT) devices, satellite imagery, and municipal databases. It aims to
provide a comprehensive and dynamic representation of urban
environments, including infrastructure, buildings, systems, natural
resources, and social dynamics. Through the simulation of the
behavior and interactions of urban dimensions, UDT enables
stakeholders to analyze, visualize, and optimize urban systems,
make informed decisions, and test different scenarios for sustain-
able urban development.

In recent years, there has been a significant increase in the
application of AI models and techniques to address the diverse
challenges associated with UDT systems, enhancing their capabil-
ities for data-driven planning and design to advance environmental
goals. This synergistic integration of AI with UDT has transformed
sustainable smart city planning and design, extending the scope of
AI-driven UDT systems across various environmental domains.
Bibri et al. [11] examine the foundational aspects of AI, AIoT, UDT,
urban planning, and environmental sustainability, proposing a
Table 1
Comparison of attributes between foundation models and pre-trained foundation mode

Attributes Foundation Models

Transfer
Learning

Intrinsic to the design of FMs, allowing for adaptability to downstream
tasks after sufficient training or fine-tuning.

Resource
Efficiency

Applies indirectly, as FMs require substantial resources for pre-training
but aim to reduce resource needs during adaptation.

Generalization A key goal of FMs during pre-training is to capture broad patterns and
knowledge from diverse datasets.

Versatility Designed to be versatile by serving as a foundational starting point for
multiple downstream applications.
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conceptual framework for their integrated application in sustain-
able smart cities. This study highlights the transformative role of AI
in advancing UDT systems, enabling the creation of sustainable,
resilient, and environmentally conscious urban environments, and
shaping the trajectory of sustainable urban development. The
environmental domains addressed in this study are mobility flows,
transportation optimization, energy efficiency, waste management,
and biodiversity conservation. For instance, AI applications,
particularly ML and DL, in mobility and transportation have made
significant strides. Kamal et al. [128] introduce a DT-Based Deep
Reinforcement Learning (DRL) approach for adaptive traffic signal
control. This innovative method dynamically adjust traffic signals,
reducing delays and enhancing overall traffic efficiency in urban
environments. Wu et al. [129] provide a comprehensive classifica-
tion and analysis of AI and digital twin applications in trans-
portation infrastructure, highlighting their role in predictive
maintenance, traffic flow optimization, and resource management.
Salunke [24] examines the integration of reinforcement learning-
empowered digital twins across various smart city domains,
including intelligent transportation systems, energy management,
and urban planning. The author underscores the significant po-
tential of combining reinforcement learning algorithmswith digital
twin technology to optimize traffic flow, alleviate congestion, and
improve urban mobility.

From a technical perspective, Zvarikova et al. [23] propose UDT
algorithms incorporating ML and DL to ensure accurate urban
simulations. Austin et al. [20] demonstrate AI's practical impact in
smart city contexts through semantic knowledge representation
and ML integration in UDT. Beckett [21] underscores AI's potential
to enhance urban design and planning strategies through 3D
modeling and spatial cognition algorithms. From a general
perspective, Kreuzer et al. [22] reveal that while many instances of
integrating AI and DTs employ AI to enhance DTs, there is a
noticeable scarcity of sophisticated modeling of the DT itself. Most
studies emphasize implementing and testing AI components rather
than fostering a robust virtual-to-physical link with the actual
systems they mirror. In addition, few studies utilize real-time data
to create a physical-to-virtual connection, underscoring a gap in
integrating real-world dynamics into DTs effectively.
2.6. Generative artificial intelligence and pretrained foundation
models for sustainable smart city planning and design and digital
twin

GenAI and PFMs are transforming urban planning and design by
serving as advanced tools for data-driven decision-making, inno-
vative problem-solving, and enhanced predictive capabilities in
sustainable smart cities. By harnessing their robust func-
tionsdincluding analyzing vast datasets, modeling complex urban
systems, simulating diverse scenarios, generating actionable in-
sights, synthesizing novel alternatives, and optimizing spatial
configurationsdGenAI and FMs enable the creation of resilient,
ls.

Pretrained Foundation Models

Exemplifies transfer learning as they are pre-trained and can transfer knowledge
to new tasks with minimal additional training.
Applies directly, as PFMs reduce computational and data requirements for
downstream tasks by leveraging pre-trained knowledge.
Explicitly demonstrated by PFMs, which utilize pre-trained knowledge to perform
well across various tasks, including unseen or novel domains.
Practical versatility is demonstrated by PFMs, enabling rapid adaptation and fine-
tuning for specific use cases across diverse domains.
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efficient, and environmentally sustainable urban environments,
aligning urban development practices with the holistic goals of
sustainable smart city frameworks.

Bibri [9] examines the transformative role of AI, particularly its
generative capabilities, in advancing sustainable smart city plan-
ning and design through the utilization of UDTs. The study iden-
tifies a significant gap in the literature concerning the integration of
GenAI into UDT frameworks as data-driven planning and design
systems. The findings highlight GenAI's pivotal role in enhancing
data-driven urban planning and design processes via UDTs,
revealing its untapped potential in propelling sustainable smart
city domains, including energy, mobility, transportation, and
infrastructure management. Saranya et al. [51] highlight that
Intelligent UDTs integrate real-time analytics, visualization, and
spatiotemporal frameworks to derive comprehensive insights from
diverse urban data sources, including social and sensor data.
However, the reliance on high-dimensional, multi-domain data and
challenges related to limited data availability create significant
barriers, particularly in generating urban scenarios and design al-
ternatives. GenAI emerges as a promising solution to address these
limitations by producing synthetic, high-quality data. The study
explores the integration of GenAI with UDT to enhance the man-
agement and planning of urban subsystems, such as infrastructure,
energy, water, and transportation.

Xu et al. [54] investigate the innovative use of GenAI techniques
and UDT to tackle data-related challenges in smart cities. Their
review examines how recent advancements in GenAI are trans-
forming smart city applications, focusing on various GenAI models,
including GANs, VAEs, transformer-based models, and generative
diffusion models. The study highlights GenAI's advanced capabil-
ities to address challenges in UDT applications. These challenges
include data augmentation in mobility and transportation man-
agement, urban energy systems, and building and infrastructure
management; data synthesis and scenario generation in mobility
and transportation management, urban analytics, urban energy
systems, urban water management, and urban disaster manage-
ment; as well as 3D city modeling, 3D building generation, 3D
street environment, and generative urban design and optimization.
Key findings reveal GenAI's potential to substantially aid in these
areas, contributing to more sustainable and resilient smart city
developments.

Through its ability to model, predict, and generate contextually
relevant solutions across diverse urban domains, GenAI empowers
planners and designers to address intricate challenges with un-
precedented precision and creativity. The outputs of these capa-
bilities are extensive and varied concerning urban planning
[9,27e32,84,85] and design [32,34e37,39,40,77,130] processes.
They include synthetic data for scenario testing, optimization, and
simulation processes; innovative design proposals for urban
spaces; adaptive spatial plans; scenario simulations for visualizing
potential outcomes; virtual environments representing proposed
urban developments; predictive models for urban phenomena;
customized solutions tailored to specific urban challenges; and
virtual urban and architectural design alternatives. Together, these
processes and outputs exemplify how GenAI advances the effi-
ciency, sustainability, and resilience of urban systems while
providing actionable insights for evidence-based planning and
design.

Recent advancements in LLMs, a subset of PFMs, have signifi-
cantly influenced urban planning and transportation. These
models, exemplified by GPT-4 and other domain-specific adapta-
tions, exhibit capabilities such as generating synthetic data, facili-
tating decision-making, and simulating stakeholder dynamics in
urban contexts. Recent research illustrates the application of LLMs
in participatory planning, transportation management, and urban
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design. Zhou et al. [31,32] developed an innovative multi-agent
collaboration framework using LLMs for participatory urban plan-
ning. The framework simulates planners and diverse resident
profiles to create inclusive land-use plans. Using a fishbowl dis-
cussion mechanism to improve deliberation efficiency, this model
achieves high resident satisfaction and service accessibility, out-
performing traditional human-expert approaches in ecological
metrics. Jiang et al. [83] introduced UrbanLLM, a fine-tuned LLM
designed for complex urban activity planning and management. By
decomposing urban queries into manageable sub-tasks and
leveraging spatio-temporal AI models, UrbanLLM reduces reliance
on human expertise and demonstrates superior performance in
addressing urban planning challenges compared to established
LLMs like GPT.

In addition, Fu et al. [86] explored the use of ChatGPT in eval-
uating complex urban planning documents. While ChatGPT aligned
with human coders in plan evaluation with 68% similarity, it
struggled with domain-specific jargon, indicating its potential as a
complementary tool for minimizing human errors rather than
replacing human expertise in plan evaluations. Babbar [131]
emphasized the potential of specialized LLMs, such as PlanGPT, in
addressing urban planning challenges like complex spatial prob-
lems and regulatory compliance. These tools streamline the plan-
ning process, offering precise, actionable insights to urban planners
and setting the foundation for improved productivity and sus-
tainability. Hasan et al. [28] introduced an AI-driven urban planning
chatbot that interprets complex legal language and provides
actionable recommendations. Utilizing advanced NLP and ML en-
ables the chatbot to promote regulatory compliance and environ-
mental sustainability, reducing human errors in urban planning
processes.

In the domain of transportation, for example, Ying et al. [132]
evaluated LLMs like GPT-4 and Phi-3-mini in transportation plan-
ning. GPT-4 demonstrated higher accuracy and spatial compre-
hension in Geographical Information System (GIS) and
transportation tasks, outperforming Phi-3-mini but highlighting
the latter's utility in resource-constrained settings. Challenges
related to integrating advanced retrieval-augmented generation
techniques were identified for future research. Wang et al. [130]
designed an LLM agent framework for personal mobility genera-
tion. This framework incorporates real-world urban mobility data,
aligning activity generation with individual patterns and motiva-
tions through retrieval-augmented strategies. It demonstrated
robust performance, marking a significant advance in urban
mobility analysis. Yu and McKinley [133] introduced a synthetic
participatory method utilizing LLMs to simulate diverse stake-
holder inputs for planning shared automated electric mobility
systems (SAEMS). A case study in Montreal demonstrated the
method's capacity to generate controllable and comprehensive
plans, suggesting its potential to revolutionize multi-stakeholder
transportation planning. Jin and Ma [87] proposed an LLM-
enhanced framework for parking planning during the coexistence
of autonomous and human-driven vehicles. This model facilitates
efficient evaluation and optimization of parking facilities, achieving
notable success rates in testing modules while addressing LLM
trustworthiness challenges.

These studies highlight several challenges: understanding
domain-specific jargon [86], addressing LLM trustworthiness [87],
and integrating advanced generative techniques [132]. Moreover,
ensuring scalability and inclusivity in participatory planning
frameworks and balancing computational efficiency with model
reliability remain significant barriers. Nevertheless, FM and PFMs,
especially LLMs, have demonstrated significant potential in urban
planning and transportation, addressing complexities ranging from
participatory planning to infrastructure optimization. These



J. Huang, S.E. Bibri and P. Keel Environmental Science and Ecotechnology 24 (2025) 100526
advancements promise more inclusive, efficient, and adaptive ur-
ban environments, although addressing their current limitations is
essential for broader adoption and application.

Furthermore, in many real-world applications, particularly
those dealing with complex and multidimensional data, FMs play
an important role in enhancing the capabilities of GenAI models
and, hence, GenAI-driven UDT. FMs boost the performance, accu-
racy, and adaptability of GenAI models in these contexts by
providing rich features and representations learned from vast
datasets. Trantas and Pileggi [82] explore the integration of FMs
into DT applications, emphasizing the potential to enhance pre-
dictive analytics, adaptive learning, and the management of com-
plex datasets. The study highlights the ability of FMs to improve the
accuracy and reliability of decision-making processes within DT
systems due to their advanced learning capabilities. Using selected
ongoing cases, the authors illustrate the practical benefits of this
integration, such as more informed and timely decisions derived
from comprehensive data analytics and predictive insights. How-
ever, they also identify key challenges, including high computa-
tional demands, data privacy concerns, and the need for
transparency in AI decision-making. The paper positions the inte-
gration of FMs and DTs as a transformative step toward advancing
AI applications across various domains. In addition, deploying FMs
on edge servers leverages their capabilities in distributed and
resource-constrained environments. Edge computing's inherent
low latency and flexibility enable efficient fine-tuning and infer-
ence processes for FMs, which can be dynamically accessed by
downstream AI services to support real-time applications [56]. The
deployment of FMs on edge servers significantly enhances gener-
ative content and DT by leveraging edge computing capabilities to
optimize AI-driven processes [56]. This integration improves scal-
ability and responsiveness in urban planning and design tasks,
underscoring the importance of FMs in advancing sustainable
smart city solutions. In addition, Ali et al. [134] focus on the use of
FMs in developing DTs for cyber-physical systems (CPS). The study
highlihgts the potential of these models to enhance the function-
ality and effectiveness of DTs, potentially even allowing them to
function as DTs themselves. It also discusses challenges of applying
FMs broadly and uses autonomous driving systems as a case
example.

Drawing on the reviewed studies, the integration of GenAI and
UDT establishes a mutually beneficial relationship that addresses
critical challenges in urban planning and design. GenAI, through
advanced models, such as GANs, VAEs, and transformers, enhances
UDT functionalities by enabling predictive modeling, scenario
testing, and generative capabilities tailored to urban flows. FMs
adapted to these flows optimize UDT’s ability to analyze complex
systems, improve decision-making processes, and enhance pre-
dictive accuracy by capturing the interdependencies and dynamics
of urban flows. This adaptation enables more effective modeling of
spatial-temporal patterns, simulation of urban scenarios, and
generating actionable insights to support sustainable urban plan-
ning and design. Conversely, UDT, with its high-fidelity and dy-
namic digital representations of urban environments, serve as a
robust platform for testing and operationalizing GenAI-driven so-
lutions tailored to urban challenges. This interplay enables UDT
frameworks to leverage GenAI’s computational power while
applying its outputs to real-world contexts. Consequently, this
makes these frameworks more adaptive and context-aware and
ensuring generative insights are seamlessly translated into
actionable urban strategies Integrating FMs tailored to urban sys-
tems enables UDTs to bridge the gap between advanced generative
technologies and actionable urban needs, advancing decision-
making processes and fostering long-term environmental
sustainability.
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2.7. Research gaps

Despite the important advancements highlighted in the recent
studies, significant gaps persist in research and practice, reflecting
the nascent stages of technological convergence. Notably, research
on the integration of GenAI and FMs into UDT frameworks remains
scant. Current efforts lack a structured theoretical foundation to
effectively address complex urban flows andmultimodal dynamics,
especially concerning modeling and analyzing critical domains,
essential for achieving environmental sustainability goals. These
multimodal dynamics reflect the constantly changing, interrelated
processes, behaviors, and flows across diverse modalities within
urban environments. They highlight the inherent complexity,
variability, and spatial challenges that span multiple scales and
interconnected domains. Existing frameworks often struggle to
effectively model or operationalize these intricate dynamics,
creating significant obstacles to generating actionable insights for
sustainable urban planning and design.

GenAI and FMs hold significant potential to bridge these gaps by
adaptively learning, generating, and synthesizing insights from
vast, multimodal datasets. UDT frameworks complement these
capabilities by simulating, modeling, analyzing, predicting, and
optimizing urban dynamics to provide actionable intelligence for
urban planning and design. However, addressing the multimodal
and spatial complexities of urban systems remains an unmet
challenge, emphasizing the need for innovative frameworks to
support informed decision-making and advance sustainable urban
development. Furthermore, the operationalization of GenAI, FMs,
and UDT as a unified system in real-world settings remains criti-
cally underexplored, with key challenges related to domain-specific
fine-tuning, adaptability, and scalability.

To address these interrelated gaps and limitations, Subsection
7.2 proposes a foundational framework aimed at guiding the inte-
gration of GenAI and FMs into UDT systems. Section 5 builds upon
this foundation by presenting the LFM architecture, designed to
enhance UDT computational and predictive functionalities for
enhancing sustainable smart city planning and design. By
addressing these gaps and limitations, this research work advances
the theoretical and practical dimensions of AI-driven, environ-
mentally sustainable urban development.

2.8. A foundational framework for the LFM tailored for UDT within
the GSAI framework: A bifocal approach

The foundational framework (Fig. 2) presented in this section is
developed based on insights synthesized from the studies reviewed
in the previous section. It offers a comprehensive understanding of
AI and its subfields, emphasizing their relevance and significance to
UDT as a data-driven planning and design system tailored for sus-
tainable smart cities. This framework seeks to clarify the inter-
connectedness between these components and their potential for
advancing urban planning and design through GenAI-driven UDTs
underpinned by FMs. By integrating key theoretical concepts,
practical insights, and empirical evidence from the literature, the
framework provides a structured approach to tackling spatial
challenges associated with UDTs to advance environmental sus-
tainability goals. Its purpose is to enhance UDTs' modeling and
simulation capabilities, enabling more informed and efficient
decision-making processes for the planning and design of sus-
tainable urban environments.

The LFM serves as a practical endeavor of GenAI and FMs by
operationalizing their synergistic and complementary integration
into a concrete FM for urban flows. The bifocal approach in Fig. 2
illustrates the nuanced relationship between the LFM and the
broader urban context and its connection to urban AI. Specifically, it
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elucidates how the LFM intersects with the urban landscape,
including UDT, urban planning and design, and sustainable smart
city development, and integrates with AI and its subfields.

The introduction of the LFM as a novel class of FMs tailored for
urban flows underscores the specialized focus of GSAI within the
broader realm of urban FMs, including GenAI is a key subset. The
LFM is a specialized subset of FMs and a distinct branch of GSAI,
designed specifically to model and address the intricate dynamics
of urban flows related to the physical and spatial structures of ur-
ban environments. This progression from AI to GenAI, then to FMs,
and ultimately to LFMs within the GSAI framework represents a
continuum of increasing specialization in urban AI. Each step re-
fines the scope and methodologies to tackle the unique challenges
inherent in urban planning and design, offering advanced tools for
data-driven and predictive urban management.

Furthermore, the LFM shares conceptual and methodological
similarities with other GenAI models, such as GANs and VAEs,
particularly in its ability to generate new data instances based on
learned distributions. However, the LFM distinguishes itself
through its specialized focus and purpose. Unlike general-purpose
generative models, the LFM is specifically designed to learn and
model flow patterns within urban environments. It emphasizes
generating and predicting flow sequences, enabling the analysis of
dynamic and interrelated urban systems while addressing the
unique challenges associated with spatiotemporal data and multi-
modal urban flows.

Lastly, it is essential to highlight the difference between the LFM
and GSAI. GSAI is a specialized domain of GenAI focused on
generating spatial data and insights in urban spaces. It encom-
passes various models and techniques tailored for spatial tasks,
such as analyzing and predicting urban flows, analyzing spatial
patterns, optimizing urban spaces, and generating spatial config-
urations. It involves the integration of DL models, geospatial data,
and spatial analysis to address complex urban challenges. The LFM,
on the other hand, is a specialized type of FMs within the domain of
GSAI, specifically designed for analyzing and predicting urban
flows. It is trained on large datasets containing unstructured and
structured spatial data on the movement and distribution of
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mobility, goods, energy, waste, materials, and biodiversity flows in
urban environments. It leverages techniques from DL and, hence,
GenAI models and FMs to capture complex spatiotemporal patterns
in flow data, make predictions about future flows, and analyze
existing ones. Overall, GSAI is the overarching field that involves
various GenAI models and FMs for spatial tasks related to urban
planning and design.

Regarding theoretical relevance, the LFM functions as both a
foundational framework and a computational tool to address
challenges in urban flow modeling within UDT frameworks.
Existing urban planning and design theories have struggled to
capture the dynamic interrelations of urban flows. Making use of
the capabilities of FMs and GenAI, the LFM introduces a novel
approach that integrates generative, adaptive, and predictive ana-
lytics to model and forecast urban flows. This approach provides a
theoretical lens for understanding the interplay between spatial
patterns, flow dynamics, and sustainable development objectives.
For instance, the LFM‘s ability to complete impartial city data and
predict flow sequences challenges traditional assumptions about
data dependencies in urban planning and design. Furthermore, the
LFM redefines urban flow modeling by capturing spatiotemporal
dynamics, interdependencies, and variability across urban systems,
extending theoretical models of urban planning and design. These
contributions fill critical theoretical gaps in urban flow modeling
and establish a robust foundation for exploring GSAI as a paradigm
for sustainable urban development. Addressing these gaps enables
the LFM to advance the development of sustainable smart cities
through improved urban modeling and simulation capabilities.

3. Case study: The Blue City Project

This section provides a descriptive account of the Blue City
Project, which serves as the overarching case study for this
research. Thomas [135] defines cases studies as “analyses of per-
sons, events, decisions, periods, projects, policies, institutions, or
other systems that are studied holistically by one or more methods.
The case that is the subject of the inquiry will be an instance of a
class of phenomena that provides an analytical framedan
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objectdwithin which the study is conducted and which the case
illuminates and explicates.” In this research work, the case study
focuses on analyzing one projectdSubproject 8dof the Blue City
Initiative. Specifically, as regards the analytical framework, while
the focus is on Subproject 8, it is intrinsically linked to other sub-
projects within the Blue City Initiative, as it relies on multimodal
data integration and insights derived from Subprojects 2e6, which
cover key urban domainsdmobility, goods, energy, materials,
waste, and biodiversity. This interconnected framework ensures
that the design and development of the LFM for UDT reflects ho-
listic urban dynamics and supports the overarching goals of sus-
tainable smart city planning and design in Lausanne City. This
illustrative case study provides a detailed examination of the
phenomenon and process within their real-world setting [136,137],
where the former entails integrating the LFM into the UDT frame-
work within the Blue City Project and the latter involves its design
and ongoing development phases. Together, these aspects provide
a comprehensive understanding of the LFM's significance and im-
plications for sustainable urban development. In this context, the
case study outlines the specific characteristics, objectives, founda-
tions, functionalities, processes, and intended outcomes of the LFM
tailored for UDT. Through descriptive accounts, visual aids, and
illustrative examples, it aims to provide a detailed and nuanced
understanding of the phenomenon and process, showcasing the
LFM’s role and potential impact on sustainable smart urban plan-
ning and design in the Blue City Project context.

3.1. Overview, progress, and status

The Blue City Project is an innovative and comprehensive
initiative designed to transform urban planning and management
by developing an advanced UDT framework. Centered in Lausanne
City, Switzerland, the project integrates diverse urban data systems
to enhance interoperability, streamline data workflows, and pro-
mote sustainable urban development. It specifically targets critical
urban challenges, such as optimizing transportation networks,
improving energy efficiency, reducing resource wastage, enhancing
logistical efficiency, and preserving ecological balance. Harnessing
the potential of state-of-the-art technologies and fostering collab-
oration among city planners, engineers, data scientists, policy-
makers, and industry stakeholders, the Blue City Project aims to
create a connected, adaptive, and resilient urban environment that
addresses present-day challenges while anticipating future needs.

Since its inception in 2022, the Blue City Project has achieved
several significant milestones across its various subprojects. Prog-
ress includes the development of an open and secure data platform,
advancements in urban mobility optimization, enhanced supply
chain logistics, improved waste management systems, and the
development of innovative energy management strategies. In
addition, the project has made progress in mapping and analyzing
material flows to better understand urban resource dynamics.
These accomplishments have been driven by the collaborative ef-
forts of city authorities, industry partners, and academic in-
stitutions. Looking ahead, the project aims to refine its tools and
methodologies, enhance the integration of diverse datasets, tackle
emerging urban challenges, address associated risks, and continue
advancing sustainable urban development practices.

3.2. A Brief Description of Eight Subprojects

The Blue City Project involves several interconnected sub-
projects, each focusing on a specific aspect of urban life. These
subprojects are designed to work together, harnessing synergies
and leveraging collaborative dynamics to address a range of urban
challenges (Fig. 3). Examining the relationships between these
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subprojects reveals how the integrated approach enhances the
practical relevance and overall effectiveness of the project. This
interconnected framework ensures that the insights and in-
novations from each subproject contribute to the broader goals of
creating sustainable smart urban environments.

The subprojects of the Blue City initiative are described below,
with a focus on their aim, achievements, and current results:

Subproject 1: Urban Data Platform aims to ensure compati-
bility and interoperability of diverse urban data systems. Devel-
oping the Data Mesh Platform using Kafka enables real-time data
streams, seamless data integration, and secure data exchanges.
Embedded in the Data Mesh Platform is a robust Security System
designed to address data privacy and security concerns, ensuring
that data flows are protected during real-time exchanges. The Data
Storage System complements these capabilities by serving as a
centralized repository for managing static file sharing. It securely
stores essential datasets from Lausanne City and ensures their
availability for reliable retrieval and analysis by researchers across
various subprojects. Together, these integrated systems establish a
robust data collection, integration, and analysis infrastructure. The
project highlights the importance of effectively deploying a scalable
data architecture, embedded security mechanisms, and re-
positories, which serve as the backbone for other subprojects by
providing the necessary resources for their operations.

Subproject 2: Urban Mobility focuses on developing an accu-
rate, fast travel time engine and accessibility measures to enhance
urban mobility planning. Significant achievements include
enhancing the Open Source Routing Machine (OSRM) for high-
accuracy travel time calculations and multi-scale accessibility
measures. These advancements have introduced innovative multi-
scale accessibility measures, allowing detailed evaluation of infra-
structure changes, aiding strategic urban mobility planning. The
results so far indicate improved tools that urban planners can use to
make informed decisions about transportation systems.

Subproject 3: Biodiversity aims to map and understand urban
biodiversity to promote conservation efforts. The integration of
georeferenced biodiversity data and the development of an inter-
active mapping tool have been key achievements. These tools
visualize urban ecological networks, clearly showing how urban
development impacts biodiversity. The project has introduced
methods to assess urban wildlife patterns, and the results have
aided in identifying critical areas for conservation.

Subproject 4: Waste Management is dedicated to analyzing
waste flows and developing resource-efficient strategies. The
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project has developed a GIS platform for visualizing waste gener-
ation and flow and initiated predictive models to forecast future
waste production. These achievements have significantly enhanced
the understanding of urban waste management systems. The
project has set a new standard for data-driven waste management
research, and the results have provided insights into optimizing
waste collection and recycling processes.

Subproject 5: Energy Management aims to create a digital
representation of the energy system to optimize energy flows.
Developing an energy system model linking district- and national-
level systems has been significant. This model allows for detailed
visualization and optimization of energy consumption within
Lausanne. The project has leveraged GIS technology to provide in-
sights into energy distribution, and the results have supported
strategic energy planning and sustainability efforts.

Subproject 6: Material Flows focuses on mapping material
usage, composition, and distribution within the city. Key achieve-
ments include comprehensive mapping of construction materials
and developing GIS tools for visualizing material stocks. These tools
support sustainable building practices and resource management
by providing detailed insights into material flows. The project has
proposed frameworks for incorporating circular economy princi-
ples into urban planning, and the results have facilitated better
decision-making in construction and resource allocation.

Subproject 7: Supply Chain Optimization aims to optimize
urban logistics and enhance delivery services. Developing a Vehicle
Routing Problem (VRP) solver using Branch-Price-and-Cut algo-
rithms has been a significant achievement. This tool helps Swiss-
Post, an industrial partner, determine the optimal fleet composition
and distribution center locations, reducing costs and improving
service quality. The project's collaboration with the City of Lau-
sanne and using data from Sparrows on SwissPost delivery vans
have been instrumental in this achievement. The project has
contributed to logistics optimization research, and the results have
demonstrated considerable improvements in urban delivery
efficiency.

Subproject 8: The Blue City e Multidimensional, AI-assisted
Platform for Proactive City Planning represents the culmination
of the Blue City Project, building on the integrative foundation
established by Subproject 1. It is focused on creating a responsive,
open-source tool for proactive city planning by synthesizing
aggregated data and knowledge from the ancillary subprojects. This
project combines design and data science with AI and DL tech-
nologies, laying the foundation for collective human-machine in-
telligence. This intelligence will empower city governance and
citizens alike, offering deeper insights into urban systems and
enabling the exploration of innovative planning possibilities. The
ultimate goal of Subproject 8 is to develop a new type of multidi-
mensional, openly accessible urban simulation platform. This
platform will support proactive decision-making, promote urban
well-being, and foster sustainable urban solutions. The project aims
to transform strategic planning and innovation in sustainable urban
management by enhancing the ability to understand and anticipate
urban changes.

As part of Subproject 8, significant progress has been made in
designing and developing the LFM, equipped with GenAI capabil-
ities. This advancedmodel is essential for simulating and predicting
various urban flowswhile integrating insights from all contributing
subprojects. At its current stage, the project has successfully
completed the design phase of the LFM and is actively progressing
through its ongoing development, which serves as the focal point of
this study. The LFM is poised to be a transformative tool for un-
derstanding complex urban dynamics and shaping the future of
city planning and management.
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3.3. Synergies and relationships to the urban digital twin
framework

Each subproject within the Blue City Project is designed to
contribute to and benefit from the overarching UDT framework. As
detailed earlier, Subproject 1 provides the essential infrastructure
and data integration capabilities required for all other subprojects,
which is essential for developing the UDT platform.

Subprojects 2e7 function as specialized UDTs focused on spe-
cific urban flows. The synergies among these subprojects enhance
the overall functionality and effectiveness of the Blue City Project in
terms of the underlying UDT framework planned for development,
fostering a holistic and integrated approach to urban management.
For instance, Subproject 4: Waste Management and Subproject 6:
Material Flows complement each other by analyzing materials'
lifecycle and eventual disposal. Insights from waste management
inform sustainable building practices and material recycling stra-
tegies, while material flow data helps optimize waste reduction
initiatives. Subproject 2: Urban Mobility and Subproject 5: Energy
Management interact by examining how transportation systems
influence energy consumption and vice versa, leading to more
efficient and sustainable urban mobility solutions. Subproject 3:
Biodiversity also interrelates with others by assessing how urban
development (informed by mobility and construction data) affects
ecological networks, promoting biodiversity-friendly urban plan-
ning and design. Moreover, Subproject 7: Supply Chain Optimiza-
tion integrates findings from urban mobility and material flows to
enhance the efficiency of logistics and reduce environmental
impact.

3.4. Conception of subprojects as specialized urban digital twins

The subprojects of the Blue City Project, except for Subproject 1
and Subproject 8, are conceptualized as individual UDT platforms,
each focusing on specific facets of urban life. These subprojects
intend to create detailed digital models of urban flows within their
respective domains, leveraging the foundational platform for
analysis and optimization. Their purpose is to deliver actionable
insights supporting proactive urban planning and design and
informed decision-making. Subproject 1 contributes to integrating
these individual UDT platforms, fostering collaboration among
various stakeholders and ensuring seamless connections across
various domains. It is intended to enable the creation of a unified
and interconnected digital representation of the entire City of
Lausanne, which serves as the backbone for comprehensive city-
wide analysis and optimization. Building upon this integrated
platform, Subproject 8 focuses on developing a multidimensional,
AI-assisted tool for proactive city planning and management. By
synthesizing the collective data and insights from all subprojects,
Subproject 8 enables innovative and sustainable urban develop-
ment solutions, setting the stage for a more responsive, efficient,
and resilient urban future.

3.5. Evolving the open data platform into a comprehensive UDT
system

Integrating the Data Mesh Platform, Security System, and Data
Storage System forms the foundation for developing the UDT
platform by combining dynamic and static data flows, enabling
accurate simulations, advanced analytics, stakeholder collabora-
tion, and informed decision-making pertaining to urban planning
and management. This ensures the UDT platform effectively mir-
rors the complexities of the urban environment while maintaining
data integrity and security. In the context of Subproject 8, the UDT
platform requires real-time simulation, modeling, and predictive
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analytics to replicate the behavior and dynamics of the physical
environment it represents. The open data platform plays a critical
enabling role by providing the data infrastructure necessary for the
UDT platform. To transform the open data platform into a func-
tional UDT platform, additional components and processes need to
be incorporated, extending beyond mere data storage and
accessibility:

� Real-time data integration to ensure continuous and up-to-date
monitoring of urban systems.

� Dynamic modeling and predictive simulations to reflect real-
world behaviors and project future scenarios.

� AI and advanced analytics for generating deeper insights and
supporting complex decision-making processes.

� Interactive 3D visualization tools to engage users and explore
urban scenarios effectively.

� Application Programing Interfaces (API) connectivity to inte-
grate with other urban systems and foster interoperability.

� A continuous feedback loop to refine decision-making processes
through iterative improvements.

� Scenario testing and optimization to support proactive urban
planning and resource management.

Incorporating these components enables the open data platform
to evolve into a comprehensive, interactive, and real-time UDT
platform. This system can become a powerful enabler for smarter,
more sustainable urban planning and management, equipping
cities to proactively address challenges, optimize resource alloca-
tion, and enhance operational efficiency. While this enhanced UDT
platform aligns closely with the overarching goals of Subproject 8,
the latter extends beyond platform development to integrate
advanced AI-assisted modeling, such as the LFM, and to foster
collective human-machine intelligence for proactive urban plan-
ning and innovation.

3.6. Justification for the Study’s setting and sample

The Blue City Project in Lausanne City is an ideal setting for this
study due to its multifaceted urban environment, characterized by
integrating diverse urban flows, active engagement with sustain-
ability initiatives, and access to a wide range of high-quality data-
sets across multiple domains. This project exemplifies a
comprehensive sustainable smart city initiative, encompassing
critical urban domains. These characteristics establish it as a stra-
tegic and dynamic testbed for the LFM, enabling the convergence of
advanced data-driven methodologies, namely GenAI, FMs, and
UDT. Moreover, the project fosters collaboration among city plan-
ners, designers, engineers, data scientists, industrial partners, and
policymakers, providing both a rich dataset ecosystem and a
collaborative environment for addressing real-world challenges.
Lausanne City’s strong commitment to sustainability and innova-
tion aligns well with the LFM’s goals of advancing data-driven
decision-making for sustainable smart urban planning and
design, ensuring the study’s practical relevance and theoretical
significance.

The sample for the LFM’s design and ongoing development
phases, detailed in the next section, is derived from data generated
and handled by subprojects 2e7 within the Blue City Project. These
subprojects encompass key urban flows, including mobility pat-
terns, goods transportation, energy consumption, waste manage-
ment, biodiversity metrics, andmaterial usage. These datasets were
carefully selected to align with the LFM’s objectives of modeling
and integrating diverse urban flows. Harnessing multimodal data-
sets across various urban flows enables the LFM to establish a
strong foundation for addressing complex and interconnected
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urban dynamics, facilitating its scalability and adaptability across
diverse urban contexts.

In addition, Lausanne City’s ongoing urban development ini-
tiatives and integration of advanced technological solutions into
urban planning and design make it an exemplary setting for eval-
uating the LFM’s ability to tackle spatial challenges and generate
actionable intelligence. The interconnected nature of the sub-
projects and their emphasis on urban flows ensure that the LFM
undergoes rigorous testing in a real-world, multifaceted urban
context. This setting provides an opportunity to validate the LFM’s
potential to enhance urban resilience and sustainability, offering
theoretical advancements and practical solutions for sustainable
smart city development.

4. Research methodology: Design and Development phases

This study introduces a pioneering FM for urban flows, devel-
oped with GenAI capabilities, specifically tailored for integration
into UDT frameworks. To reiterate, the Blue City Project in Lausanne
City serves as a strategic and dynamic testing ground for the design,
development, subsequent implementation, and validation of the
model’s potential to address spatial challenges and provide
actionable intelligence for urban planning and design. In this study,
the research methodology adopts a phased approach comprising a
completed design and ongoing development phases.

The design phase, which is the primary focus of this study,
outlines the conceptual design of the LFM, aligning it with the
specific requirements of urban flow modeling in complex and dy-
namic environments. The development phase, currently underway
with key milestones projected for 2025, builds upon this design,
refining the model through iterative prototyping, data integration,
and algorithmic enhancements. Together, these phases ensure that
the LFM evolves into a functional, scalable solution that addresses
multimodal challenges in urban systems. The following two sub-
sections detail the methodology for each phase.

4.1. Conceptualizing and planning the large flow model

The design phase lays the groundwork for the LFM, focusing
conceptualizing and planning of its architecture, data handling
strategies, and simulation capabilities to align it with the specific
needs of urban flow modeling in complex and dynamic environ-
ments. This phase follows a structured progression (Fig. 4),
comprising the following components:

4.1.1. Defining objectives and requirements
The design phase begins with a focused effort to set clear ob-

jectives and requirements, forming the foundation for the LFM's
development. This involves precisely defining the urban flows to be
modeled and identifying specific challenges to address. Active
stakeholder collaboration ensures that the LFM's design reflects
real-world needs and priorities. By jointly defining functional and
technical requirements, this phase ensures that the model aligns
with the practical demands of urban planning and design in the
Blue City Project.

4.1.2. Architectural design
Once objectives are defined, the architectural design outlines

the model's structural framework. This involves developing data
flows, storage solutions, and processing pipelines, alongside
selecting appropriate algorithms, such as ML and DL models, sta-
tistical methods, and optimization techniques, to address the
complexities of urban flow modeling. A custom BCA was concep-
tualized as a key component, with an encoder-decoder structure
tailored to handle high-dimensional spatial-temporal data.



Fig. 4. A flow diagram outlining the step-by-step process of the conceptual design of the large flow model.
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4.1.3. Prototyping and initial development
With the architecture defined, this phase validates the LFM’s

conceptual design. This step involves creating preliminary models
and diagrams to visualize the LFM’s structure and simulate its
operation in controlled scenarios. These prototypes serve as a
feasibility test, providing critical insights into potential challenges
and opportunities. For example, the prototypes assess the model's
capability to handle multimodal datasets and its initial perfor-
mance in representing urban flows. Adjustments are made itera-
tively to ensure that the design phase results in a robust and
adaptable framework for subsequent development.
4.1.4. Data abstraction and standardization
Data abstraction and standardization are important in seam-

lessly integrating diverse datasets into the LFM. Abstraction layers
are designed to harmonize data inputs and outputs, creating a
unified structure that accommodates varied urban flow types. In
addition, data protocols and standards are developed to ensure
compatibility across heterogeneous datasets, fostering interopera-
bility and coherence. This step is critical for maintaining consis-
tency and reliability in the LFM's analytical processes, equipping
the model to effectively process and analyze complex urban data-
sets and enhancing its predictive and modeling capabilities.
4.1.5. Simulation and visualization tools design
The design phase focuses on conceptualizing and planning the

simulation modules and visualization tools necessary to translate
the LFM's analytical outputs into actionable insights. This involves
outlining their functionality, purpose, and role. Simulationmodules
are conceptually designed to enable scenario testing, providing a
framework for representing and exploring potential urban dy-
namics (e.g., mobility flow variations, energy demand fluctuations).
The design ensures these modules align with the objectives of the
LFM and the needs of stakeholders. Visualization tools are planned
as intuitive, user-friendly interfaces for representing urban dy-
namics; these tools aim to ensure that stakeholders can later
interact with the LFM’s outputs effectively. They facilitate clarity
and decision-making by providing easily interpretable represen-
tations of the model's analyses.

The design phase culminated in developing a comprehensive
blueprint for the LFM, aligning technical innovations with the ob-
jectives of the Blue City Project. This structured approach sets the
stage for the ongoing development phase, which builds upon the
design phase to refine and implement the LFM. Recognizing the
evolving nature of urban environments, the design prioritized
scalability and adaptability, allowing the LFM to incorporate new
data types and expand its application to other urban contexts. This
flexibility ensures the model remains relevant and robust as urban
challenges and data sources evolve.
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4.2. Ongoing development phase: constructing and refining the
large flow model

The ongoing development phase focuses on transforming the
LFM’s conceptual design into a functional and operational model.
This phase ensures the LFM evolves into a robust tool for urban flow
modeling and analysis by integrating outcomes from the design
phase with real-world data and insights from the Blue City Project.
The process follows a structured progression (Fig. 5), comprising
the following components:

4.2.1. Prototyping and building
This stage involves constructing and refining initial prototypes

of the LFM, guided by the detailed blueprint developed in the
design phase. Developers test the feasibility and functionality of
preliminary versions of the model, iteratively refining and
improving them based on performance feedback and stakeholder
insights. A key focus is scalability and flexibility planning, which
ensures the model’s modular architecture, optimized data
handling, and ability to generalize across diverse urban contexts.
These efforts prioritize adaptability and robustness, enabling the
LFM to address emerging challenges in both localized and broader
urban scenarios effectively.

4.2.2. Data collection and integration
A critical aspect of the development phase is gathering and

integrating diverse datasets from subprojects 2e7 of the Blue City
Project. These datasets include mobility patterns, goods trans-
portation, energy consumption, waste management, biodiversity
metrics, and material usage. The datasets are harmonized through
data abstraction and standardization processes to ensure interop-
erability and consistency across formats, temporal resolutions, and
spatial scales. This integrated framework enables the LFM to pro-
cess and analyze multimodal urban flows efficiently, forming the
backbone of its predictive and analytical capabilities.

4.2.3. Algorithm implementation
The coding and integration of algorithms identified during the

design phase are central to this component. Developers ensure
seamless interaction between algorithms and datasets, conducting
rigorous testing to verify accuracy, reliability, and scalability. Al-
gorithms are fine-tuned to optimize the LFM’s ability to simulate
and predict urban flows under various conditions, ensuring robust
performance across dynamic urban scenarios.

4.2.4. Simulation and visualization development
In the development phase, the focus shifts from planning to

practical implementation and refinement of the simulation and
visualization tools. Simulation modules are actively developed to
model specific, complex urban scenarios, such as traffic flow opti-
mization, energy distribution planning, or waste management
strategies. These modules are programmed and iteratively refined
to deliver actionable insights grounded in real-world data.



Fig. 5. A flow diagram outlining the step-by-step process of the ongoing development of the large flow model.

Fig. 6. Goal of the large flow model.
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Concurrently, visualization tools are built to translate the LFM's
outputs into interactive, user-friendly formats. These tools enhance
stakeholder understanding by bridging the gap between complex
analytics and evidence-based decision-making, providing acces-
sible visual representations of urban dynamics and predictions.
Worth noting is that while the design phase conceptualized the
functionality and purpose of simulation and visualization tools, the
development phase emphasizes their usability and alignment with
stakeholder needs, improving the LFM’s interpretability and
applicability in real-world contexts.

4.2.5. Validation and verification
Validation ensures the LFM’s reliability and accuracy by testing

its outputs against real-world data from the Blue City Project. Initial
validation assesses on the model’s ability to produce realistic and
actionable insights, while verification confirms that all components
function cohesively. Stakeholder feedback and testing results guide
iterative refinements, ensuring the LFM’s adaptability to varying
urban contexts.

4.2.6. Documentation and training
Comprehensive documentation supports the operationalization

of the LFM, detailing the development process, algorithms, data
integration methods, and validation outcomes. Moreover, training
materials are prepared to familiarize stakeholders with the LFM’s
functionalities and applications. These materials empower users to
leverage the model effectively, promoting its adoption in urban
planning and design practices.

The ongoing development phase builds upon the completed
design phase by constructing and refining the LFM through itera-
tive testing and feedback. This phase ensures that the LFM evolves
into a reliable and scalable model for urban flow analysis by inte-
grating diverse urban datasets, developing advanced algorithms,
and creating simulation and visualization tools. These efforts
contribute to the Blue City Project's objectives of fostering sus-
tainable, data-driven urban planning and design solutions.

5. Results: Introducing the pioneering LFM as part of
subproject 8 of the Blue City Initiative

This section presents the results and progress of the LFM within
the Blue City Project. It focuses on the LFM's design, ongoing
development, and its application inmodeling and optimizing urban
flows to address critical urban challenges. It details the completion
of the LFM’s design phase providing a solid conceptual foundation
and outlines the ongoing development efforts. The LFM culminates
in a comprehensive framework by integrating city flow data,
structures, and cutting-edge technologies. These efforts are guided
by the goal of creating a functional and scalable tool for urban flow
modeling, with the initial prototype targeted for release in 2026.
The section also highlights how the LFM is being tested and refined
through real-world data from the Blue City subprojects, demon-
strating its potential to enhance sustainable urban planning and
evidence-based decision-making.
15
5.1. Goal and objectives

The LFM stands at the forefront of urban planning and design
innovation, as it harnesses the power of FMs and GenAI to trans-
form how we conceptualize and manage urban environments. It
combines techniques from GenAI and FMs with spatial data to
generate new insights and predictions about physical spaces and
structural flows. Its goal is to learn meaningful representations of
existing city flow data from different locations to generate new
flow data for specific locations (Fig. 6).

Within this overarching goal, the LFM pursues the following
specific objectives:

(1) Completing impartial city data: The incomplete and biased
nature of urban data has been a persistent issue. The LFM can
assist in filling the gaps in urban data, providing compre-
hensive, unbiased information about cities.

(2) Estimating flow data for new locations: Understanding and
predicting the movement of people, vehicles, and resources
is crucial for urban planning, logistics, and disaster man-
agement. The LFM can contribute to more accurate flow data
estimations, even in locations lacking historical flow data.

(3) Forecasting the evolution of flow data: As cities and spaces
evolve, the dynamics of flows change. The LFM has the po-
tential to predict how these flows will evolve in time, sup-
porting informed decision-making and proactive planning.

(4) Holistic urban understanding: Traditional urban data anal-
ysis methods focus on specific areas or aspects of urban life,
resulting in a fragmented understanding of the city's dy-
namics and interactions between different components. The
LFM combines diverse datasets and analytical techniques to
provide a holistic understanding of urban dynamics and their
interconnections, enabling planners to consider the broader
context and implications of their decisions.



Fig. 7. Pretraining the large flow model.
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5.2. The Blue City large flow model

5.2.1. LFM pretraining
The construction of the Blue City LFM involves several steps

(Fig. 7). The process initiates with collecting structural and dynamic
flow data. These data then undergo a step of data selection and
standardization, followed by preparation of training input,
including the incorporation of input embeddings and positional
encoding. These refined data are then used to pre-train a founda-
tional model capable of discerning complex urban flow patterns
using the BCA.
5.2.2. Fine tuning
The LFM uses supervised and self-supervised learning tech-

niques to fine-tune and optimize the model for specific down-
stream applications (Fig. 8).

Supervised learning involves training themodel on labeled data,
where it learns to map input features to target outputs, enabling it
to make predictions based on new input data. Furthermore, the
supervised learning component of the LFM will benefit from the
guidance of Blue City domain specialists in various urban flows.
These experts will provide supervision by validating and anno-
tating datasets, ensuring the models align with real-world patterns
and challenges.

On the other hand, self-supervised learning leverages unlabeled
data to generate auxiliary tasks, allowing the model to learn useful
representations and patterns of the input data without requiring
extensive manual annotation. This approach uses pretext tasks to
create pseudo-labels from the data, enabling the model to learn the
underlying structures and dependencies. For example, the LFM
might predict missing segments in time-series traffic data or
Fig. 8. Fine-tuning the large flow model.
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reconstruct energy flow distributions from incomplete records,
using contrastive learning or masked autoencoders. Self-
supervised learning enhances the model's ability to generalize
across diverse datasets and urban contexts by focusing on tasks like
temporal forecasting or spatial interpolation. Overall, the dual
approach empowers the LFM to adapt and evolve according to the
unique requirements of various urban planning and design tasks,
ensuring its versatility and effectiveness across different applica-
tion domains.
5.2.3. Stimuli and downstream applications
The LFM uses the fine-tuning technique to generate outputs

based on specific inputs (“stimuli”) (Fig. 9). It applies the learned
knowledge and patterns acquired during the model’s fine-tuning
phase to respond with new and unique content. Through post-
processing and visualization techniques, the output is rendered
human-readable.

The introduction of FM for urban flows in the context of GSAI
represents a significant shift in urban modeling. With its ability to
provide a more accurate, comprehensive, and timely picture of
urban dynamics, the LFM provides a comprehensive view of urban
ecosystems, surpassing the capabilities of traditional data collec-
tion methods. This enables stakeholders to construct a complete
and nuanced picture of urban landscapes, capturing previously
overlooked or inaccessible aspects. This approach considers the
interplay between different urban flows and their cumulative
impact, providing a holistic understanding of how cities function.

The LFM aligns closely with the objectives of UDT initiatives,
which offer urban planners and designers’ novel insights into the
impacts of various interventions and strategies. UDT can enhance
data-driven decision-making by integrating an LFM into their
frameworks, fostering more resilient and efficient urban develop-
ment pathways. The LFM holds significant promise for infrastruc-
ture planning, policy implementation, and addressing social trends
by providing detailed insights into urban flow patterns and their
spatial-temporal dynamics. As sustainable smart cities evolve,
incorporating the LFM into UDT can transform how cities are
planned, developed, and managed in the future.

More recently, research has begun to explore the integration of
FMs into UDT applications, highlighting their potential to enhance
predictive analytics, adaptive learning, and the management of
complex datasets. This integration underscores their ability to
improve decision-making accuracy and reliability within UDT sys-
tems by leveraging advanced learning capabilities. As part of this
practical endeavor, this study demonstrates the benefits of this
integration, such as enabling more informed and timely decisions
through comprehensive multimodal data analytics and predictive



Fig. 9. Inference: Downstream application triggered by stimuli.
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insights. It positions the convergence of FMs and UDT as a trans-
formative advancement in the application of AI for urban planning
and design.

5.3. The core elements of the large flow model

This subsection presents the foundational components of the
LFM, emphasizing how it processes diverse urban datasets and
integrates advanced modeling techniques. To ground this discus-
sion, it is important to clarify the primary terminologydstructures,
flows, and dependenciesdthat underpins the model’s conceptual
design. Fig. 10 provides a simplified representation of the core
concepts driving the LFM. Structures represent the physical and
visible objects of the urban environment. Flows depict the move-
ment of people, goods, energy, waste, materials and information
between these structures, reflecting the dynamic nature of urban
systems. Dependencies highlight the interactions and influences
between structures and flows, illustrating the cascading effects
they can have on each other. This terminology underpins the LFM's
ability to effectively model complex urban systems and predict
interrelated urban dynamics.

The LFM is built upon a foundation of data collection and ag-
gregation, data abstraction and standardization, and the BCA for DL
model training.

5.3.1. Data collection and aggregation
The first step in the LFM process is collecting and aggregating

diverse data types that capture the various aspects of urban life.
These data form the basis for all subsequent analysis and modeling
in the LFM. The project utilizes diverse data sources to inform and
train the LFM. Examples of these data sources include waste flow
data from a large municipal waste management service, energy
flow data from a major regional energy provider, traffic data from a
national roads office and open mapping platforms, and materials
flow data from construction and recycling databases managed by
urban planning authorities. These sources provide context-specific
data to enable the modeling of urban dynamics. The datasets
collected from the Blue City subprojects serve as the foundation for
the ongoing development efforts. These data, categorized into three
Fig. 10. Structures, flows, and dependencies as core terminology underpinning the
large flow model.
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main typesdflow data, structural data, and flow descriptorsdare
being integrated and processed to validate the LFM's ability to
model complex urban flows, providing real-world feedback for
iterative refinement.
5.3.1.1. Flow data. As vital components of city life, Flow Data are
crucial in understanding the dynamic aspects of urban environ-
ments. In the Blue City Project, these data are sourced using
advanced tools, systems, or methods, in collaboration with indus-
trial partners and Lausanne City.

� Flow of people: Data on how people move around the city are
collected through IoT devices, mobile phone signals, public
transportation systems, and pedestrian counters. These data
help understand commuting patterns, pedestrian traffic, and
population density fluctuations throughout the city.

� Flow of vehicles: Information about vehicular flow, congestion
points, and overall traffic patterns is gathered from traffic
cameras, road sensors, and vehicle GPS data. These data are
instrumental in understanding and managing traffic flows and
transportation networks.

� Flow of goods: Themovement of goods within the city is tracked
through GPS-enabled transportation vehicles and freight man-
agement systems. These data provide insights into delivery
routes, logistics hubs, and supply chain networks, which are
critical for efficient city logistics.

� Flow of energy: Data on the distribution and consumption of
electricity, water, and gas are collected from smart meters and
utility monitoring systems. These data are key to managing ur-
ban energy and utilities infrastructure effectively.

� Flow of waste: Waste collection routes, recycling centers, and
landfill activities are monitored through waste management
systems and sensors on collection vehicles, providing important
data for efficient waste management in the city.

� Flow of biodiversity and nature: These data track the presence
and movement of wildlife within urban areas, as well as the
distribution of green spaces like parks, gardens, and natural
reserves. Techniques such as wildlife cameras, environmental
DNA sampling, and biodiversity surveys are utilized. These data
help understand the interactions between urban development
and natural ecosystems, aiding in creating sustainable urban
landscapes that support biomediation and biodiversity.
� Flow of Materials: This includes tracking the inflow and
outflow of construction materials within the city, alongside
data on urban mining potentials for promoting circular con-
struction practices. Sources include construction project logs,
tracking of material shipments, and assessments of buildings
and infrastructure for recyclable materials. These data help
manage resources efficiently and foster sustainable con-
struction practices by maximizing the reuse and recycling of
building materials within the city.
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5.3.1.2. Structural data. Structural Data pertain to the city's physical
infrastructure and provide the static framework upon which the
dynamic flows interact. These data type include detailed informa-
tion about the city's built environment:

� Road networks: Detailed information about the city's road
networks, including types of roads, lane structures, in-
tersections, and traffic signals, is sourced frommapping services
like OpenStreetMap and government GIS databases. These data
are essential for understanding the city's transportation
infrastructure.

� Buildings and land use: Data on buildings (e.g., residential,
commercial, or industrial), including their types, sizes, usage,
and zoning information, are obtained from city planning de-
partments and satellite imagery. These data help understand the
spatial layout and functionality of different urban areas.

� Public spaces: Information about parks, plazas, and open areas,
including their sizes, locations, and amenities, is crucial in un-
derstanding the city's public spaces and their role in urban life.

� Utility infrastructure: The location and capacity of utility infra-
structure, such as water pipes, electrical grids, and telecom-
munications networks, are mapped to understand the city's
essential services and their distribution.

� Topographical Features: Detailed information about the city's
topography, including elevation levels, slope gradients, and
geological features, is collected through GIS, satellite imagery,
digital elevation models (DEMs), and Light Detection and
Ranging (LiDAR) data.
5.3.1.3. Flow descriptors. Flow Descriptors are metadata elements
that enrich the Flow and Structural Data, providing additional
context and aiding in categorizing and understanding various flow
types. These descriptors include temporal information, spatial de-
scriptors, categorical tags, and qualitative descriptors:

� Temporal information: Data are time-stamped to indicate when
specific flows occur, helping to identify patterns and trends over
time.

� Spatial descriptors: Geographic coordinates and area de-
scriptions provide spatial context to the flows, allowing for a
detailed understanding of how different parts of the city are
connected and interact.

� Categorical tags: Keywords and labels categorize data into
different flows, such as residential versus commercial traffic or
renewable versus non-renewable energy sources, offering a
clearer understanding of the data.

� Qualitative descriptors: Descriptive information provides qual-
itative insights into the flows, such as congestion levels in traffic
data or pedestrian friendliness in urban design.

5.3.2. Data abstraction and standardization
Once the diverse range of data is collected and aggregated, the

next step is to prepare these data for pretraining the LFM. This stage
involves two primary processes (Fig. 11): data abstraction and
standardization, which ensure that the data are in a format that is
compatiblewith analytical tools and conducive to effective analysis.
The abstraction and standardization processes described here build
on the data integration steps, where diverse datasets from the Blue
City subprojects are harmonized into a consistent format. These
ongoing efforts enable the LFM to handle multimodal data and
generate meaningful predictions.

5.3.2.1. Data abstraction. In data abstraction, complex and hetero-
geneous data are converted into a uniform format that is suitable
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for analysis. Given the varied nature of urban data sources, this step
is critical for harmonizing the different data types into a cohesive
dataset.

� Format harmonization: The first aspect of data abstraction in-
volves converting data into a consistent format. Urban data
come in various formats, such as text, numbers, and dates.
Format harmonization ensures that all these data types are
standardized, making them compatible for combined analysis.

� Data integration: Another key aspect of data abstraction is data
integration frommultiple sources. This process involves aligning
data from different systems to create a unified dataset.

� Aggregation and disaggregation: Data are aggregated to a higher
level or disaggregated to a more detailed level. For example,
individual traffic data points can be aggregated into hourly
trends, or regional data could be broken down into insights at
the neighborhood level.

� Handling anomalies and Outliers: Identifying and addressing
data anomalies and outliers is important to data abstraction.
Anomalies and outliers can skew analysis results, so filtering out
extreme values or apply statistical methods to adjust the data
accordingly is essential.
5.3.2.2. Data standardization. Standardization data are prepared to
train the LFMs effectively. This step ensures that the data are in a
state that allows for accurate and reliable modeling.

� Normalization and scaling: One of the first steps in standardi-
zation is to adjust the range of data values to be on a similar
scale. This normalization or scaling processdusing techniques
such as min-max scaling or z-score normalizationdprevents
features with larger scales from dominating the model's
learning process.

� Handling missing data: Addressing gaps in the data is another
critical aspect of standardization. Missing data can occur for
various reasons, such as sensor malfunctions or incomplete re-
cords. Techniques to handle missing data include imputation
(filling in missing values), using indicators for missing data, or
omitting records with missing values altogether.

� Encoding categorical variables: Urban data often include cate-
gorical variables, such as city names or types of roads. These
variables are encoded numerically using one-hot encoding or
label encoding methods.

� Feature engineering: Creating new features or modifying
existing ones can enhance the model's ability to capture
important patterns and relationships in the data. Feature
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engineering involves combining features, creating ratios, or
deriving statistical summaries from the data.

Through data transformation and standardization, the LFM en-
sures that the diverse and complex data collected from urban en-
vironments are refined into a machine-processable, consistent, and
analytically valuable dataset.

5.3.2.3. Data preprocessing pipeline. The data preprocessing pipe-
line of the LFM is designed to handle the diverse and complex
characteristics of urban flow data, ensuring compatibility for
training and integration into the BCA. This pipeline incorporates a
series of structured steps that refine and transform raw data into
standardized formats, enabling seamless integration and analysis
within the model's framework. Below are detailed clarifications on
the preprocessing approach, including standardization techniques,
examples of data formats, and interfacing protocols for researchers.

Diverse datasets, including traffic counts, energy consumption,
and waste generation, undergo systematic transformations such as
normalization (e.g., min-max scaling for numerical flows) and
encoding (e.g., categorical variables like waste types or vehicle
categories). These preprocessing steps mitigate data variability,
ensuring the model’s learning processes remain effective. Com-
bined with spatial and temporal alignment techniques, these
transformations enable seamless data integration from multiple
subprojects into the LFM, supporting robust analysis and accurate
predictions.

For spatiotemporal standardization, temporal data are aligned
into sequences with fixed intervals (e.g., hourly or daily), while
spatial data are mapped onto a unified grid format using GIS tools,
ensuring consistent spatial resolution. For instance, traffic flow data
from sensors are aggregated as hourly counts and mapped to a
100x100 spatial grid, while waste collection data are encoded as
volume metrics per zone, aligned with the same spatial grid
structure.

Standardized data formats used in the LFM include represen-
tations like traffic flow data (e.g., timestamp, grid_id, vehi-
cle_count), energy usage data (e.g., timestamp, grid_id,
energy_consumed_kWh), and waste generation data (e.g., time-
stamp, zone_id, waste_volume_m3, waste_type). These standard-
ized formats ensure alignment with the LFM’s positional and
temporal encoding requirements, facilitating precise analysis and
prediction.

Preprocessing is an integral component of the LFM framework,
featuring a modular pipeline that harmonizes raw data from
diverse sources. Researchers interfacing with the LFM can utilize
API endpoints or provided scripts, which specify input data re-
quirements (e.g., format, resolution, encoding) and preprocessing
configurations. For instance, traffic data can be formatted as time-
stamp, grid_id, vehicle_count, and pre-processed for direct inges-
tion into the LFM. This structured preprocessing pipeline ensures
data compatibility and consistency and enhances the analytical
value of the dataset, laying the foundation for robust and reliable
urban flow modeling.

5.3.3. The Blue City autoencoder
Training the LFM involves employing a custom Autoenco-

derdthe BCAda specialized DL architecture designed for City Flow
modeling. As a GenAI model, the BCA leverages generative AI
techniques to learn complex urban flow patterns, create mean-
ingful representations, and simulate new scenarios. This enables
the LFM to predict and analyze urban dynamics, making it a critical
component of the overall framework. The current architecture of
the BCA reflects the iterative prototyping process, where pre-
liminary designs are tested and refined to handle structured and
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unstructured urban flow data effectively. Feedback from these tests
informs ongoing improvements in its encoder-decoder structure.

The BCA is tailored to learn from these two data formats, much
like autoencoders used in NLP and image recognition. However, it is
specially adapted for the spatiality, complexities, and nuances of
urban data flows. It consists of two main components: an encoder
and a decoder. The encoder compresses the input data into a lower-
dimensional representation, capturing the essential features and
patterns. The decoder reconstructs the data from this compressed
representation, allowing the model to learn a robust and mean-
ingful representation of the urban data. The conceptual design
being explored for the BCA is outlined below. These elements are
not finalized but represent our current approach, subject to
adjustment as we proceed with the implementation and experi-
mentation phase.

� Encoder Architecture: The encoder is planned to leverage a
combination of a stacked CNN for structured data (e.g., street
networks or infrastructure data from OpenStreetMap) and a
bidirectional transformer layer for unstructured data (e.g.,
temporal or semantic flows of energy, waste, people, vehicles).
Positional encoding is integrated into the design to retain the
spatial context of data, which is anticipated to be crucial for
capturing both spatial patterns and temporal dependencies.

� Decoder Architecture: The decoder is designed to mirror the
encoder, incorporating an attention mechanism to prioritize
significant features derived during encoding. For example, a
significant feature might include a temporal spike in traffic
volume at a key urban intersection during peak hours. This
feature could indicate patterns of congestion or bottlenecks that
are critical for predicting future traffic flows or evaluating the
impact of interventions like alternative routes or introducing
low-traffic zones. Its role is to iteratively decode spatial-
temporal representations, ensuring fidelity to the input distri-
bution while remaining adaptable for extrapolated scenarios.

The envisioned architecture includes custom embedding layers
to integrate metadata, such as geographic coordinates and tem-
poral stamps. These features enhance the model's ability to
generalize across diverse urban contexts. For example, a flow
segmentmight include the latitude and longitude of a traffic sensor,
allowing the model to contextualize the data spatially. Data points
could include timestamps, enabling the model to capture daily or
seasonal patterns, such as increased energy consumption during
winter months.

We are planning to tag flow data with categories (e.g., "waste
type: plastic" or "vehicle type: bus"), allowing the model to
differentiate between distinct flow types and prioritize relevant
features.

The latent space of the model will be tuned for high-
dimensional spatial and temporal features, potentially leveraging
domain-specific loss functions to align with urban flow datasets.

� The latent space is envisioned to accommodate high-
dimensional spatial and temporal features, tailored for urban
data. For example, urban flows like pedestrian movement may
require the model to capture dependencies between proximity
to amenities (e.g., parks or train stations) and time-of-day pat-
terns. Energy consumption might require correlations between
peak usage periods and building types (e.g., residential vs.
commercial), emphasizing the temporal-spatial relationship in
latent feature representation.

� The autoencoder's training process could employ loss functions
tailored to urban data types. For example, for traffic flow data, a
weighted loss function could prioritize minimizing errors in
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high-traffic regions (e.g., major intersections or highways) while
allowing greater tolerance for low-traffic areas. The model
might use a spatial continuity loss for biodiversity flows to
ensure that reconstructed data preserve ecological connectivity
across green corridors.

This conceptual design reflects the intended capabilities of the
LFM to handle diverse data modalities and predict urban dynamics
effectively. However, we recognize that specifics, including
network configurations and parameter tuning, will be iteratively
refined as we begin implementation and experiment with various
urban data types and use cases. This iterative process will ensure
the architecture adapts optimally to the requirements and chal-
lenges of urban flow modeling.
5.3.3.1. Input embedding and positional encoding. As with ChatGPT,
which predicts or generates new word sequences based on
prompts, the BCA learns from abstracted city data similar to how
regular autoencoders learn from text documents (word constella-
tions) and images (pixel constellations). The BCA entails specific
input embedding and positional encoding for urban flows (Fig. 12).
Input embedding and positional encoding enable the LFM to
extrapolate from known data and factor in the spatial and temporal
dimensions that are crucial for accurate predictions. For example,
training on the typical traffic flow duringmorning rush hours or the
distribution of pedestrian movement on weekends allow the LFM
to forecast changes in these patterns in response to new infra-
structure developments, policy implementations, or social trends.

Input embedding transforms urban flow data into a format that
DL models can efficiently process and analyze. Converting each
element of urban flow data (flow fragment) into numerical repre-
sentations known as vector embeddings enables the BCA can
handle complex urban phenomena in a structured and analyzable
manner. For instance, the distance of a particular flow fragment to a
hypothetical center point of a city could be encoded as part of its
vector embedding. When embedded alongside other relevant
characteristics (e.g., structural data and other flow data), this spatial
information provides a rich, multidimensional representation of
urban flows. Such embeddings allow the LFM to discern the sig-
nificance of spatial relationships and flow dependencies.

Positional encoding involves embedding positional information
in space and time into the data, enabling the LFM to understand the
sequence and context of urban flows. By integrating positional
encoding, BCA can accurately capture the unique positional char-
acteristics of particular city flows, such as the movement of people,
vehicles, and goods, for different locations. These contextualized
data allow the models to recognize patterns and dependencies in
existing flow sequences. Leveraging this comprehensive under-
standing, the LFM can predict future urban flow sequences with
increasing accuracy.
5.3.3.2. Learning features. During the training process, the BCA’s
primary task is to extract meaningful features, dependencies and
Fig. 12. Details of the encoding process (Blue City Autoencoder).
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patterns from the urban flow data. This learning process is essential
for effectively representing and understanding the complex in-
teractions and dynamics of urban flows.

� Pattern recognition: The BCA learns to identify recurring pat-
terns and relationships within the data, such as traffic conges-
tion trends, pedestrian movement patterns, or energy
consumption cycles.

� Anomaly detection: The BCA recognizes unusual or atypical
events. Identifying anomalies is important for detecting issues
or opportunities for intervention in urban management.

� Dimensionality reduction: Reducing the complexity of the data
to its most informative features facilitates more efficient and
accurate analysis through BCA. This dimensionality reduction
process is key to managing and interpreting large-scale urban
data.

� Generalization Ability: the BCA develops the ability to gener-
alize learned patterns to new, unseen data. This generalization is
critical for predicting future urban dynamics based on past and
present data.
5.3.3.3. Generalization features. Generalization denotes the LFM’s
capacity to perform effectively on new, unseen data that were not
part of the training dataset, based on new contexts or stimuli
(Fig. 13). This ability is fundamental for the predictive accuracy and
reliability of the LFM, especially when making forecasts about
future urban dynamics based on past and present data.

In the context of GSAI, the generalization ability of the LFM is of
particular significance due to the dynamic and continuously
evolving nature of urban environments. Cities are complex systems
where conditions can change rapidly due to various factors such as
economic shifts, policy changes, infrastructure developments, and
societal trends.

The LFM’s ability to generalize ensures that it can adapt to new
scenarios and changes within the city that were not explicitly
present in the training data. For instance, the LFM can predict traffic
patterns in response to stimuli, e.g., a new transportation policy or
assess the impact of a new commercial development on pedestrian
flows.
Fig. 13. Generalization features of the large flow model: illustration of its inferring
dependencies from structural, energy, and traffic flow data in a first Location 1 as a
basis for estimating flow data in Location 2.
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Generalization further enables the LFM to provide predictive
insights into future urban dynamics. The model can forecast how
these dynamics might evolve in response to various stimuli or
changes by understanding the fundamental patterns and relation-
ships that govern city flows. Urban data are characterized by high
variability and complexity. The generalization ability of the LFM
allows it to navigate this variability, ensuring that its predictions
remain robust and relevant despite fluctuations in data.

Developing and maintaining a strong generalization ability in
the LFM involves several key considerations:

� The training dataset should be as diverse and representative as
possible, encompassing various urban conditions, scenarios, and
data types. This diversity helps the model learn more universal
patterns that apply to various situations.

� Implementing regularization techniques during training pre-
vents the model from overfitting to the training data. Tech-
niques such as variational dropout, weight decay, or early
stopping ensure that the model learns general patterns rather
than memorizing specific data points.

� Using cross-validation methods during model training and
evaluation helps assess the model's generalization ability.
Training and testing the model on different subsets of the data
makes it possible to gauge how well the model performs on
unseen data.

� Continuous learning and updating are essential for adapting to
the dynamic nature of urban environments. Regularly updating
the model with new data and retraining it will help maintain
and improve its generalization ability over time.

In sum, the LFM leverages GenAI and, hence, an advanced DL
architectures to generate spatially accurate representations of the
urban environment, enabling planners and policymakers to simu-
late and analyze various scenarios for sustainable smart city
development. Through its adaptive learning and predictive capa-
bilities and data-driven insights, the LFM holds significant potential
for informing evidence-based decision-making and shaping the
cities of tomorrow.
5.4. Ongoing development progress and future endeavor and
potential

The development phase of the LFM, which is currently under-
way, builds upon the completed design phase and focuses on the
construction and refinement of the LFM. Key progress so far in-
cludes the initial integration and standardization of diverse data-
sets from Blue City subprojects and the iterative prototyping of the
BCA. These efforts aim to establish a robust and scalable model
capable of accurately representing and predicting urban flows,
while also addressing the intricacies of multimodal urban data.

The datasets utilized during this phase encompass a wide range
of urban flows. The integration and harmonization of these datasets
are ongoing, ensuring consistency across varying formats, temporal
resolutions, and spatial contexts. These processes allow the LFM to
construct meaningful representations of urban systems, capturing
spatial-temporal dependencies critical for planning and decision-
making. Future work will build on these steps to refine the LFM.
Specifically, the development phase will prioritize:

(1) Refining the BCA architecture: Enhancements will improve
the encoder-decoder structure to handle high-dimensional
data more effectively, incorporating advanced features such
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as domain-specific loss functions and expanded latent space
capabilities to capture urban dynamics better.

(2) Expanding simulation modules: Simulation capabilities will
be developed to model complex urban scenarios, such as
traffic congestion mitigation strategies, energy optimization,
or biodiversity conservation efforts, providing actionable
insights for policymakers.

(3) Advancing visualization tools: Interactive tools will be
created to translate the model’s predictions and simulations
into user-friendly outputs, enabling stakeholders to explore
urban flow scenarios visually and intuitively.

(4) Increasing scalability: The LFM will be scaled to incorporate
datasets from other cities within Switzerland and beyond,
allowing for broader applicability and ensuring its adapt-
ability to diverse urban contexts and challenges.

The LFM presented in this study is designed as a foundational
architecture for urban flows, trained and tested on the Blue City
Project’s diverse datasets. While the model’s current scope is
localized, its scalability-oriented design ensures the potential for
deployment in other cities across Switzerland, Europe, and Asia.
The iterative nature of its development, combined with its modular
architecture, positions the LFM to evolve into a comprehensive FM.
This evolution will be achieved through further training on diverse
datasets, integrating new data sources (e.g., IoT sensors and net-
works, environmental data, socio-economic data, etc.), and imple-
menting continuous learning techniques to keep the model
adaptive and relevant.

Ultimately, these features underscore the LFM’s potential to
address critical urban challenges on a larger scale. The LFM will
empower urban planners, policymakers, and researchers to tackle
issues such as rapid urbanization, climate resilience, and resource
optimization with high precision and foresight by providing
advanced tools for data-driven decision-making. As the develop-
ment phase progresses toward the release of the initial prototype in
2026, the LFM continues to pave the way for more sustainable,
efficient, and resilient urban environments in line with the overall
goal of the Blue City Project.

5.5. Synthesis of the outcomes of the Blue City Project case study
into a conceptual model

The outcomes of the Blue City Project case study have been
synthesized into a conceptual model that captures the key com-
ponents of urban flowmodeling and simulation as applied through
the LFM (Fig. 14). The model is structured around five inter-
connected layers, each representing critical processes and func-
tionalities that underpin the LFM. Derived from the design and
ongoing development phases of the LFM, it highlights its potential
to address spatial challenges and promote environmental sustain-
ability. This synthesis serves as a culmination of the case study
findings, showcasing the relevance and applicability of the LFM to
sustainable urban planning and design.

The conceptual model derived from the Blue City Project Case
Study demonstrates the innovative potential of the LFM by orga-
nizing the findings into a cohesive five-layer framework. It em-
phasizes the importance of integrating diverse urban datasets,
employing advanced modeling and simulation techniques, and
generating predictive analytics to address the inherent complex-
ities of urban environments. Harmonizing and standardizing data
while focusing on actionable insights, the model offers a scalable
and adaptable framework for broader applications in sustainable
urban development. This synthesis underscores the LFM's practical
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relevance within the Blue City Project and establishes a foundation
for future research and enhancements. The conceptual model
represents a key step forward in developing advanced UDT tools by
supporting cities in achieving resilience, and environmental
sustainability.

6. Discussion

Urban planning and design increasingly rely on innovative
technologies, such as UDT, GenAI, and FMs, to tackle the multifac-
eted challenges of rapid urbanization and ecological pressures.
Within this landscape, this study introduces a pioneering LFM to
enhance the computational and predictive capabilities of UDT
frameworks. The LFM is specifically designed to support sustain-
able smart city planning and design, addressing critical urban dy-
namics and providing actionable insights in the context of the Blue
City Project in Lausanne City. This section presents a comprehen-
sive discussion of the findings, emphasizing the implications, lim-
itations, and challenges encountered, alongside recommendations
for future research and development.

6.1. Summary of findings and interpretation of results

The findings underscore the potential of the LFM, specifically
tailored for UDT, to effectively model and analyze complex urban
flows encompassing a wide array of dynamics within urban envi-
ronments. The LFM enables a comprehensive understanding of
spatial and temporal urban dynamics by integrating diverse data
streams. Analyzing urban flows provides critical insights into how
various city areas are utilized and how their usage evolves.
Furthermore, the LFM can identify high-activity zones, highlighting
areas of concentrated human, economic, and social activities. This is
critical for the assessment of urban vitality and the optimization of
resource allocation.

The findings also illustrate the LFM’s ability to inform sustain-
able urban planning and design by providing data-driven insights
into the spatial distribution and temporal fluctuations of urban
systems. Integrating these flows supports evidence-based decision-
making, enabling urban planners to address environmental chal-
lenges, such as energy efficiency, emissions reduction, and
ecological preservation. Moreover, the LFM's adaptability allows it
to account for the dynamic nature of cities, offering a solid frame-
work for predicting and managing future urban transformations.
This study demonstrates the critical role of advanced modeling and
simulation tools in enabling cities to adapt to complex and inter-
connected challenges. It highlight the value of augmenting UDT
functionalities to create more sustainable, resilient, and efficient
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urban environments through adaptive learning, comprehensive
data analysis, and predictive capabilities.

Building on these foundational insights, the discussion delves
into the LFM's specific role in addressing urban challenges,
emphasizing its adaptability and applicability within the Blue City
Project. In this context, the findings emphasize the LFM’s ability to
estimate flow data in unmonitored locations and predict the evo-
lution of urban flows, showcasing its potential as a critical resource
for long-term strategic planning and proactive urban management.
The design phase has ensured that the LFM is scalable and flexible,
enabling it to accommodate future expansions and integrate new
data streams. This robustness lays the groundwork for adaptability
to the ever-evolving conditions of urban environments. Moreover,
the LFM offers a holistic perspective on interrelated urban systems,
uncovering hidden relationships and trends that inform sustain-
able development strategies and interventions.

The LFM’s ability to identify correlations and causalities among
various flow categoriesdsuch as traffic congestion, pedestrian and
vehicle movement, energy consumption, waste generation, mate-
rial usage, and biodiversity lossdprovides a deeper understanding
of urban dynamics. It uncovers insights into potential challenges,
such as the environmental impacts of resource utilization, and
identifies opportunities for sustainable development, such as
optimizing energy flows. The LFM facilitates evidence-based deci-
sion-making to optimize urban planning and design processes by
analyzing these interconnections.

Integrating advanced AI tools through the LFM strengthens ur-
ban resilience and sustainability by capturing spatial dynamics and
flow interconnections. Planners can develop adaptive strategies to
address challenges such as climate change, economic shifts, or
infrastructure stress by harnessing the LFM’s detailed simulations
and predictive analytics. Its application in the Blue City Project il-
lustrates how it can inform policies and actions to create smarter,
more efficient, and sustainable urban environments.

6.2. Comparative analysis

The introduced FM for urban flows represents a significant
advancement in the field of GSAI, addressing a notable gap in
existing FMs tailored for urban planning and design. Compared to
previous models such as DiffusionSat [138], Prithvi [60], and GPT-4
[55], and multimodal FM for GeoAI [127], the LFM stands out for its
originality, methodology, and focus on urban flows.

While models like DiffusionSat [138] focus on generative tasks
for satellite imagery, the LFM specifically targets modeling urban
flows in the context of UDT. The two models differ in their input
data and conditioning information. The LFM incorporates metadata
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such as geolocation for urban flow modeling, while DiffusionSat
relies on spectral information for satellite image generation. The
LFM's emphasis on urban flows to understand spatial dynamics and
space vitality distinguishes it from DiffusionSat's focus on temporal
generation and super-resolution tasks. This distinction highlights
the LFM's novelty in addressing the unique challenges of urban
planning and design, where understanding spatial dynamics and
space vitality are crucial factors for enhancing sustainable urban
development practices.

Introduced by Jakubik et al. [60], Prithvi is a transformer-based
geospatial FM trained on multispectral satellite imagery. While
Prithvi and the LFM aim to address geospatial challenges, they
differ in their scope and applications. Prithvi's pre-training on
extensive geospatial data enables it to perform tasks such as cloud
gap imputation, flood mapping, and wildfire scar segmentation. In
contrast, the LFM's tailored focus on urban flows enables it to
capture spatial dynamics and facilitate data-driven decision-mak-
ing processes for sustainable smart city planning and design.
Focusing on urban flows, the LFM fills a critical gap in GeoAI
research, enabling data-driven approaches to address geospatial
challenges in urban environments.

While GPT-4 [55] stands as a state-of-the-art multimodal large
language model, its ability to represent geographic diversity and
spatial features remains limited. In contrast, the LFM leverages
urban flow data and metadata to achieve a more nuanced and
comprehensive understanding of urban dynamics and their in-
terconnections. Although both GPT-4 and the LFM incorporate
spatial information, they different in their modalities and objec-
tives. GPT-4's geo-guessing experiment highlights gaps in its
capability to encode and interpret geographic features, under-
scoring its limitations in representing complex spatial data.
Conversely, the LFM's integration of diverse urban flow datasets
enables it to capture intricate urban dynamics: It provides action-
able insights to support evidence-based decision-making in sus-
tainable urban planning and design.

The introduction of the LFM fills a critical gap in GSAI and GeoAI
research by providing a specialized LFM tailored for UDT and sus-
tainable smart city planning and design. This comparative analysis
highlights the diversity of approaches in GSAI and GeoAI and em-
phasizes the need for domain-specific FMs to address the unique
challenges of geospatial applications. While both fields contribute
to the advancement of GenAI in geographical and spatial domains,
the LFM stands out for its focus on urban flows to advance UDT's
planning and design capabilities in the context of sustainable smart
cities. Its originality lies in its ability to capture spatial dynamics,
space vitality, and interconnections within urban environments.

As part of the comparative analysis, the LFM stands out for its
innovative urban planning and design, which addresses critical
limitations inherent in traditional methodologies. It achieves this
by completing impartial city data, effectively mitigating biases and
gaps that have historically hindered comprehensive urban analysis.
This capability ensures a more accurate representation of urban
environments and sets a new benchmark for data-driven urban
analytics. Furthermore, the LFM's ability to estimate flow data in
new locations represents a significant advancement, enabling
predictions that extend beyond the constraints of historical data. Its
predictive power is further demonstrated through its capacity to
forecast the evolution of flow data, equipping decision-makers
with insights into future urban dynamics and supporting proac-
tive planning and design strategies.

Furthermore, the LFM's integration of real-time data analysis
enhances its ability to monitor and respond to emerging urban
challenges, offering a distinct advantage over traditional ap-
proaches. Promoting a holistic understanding of urban systems
through the integration of diverse datasets and advanced analytical
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techniques, the LFM supports evidence-based decision-making that
accounts for the interconnected nature of urban environments.

6.3. Implication for research, practice, and policymaking

The introduction of the LFM tailored for UDT presents significant
implications for research, practice, and policymaking in the field of
sustainable smart city planning and design. For research, the LFM
represents a groundbreaking integration of GenAI, FMs, and UDT,
creating opportunities to explore the intersection of advanced
technologies, urban planning and design, and geospatial analysis.
Researchers can utilize the LFM to conduct in-depth studies on
urban flows, spatial dynamics, space vitality, and environmental
impacts. This includes examining complex relationships among
flow categories, identifying emerging patterns in urban data, and
testing intervention hypotheses through scenario predictions. The
case study of the Blue City Project provides a valuable empirical
foundation, demonstrating the practical application of GenAI and
FMs in real-world urban settings. Researchers can build on these
insights to refine and adapt the LFM to diverse urban contexts,
addressing unique challenges in different cities and regions.
Furthermore, the LFM's capability to model dynamic urban systems
encourages interdisciplinary collaborations, fostering new knowl-
edge on sustainable urban development.

For practitioners such as urban planners and designers, the LFM
provides a powerful data-driven tool to analyze, simulate, and
optimize urban flows. Its ability to predict the evolution of flow
data and integrate multimodal datasets enhances proactive urban
management, infrastructure planning, and resource optimization.
Practitioners gain deeper insights into urban dynamics, space vi-
tality, and the interactions among various urban systems by inte-
grating the LFM into UDT frameworks. This facilitates adaptive
planning strategies and evidence-based decision-making, enabling
the optimization of transportation systems, energy efficiency, and
material usage. The LFM also supports practical applications such as
traffic management and waste optimization, helping cities achieve
sustainability goals while responding to rapidly changing urban
conditions.

The LFM is a critical resource for developing evidence-based
policies promoting urban sustainability and resilience. Its ability
to provide comprehensive analyses and scenario testing allows
policymakers to anticipate the outcomes of various interventions
and design resilient, sustainable urban strategies. Policymakers can
ground their decisions in accurate, data-driven insights, enhancing
their effectiveness in addressing challenges. Moreover, the LFM can
inform strategies to tackle critical urban issues like traffic conges-
tion, energy consumption, mobility inefficiencies, and environ-
mental degradation. Governments can leverage the LFM to foster
innovation in urban planning, improve public services, and
enhance the quality of life for urban residents. Furthermore, the
model supports broader policy objectives, including climate change
mitigation and economic development, reinforcing its trans-
formative potential in shaping future urban policies.

6.4. The positioning, scope, and scalability of the large flow model

The design phase of the LFM demonstrates its potential as a FM
architecture specifically tailored for urban flows. While the model
is trained and tested on data from the Blue City Project, these
datasets encompass diverse urban domains. Moreover, the collab-
orative involvement of city authorities, researchers, and industrial
partners ensures a robust representation of urban dynamics. While
localized to the Blue City Project, this diversity highlights the
model’s adaptability and practical relevance to complex urban
systems.
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Despite these strengths, we acknowledge that the LFM in its
present state does not fully meet the traditional definition of a FM,
which typically involves training on vast datasets spanning multi-
ple contexts and applications. Instead, this study focuses on the
design and ongoing development of the LFM as a foundational ar-
chitecture, using the Blue City Project as a proof of concept. This
approach emphasizes the LFM’s ability to model urban flows
comprehensively while setting realistic expectations regarding its
scalability and broader applicability.

The scalability of the LFM is a core feature of its conceptuali-
zation and planning as well as construction and refinement. As part
of the Blue City Project’s original plan, the model is intended for
deployment in other cities across Switzerland and beyond. This
planned expansion underscores the LFM’s potential to evolve into a
comprehensive foundation model capable of addressing urban
challenges across diverse geographical and socio-economic con-
texts. Future iterations will further enhance this scalability by
integrating larger and more diverse datasets from various urban
environments, enabling the model to meet the broader expecta-
tions of a FM by enhancing its generalizability and robustness. This
will include incorporating data from cities with varying socio-
economic, cultural, and environmental characteristics, ensuring
the model can capture the full spectrum of urban dynamics.
Moreover, the LFM’s modular architecture will enable seamless
adaptation to new urban flows, technologies, and data types,
further expanding its applicability.

This study lays the groundwork for the LFM’s development by
presenting its architecture, demonstrating its capabilities through a
case study, and setting the stage for its future evolution. The in-
sights and applications derived from this work provide a clear
pathway for the LFM to scale and contribute to sustainable urban
planning and design.

6.5. Limitations

While the LFM demonstrates significant potential for advancing
urban planning and design, several limitations must be acknowl-
edged and addressed. One of the LFM's primary objectives is to
address the challenge of incomplete or impartial data by generating
synthetic content and employing data augmentation techniques.
Through its GenAI capabilities, the LFM learns patterns and re-
lationships from existing datasets to simulate missing data points,
producing realistic and contextually accurate synthetic data.
However, a notable limitation of this generative approach is its
dependency on the quality and comprehensiveness of the input
data. The accuracy and contextual relevance of the synthetic data
heavily rely on the diversity, quantity, and reliability of the foun-
dational datasets used for training. When input data are inconsis-
tent or insufficient, the LFM risks amplifying these deficiencies,
potentially leading to skewed analyses or flawed predictions.
Moreover, critical challenges remain to validate the synthetic data
against real-world conditions and ensure their alignment with
dynamic and unique urban contexts. Addressing these concerns is
essential for maintaining the reliability and applicability of the LFM
in diverse urban environments.

The computational complexity of the LFM poses a challenge,
particularly concerning scalability in large urban areas or high-
resolution datasets. Processing and analyzing vast quantities of
spatiotemporal data demands significant computational resources,
which may not be accessible to all stakeholders. Moreover, the
model's performance varies across urban contexts, reflecting dif-
ferences in infrastructure, demographics, and environmental con-
ditions. Although the LFM demonstrates strong performance in
specific districts or cities, its ability to generalize across diverse
urban settings may necessitate further customization and
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adaptation to ensure broader applicability. The reliance on a single
case studydthe Blue City Project in Lausanne Citydintroduces
potential contextual bias, as its unique characteristics may not
represent the complexities of other urban environments. Expand-
ing the evaluation to multiple case studies would enhance the
LFM's generalizability and robustness. Finally, while accuracy and
precision are commonly used to assess the LFM, they may inade-
quately capture its effectiveness in addressing complex urban
challenges or driving sustainable urban planning and design. More
comprehensive metrics are needed to evaluate the model's broader
impact on sustainable urban development practices.

Lastly, the preprocessing and conditioning of input data,
including integrating metadata such as geolocation and temporal
information, may inadvertently introduce biases or errors that
affect the model's outputs. Ensuring the reliability, consistency, and
accuracy of these inputs is crucial for maintaining the validity of the
LFM's predictions and analytical outcomes. Addressing these limi-
tations will be critical for refining the LFM's robustness and
expanding its applicability to diverse urban contexts.

6.6. Challenges

Concerning challenges, the development and deployment of
FMs for urban flows, despite their numerous benefits, raise critical
concerns and pose potential risks in different domains, including
urban planning and design. These issues, as also relevant to GenAI
models [9,139e145] include the following, as identified in various
studies [32,37,61,78e81]:

Bias and fairness: Both FMs and GenAImodels are trained on vast
datasets that may embed historical biases, leading to unfair out-
comes and perpetuating inequalities, particularly for marginalized
communities. In urban planning and design, biased models could
reinforce existing disparities in access to resources, services, and
opportunities. For example, if historical data contains biases against
specific demographic groups, the model's decisions and predictions
could disproportionately disadvantage these groups. Ethical con-
siderations include identifying and mitigating biases in training
data, ensuring fairness in model outputs, and implementing
frameworks for equity-driven design.

Transparency and accountability: The complexity and black-box
nature of FMs and GenAI models make it challenging to under-
stand their decision-making processes. This lack of transparency
can undermine trust and accountability, especially in decisions that
affect urban communities and infrastructure. Ethical considerations
emphasize the need for explainable AI techniques and transparent
workflows that allow stakeholders to understand, evaluate, and
challenge model outcomes.

Privacy and surveillance: GenAI and FMs, trained on large-scale
urban datasets, can inadvertently capture sensitive information
about individuals and communities. In urban planning and design,
there is a risk of privacy infringement and unintended surveillance
if these models analyze personal or location-based data without
consent. Ethical measures should include robust data anonymiza-
tion techniques, informed consent protocols, and privacy-by-
design principles to safeguard individual and community data.

Security and vulnerabilities: GenAI and FMs are susceptible to
adversarial attacks, where malicious inputs can manipulate model
outputs. In urban planning and design, such vulnerabilities could
jeopardize critical infrastructure or public safety by producing
misleading or harmful recommendations. Ensuring robust security
measures, such as adversarial training and continuous vulnerability
assessments, is essential to protect these systems and ensure their
resilience against cyber threats.

Environmental costs: The significant computational resources
required to train and deploy GenAI models and FMs contribute to
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substantial carbon emissions and energy consumption, raising
environmental concerns. This is especially pertinent given the
increasing demand for these technologies and their implications for
climate change. Ethical considerations include exploring energy-
efficient architectures, leveraging green computing practices, and
aligning AI development with sustainability goals.

Societal impacts: Thewidespread adoption of GenAI and FMs can
lead to profound societal changes, such as job displacement, cul-
tural shifts, and altered power dynamics. In urban planning and
design, ethical considerations involve assessing the broader im-
plications of AI integration, such as its effects on social equity,
public participation, and governance. Conducting comprehensive
societal impact assessments ensures AI adoption prioritizes societal
well-being and mitigates potential negative consequences.

Addressing these challenges requires a multifaceted approach
involving interdisciplinary collaboration, active stakeholder
engagement, and strict adherence to ethical guidelines and
frameworks. City stakeholders can harness the transformative op-
portunities of FMs and GenAI while proactively mitigating risks and
minimizing potential harms by fostering cooperation among urban
planners, engineers, computer scientists, data scientists, policy-
makers, and community representatives. Ensuring these technol-
ogies contribute to a more sustainable and equitable urban future
necessitates embedding ethical principles into every stage of their
development and deployment. This includes prioritizing trans-
parency, fairness, accountability, and inclusivity to align techno-
logical advancements with broader societal and environmental
goals.

6.7. Suggestions for future research directions

While the current LFM at this stage relies on data from a specific
large-scale project, its architecture has been intentionally designed
to allow further training on broader datasets. Future research
should aim to expand its training scope, explore its integrationwith
UDT frameworks, and advance its capabilities to align more closely
with the characteristics of a FM.

Several areas warrant attention to address identified limitations
and advance the field. First, improving the quality, reliability, and
availability of urban flow data is crucial. This effort may involve
developing advanced data collectionmethods, leveraging emerging
technologies, and fostering collaborations with stakeholders to
integrate diverse and representative datasets. Such initiatives are
essential for addressing the LFM's dependency on high-quality
input data, ensuring it can still perform effectively in scenarios
where data quality or availability is limited, and reducing the risk of
amplifying biases in synthetic data generation, thereby enhancing
the model's reliability and applicability. Second, research should
explore innovative approaches to model development and valida-
tion to address the computational challenges and improve the
interpretability of the LFM. This includes designing validation
mechanisms to ensure that synthetic data aligns with real-world
conditions and dynamic urban contexts, mitigating the risk of
skewed analyses or flawed predictions. Third, scaling up the
application of the LFM to larger and more diverse urban areas is
key. This includes integrating it into existing urban planning and
design frameworks through collaboration with city governments,
urban planners, and other stakeholders to co-create solutions that
tackle real-world urban challenges and contribute to building more
sustainable, inclusive, and resilient cities.

Given that the LFM is still under development, ongoing research
efforts should prioritize iterative testing, validation, and refine-
ment. This process can be enhanced through experiments and real-
world applications, particularly in Lausanne City, which serves as a
test bed and living lab for the Blue City Project. Current UDT
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frameworks remain inadequate in handling the complexity of ur-
ban systems [67,68,146] and often lack proper validation mecha-
nisms [66,147]. Establishing continuous feedback loops and
fostering collaboration with researchers and practitioners will
facilitate iterative improvements and accelerate the adoption of the
LFM in urban planning contexts, ensuring its relevance and impact.

To address data bias and representation challenges, future
research should focus on curating diverse and inclusive training
datasets that represent various demographic groups, geographic
regions, and socio-economic contexts. Data augmentation tech-
niques and fairness-aware training methodologies can further
mitigate biases and enhance model performance. Improving the
transparency and explainability of the LFM is equally important.
Researchers should develop tools for auditing model predictions,
identifying biases, and ensuring alignment with ethical guidelines
during model development and deployment.

Future research should focus on developing more efficient ar-
chitectures and training techniques to address scalability chal-
lenges and resource demands. Techniques such as knowledge
distillation, model pruning, and quantization can optimize the
model's size and computational requirements, enabling it to handle
larger datasets and broader urban contexts without sacrificing
performance. In addition, implementing energy-efficient training
methodologies and resource-monitoring strategies can reduce the
environmental impact of training and deploying the LFM. These
advancements will ensure that the LFM remains both scalable and
accessible to a diverse range of stakeholders while supporting its
application in varied and resource-constrained urban
environments.

Expanding evaluation beyond a single case study to address
contextual bias is also critical. Future research should explore
applying the LFM to multiple urban settings, allowing for more
robust evaluation and enhancing its generalizability across diverse
contexts. This will ensure that the unique characteristics of Lau-
sanne City do not overly influence findings and that the model’s
applicability to a broader range of urban environments is validated.

Finally, interdisciplinary collaborations between AI researchers,
urban planners, ethicists, policymakers, and community stake-
holders are imperative to address challenges and risks associated
with FMs. Such partnerships can ensure that societal implications
are considered, ethical concerns are addressed, and responsible AI
systems are developed. Researchers and practitioners can, by pur-
suing these strategies, harness the transformative potential of
GenAI and FMs while mitigating associated risks, ultimately
advancing the responsible deployment of GenAI and FM technol-
ogies in urban planning and design.

7. Conclusion

This study introduced a pioneering LFM, developed with GenAI
capabilities, grounded in a robust foundational framework, and
designed for integration into UDT systems to enhance their
computational and predictive functionalities. The LFM addresses
critical spatial challenges and supports sustainable smart city
planning and design by advancing the capabilities of UDT. Using the
Blue City Project in Lausanne City as a case study, this research
illustrated the model's potential to tackle the complexities of urban
flows and multimodal dynamics. It demonstrated its practical
relevance and significance in the context of UDT.

The findings underscore the LFM’s ability to effectively capture
and analyze urban flows, including mobility, goods, energy, waste,
materials, biodiversity, and information. These flows are critical for
understanding spatial dynamics, assessing space vitality, and
enabling data-driven decision-making processes that advance
sustainable urban development. The empirical insights from the
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Blue City Project validate the tangible benefits of the LFM, show-
casing how it addresses challenges in city modeling, simulation,
and strategic planning. Integrating adaptive learning, generative,
and predictive capabilities, the LFM expands the functionality of
UDT frameworks, offering a transformative approach to modeling
spatial dynamics and urban interconnections. This equips urban
planners, designers, policymakers, and researchers with valuable
insights and tools to foster innovation and create sustainable urban
strategies and designs.

The LFM distinguishes itself through its innovative approach to
tackling critical urban planning and design challenges. It achieves
this by completing impartial and incomplete city data, estimating
flow data in previously unmonitored locations, predicting the
evolution of urban flows, and offering a comprehensive under-
standing of urban dynamics and their interconnections. The LFM
enables more accurate analyses and generates actionable insights
by addressing persistent spatial challenges. Furthermore, it paves
theway for newopportunities to overcome obstacles in the broader
development and implementation of UDT frameworks, ultimately
laying the foundation for effective, adaptive, and sustainable urban
management practices that drive progress in urban planning and
design.

This study makes several significant contributions to urban
planning and design and the development and implementation of
UDT frameworks through the design and operationalization of the
LFM. The key contributions are as follows:

Development of a robust FM for urban flows: The study introduces
a pioneering LFM specifically designed for urban environments.
This model is a critical tool for urban planners and decision-makers,
providing a reliable framework for managing and analyzing com-
plex urban systems.

Enhanced data integration and interoperability: The study de-
velops methodologies for harmonizing diverse datasets from
various subprojects within the Blue City Project, addressing chal-
lenges related to data quality, standardization, and interoperability.
The LFM ensures seamless data utilizationwithin UDT frameworks,
enabling comprehensive analysis and informed decision-making,
by integrating data from various domains.

Completing city data with synthetic data and augmentation:
The LFM addresses critical gaps and biases in urban datasets
through the use of synthetic data generation and data augmenta-
tion techniques. These capabilities enhance the comprehensiveness
and accuracy of urban system representations, mitigating the lim-
itations of traditional data collection methods. The LFM provides a
more holistic and unbiased representation of urban flows by
generating realistic synthetic data and augmenting incomplete
datasets. This, in turn, enables more accurate modeling, analysis,
and decision-making processes.

Improved predictive capabilities for urban planning: The LFM
enhances the predictive capabilities of UDT by accurately esti-
mating flow data in unmonitored locations and forecasting the
evolution of urban flows. This predictive power equips urban
planners to anticipate changes, allocate resources strategically, and
proactively address potential urban challenges, improving the
resilience and sustainability of urban environments.

Holistic understanding of urban dynamics: The LFM provides a
comprehensive view of urban dynamics and interconnections,
enabling planners to identify synergies between urban systems and
optimize resource allocation. This holistic approach supports inte-
grated urban planning and management, fostering more coordi-
nated and effective strategies.

Enhanced sustainable urban development: The LFM facilitates
strategies that minimize environmental impact and promote effi-
cient resource use. Integrating data from critical urban systems
helps planners design interventions that align with environmental
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sustainability goals, creating more livable and eco-friendly urban
environments.

The integration of the LFM into UDT frameworks represents a
significant advancement in data-driven urban planning and design,
equipping stakeholders with the tools and insights needed to
navigate the complexities of modern urban environments. How-
ever, it introduces several challenges that must be carefully
addressed to ensure its successful and sustainable implementation.
Addressing these challenges requires interdisciplinary collabora-
tion among urban planners, engineers, computer scientists, data
scientists, policymakers, and community stakeholders. This col-
lective effort is crucial for co-creating decision-making systems
that are equitable, transparent, and accountable, while ensuring the
responsible use of the LFM in urban planning and design. Estab-
lishing ethical guidelines and governance mechanisms is essential
to prevent potential misuse or unintended consequences. While
the LFM holds immense potential for transforming sustainable
smart city planning and design through UDT, its success ultimately
depends on tackling these challenges and ensurinalig its adapt-
ability to the dynamic and ever-evolving nature of urban
environments.
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