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Precise identification and categorization of building materials are essential for informing strategies
related to embodied carbon reduction, building retrofitting, and circularity in urban environments.
However, existing building material databases are typically limited to individual projects or specific
geographic areas, offering only approximate assessments. Acquiring large-scale and precise material data
is hindered by inadequate records and financial constraints. Here, we introduce a novel automated
framework that harnesses recent advances in sensing technology and deep learning to identify roof and
facade materials using remote sensing data and Google Street View imagery. The model was initially
trained and validated on Odense's comprehensive dataset and then extended to characterize building
materials across Danish urban landscapes, including Copenhagen, Aarhus, and Aalborg. Our approach
demonstrates the model's scalability and adaptability to different geographic contexts and architectural
styles, providing high-resolution insights into material distribution across diverse building types and
cities. These findings are pivotal for informing sustainable urban planning, revising building codes to
lower carbon emissions, and optimizing retrofitting efforts to meet contemporary standards for energy
efficiency and emission reductions.

© 2025 Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin
Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As a substantial global energy consumer and carbon dioxide
emitter, the construction industry is pivotal in addressing climate
change and achieving ambitious global targets for carbon neutrality
[1e3]. The International Energy Agency (IEA) estimates that the
building sector was responsible for approximately one-third of
worldwide energy- and process-related CO2 emissions in 2021. It
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encompasses 8% of direct emissions, predominantly from building
operations, 19% attributed to electricity and heat used in buildings,
and 6% from the production and transport of constructionmaterials
[4]. The persistent upward trend in energy use and emissions,
rebounding to pre-pandemic levels [5,6], underscores the urgent
need for decarbonizing the building sector [7,8]. To this end, the
precise identification and categorization of materials used in
existing buildings are critical, yet often unavailable, for informing
embodied carbon reduction, building retrofitting, and circularity
strategies for buildings and cities [9,10].

Typically, the consumption of building materials in existing
structures is represented by material intensity, indicating the
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Fig. 1. Illustration of geospatial and visual data fusion for building material classifi-
cation. The figure integrates geospatial with visual data to classify building materials
effectively. a, An aerial view of the targeted building outlined by a white dashed
rectangle, providing context within its surrounding environment. b, The roof of the
building, utilizing satellite imagery to analyze roofing materials. ced, Front (c) and side
(d) perspectives of the building's façade, as captured by Google Street View for clas-
sifying wall materials. These images, retrieved using precise geographic coordinates
from OpenStreetMap, ensure accurate alignment and are instrumental in compre-
hensively analyzing the building materials.
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number of materials used per unit area or volume. Material in-
tensity coefficients are derived from official construction docu-
ments, standards, or public statistics records [11,12]. The sources,
while valuable, often offer only a partial view, focusing on indi-
vidual projects or specific geographic areas [13,14]. Alternatives,
such as estimates derived from demolishing data, provide sporadic
insights but lack consistency for comprehensive analysis [15,16].
The challenges [17,18] in standardizing material intensity co-
efficients are further exacerbated by the diverse influences of local
contexts, such as cultural, technological, and regulatory factors on
building practices [19]. For example, a global building material in-
tensity database [20], which contains around 300 samples from 21
nations, covers mostly developed European regions and cannot
adequately represent the global building characteristics, which
consist of over a billion structures [21,22]. Efforts to incorporate
more regional data from countries like China [23], Denmark [24],
the Netherlands [25], the Philippines [26], Canada [27], and others
[28] continue, yet the process is still labor-intensive and slow [29].
Moreover, the varied methods used to classify buildings based on
their materials, purposes, and specifications complicate the crea-
tion of a universally applicable database [30,31]. The ongoing
challenges related to data availability, methodological consistency,
model interpretability, and large dataset management underscore
the need for innovative approaches in building material-intensity
research.

Recent advancements in optical and satellite-based sensing
technologies have revolutionized acquiring high-quality, high-res-
olution street views and remote sensing images, significantly
benefiting the construction industry and urban management
[32,33]. These technologies support primary data collection and
enable detailed analysis of building structures [34,35]. For example,
high-resolution imagery aids in precise building footprint extrac-
tion [36] and roof material identification [37], which is crucial for
urban sustainability projects. Moreover, state-of-the-art research in
remote sensing has explored innovative approaches for building
uses and aging through advanced image analysis [38], significantly
enhancing real-time urban planning and decision-making pro-
cesses [39]. Cutting-edge cases illustrate the depth of urban anal-
ysis possible with modern remote sensing, from building
assessment to evaluating urban sustainability [40,41].

Despite the abovementioned capabilities, variability in data
collection and analysis methods often hinders the widespread
adoption of interpretative methodologies [42,43]. Deep learning
has significantly enhanced remote sensing applications by enabling
complex, high-dimensional data processing, particularly in identi-
fication and semantic segmentation tasks [44e46]. Recent studies
have leveraged models like Convolutional Neural Networks (CNNs),
U-Net, and attention mechanisms to address inefficiency and
instability in traditional processing [47]. Innovations in semantic
segmentation and classification tasks have enhanced the ability to
capture spatial context more effectively by implementing advanced
backbones and multi-scale feature extraction. For instance,
FarSegþþ further improves segmentation accuracy in complex
backgrounds by incorporating foreground-aware optimization and
context modeling [48]. Furthermore, deep learning provides tools
to standardize urban data analysis, transforming vast information
into actionable insights for urban sustainability [49]. Researchers
have increasingly applied deep learning to decouple urban fabric,
leveraging high-dimensional data such as street views to decon-
struct urban elements [50]. The processes have enabled advance-
ments in analyzing building age [39,51], type [52,53], façade
materials [54], economic factors [55], and material usage [56].

By leveraging remote sensing data and deep learning tech-
niques, this study seeks to refine the process of identifying and
classifying building materials, specifically focusing on exterior
2

walls and roofs. The innovative framework enhances the accuracy
and efficiency of detecting materials and introduces a novel
method for determining new material intensity coefficients based
on the identified material categories. The dual approach contrib-
utes to the construction industry by improving the assessment of
material usage and reducing buildings’ carbon footprint through
more accurate analysis. While initially implemented and tested in
four major Danish cities, the framework has been extended to other
urban settings in Denmark, demonstrating its potential applica-
bility and scalability.
2. Materials and methods

2.1. Description of data sources and dataset construction

This study combines Google Street View (GSV) and satellite
imageries supplemented by OpenStreetMap (OSM) geospatial data.
The geospatial data include building location and road networks,
essential for accurately locating each building in the corresponding
visual images. Fig. 1 showcases the elements, illustrating the roof
structures and textures from satellite images (Fig. 1b), as well as
façade textures from GSV (Fig. 1c and d). The dual-source approach
allows for a comprehensive analysis of urban structures' vertical
and horizontal aspects.

The retrieval process is initiated by extracting building
geographic coordinates (latitude and longitude) from OSM. The
coordinates are crucial as they locate the buildings precisely within
GSV and Google satellite platforms. Python scripts complete the
fetching of street-level and satellite images, ensuring each image is
accurately matched to the corresponding building. Detailed steps
for obtaining Street View imagery and preprocessing the initial data
can be found in the Supplementary Materials. The foundational
dataset is primarily sourced from Odense, which has well-
documented geospatial data and diverse architectural styles. To
assess the model's broader applicability and regional adaptability,
we extrapolated functions to include building data from other
major Danish cities, such as Copenhagen, Aarhus, and Aalborg. The
expansion demonstrates the model's capability to generalize across
different urban settings without needing localized adjustment. The
datasets are divided into subsets for training, validation, and testing
according to standard machine-learning protocols, supporting the



K. Sun, Q. Li, Q. Liu et al. Environmental Science and Ecotechnology 24 (2025) 100538
rigorous phases of model training and evaluation. Fig. 2 provides a
composite visualization of datasets, showcasing selections of out-
wall materials from GSV and roof materials from the satellite im-
agery, underscoring the data's diversity and detail.
2.2. Workflow for building instance categorization using Google
Street View and satellite images

The methodology for categorizing building materials leverages
high-resolution data from GSV and satellite imagery (Fig. 3). Uti-
lizing Python 3.8 for scripting and ArcGIS 10.2 for geospatial visu-
alization, this study begins by retrieving the building footprints and
road network from OpenStreetMap. Concurrently, façade materials
are analyzed using street-level imagery obtained through Google
Application Programming Interfaces (APIs), while roofmaterials are
assessed from satellite imagery. The street view images undergo
preprocessing with a pre-trained VGG16 model trained on the
Places2 dataset [57] to filter out non-building elements, such as
trees and fences, that could obscure material features. Images are
then labeled according to the type of materials documented,
encompassing various roof and façade materials. The CNN models,
including Densenet and Efficientnet, are utilized to classify mate-
rials based on the unique characteristics captured in the imagery.

Multi-category construction data from Odense, the 3rd largest
city chosen for its diverse representation of Danish building ma-
terials and well-documented geospatial dataset, serves as the
training dataset for the study. Detailed descriptions of the dataset
composition and its use in training and evaluation are provided in
Supplementary Material Section 4. Separate modeling and fore-
casting are conducted for street view data and remote sensing
images. 20% of the original dataset is utilized as an independent test
set to ascertain the models' accuracy. The performances of thirteen
state-of-the-art CNNmodels were evaluated through precision and
reliability measures to select the most effective approach for
deployment, and all models were pre-trained on the heterogeneous
ImageNet dataset to enhance generalization and convergence. The
transfer learning method has proven to improve model perfor-
mance across various computer vision tasks.

The entireworkflow, from data collection tomodel evaluation, is
designed to optimize the accuracy and applicability of classification
frameworks in diverse urban environments. The adaptability and
thoroughness of methods are demonstrated by the city-scale dis-
tribution maps of building materials derived from the model out-
puts. The distribution maps provide essential insights for urban
planning and sustainability, illustrating the practical application of
classification systems across varied settings.
2.3. Model visualization and interpretation techniques

Several advanced visualization techniques were incorporated to
bolster deep learning models' interpretability in categorizing
building materials. The techniques demystify the opaque opera-
tions of deep learning models by revealing the inner decision-
making processes and highlighting critical points.

� Gradient-weighted Class Activation Mapping (Grad-CAM):
Grad-CAM [58] generates a heatmap by computing the gradi-
ents of any target concept, capturing the specific feature map
activations that contribute to the final decision. When overlaid
on the original image, the heatmap accentuates the region with
the most influence on the model's predictions. Notably, Grad-
CAM operates without modifying the neural network struc-
ture, maintaining the model's original integrity while providing
profound insights.
3

� Guided Backpropagation: This approach [59] enhances tradi-
tional backpropagation by exclusively propagating positive
gradients and activations. The selective propagation amplifies
the visibility of critical features such as textures and edges,
enriching the understanding of visual processing. It is particu-
larly effective in scrutinizing how models respond to different
image textures, which is pivotal for assessing building material
types.

� Guided Grad-CAM: Combining the advantages of Grad-CAM
and Guided Backpropagation, Guided Grad-CAM [60] refines
the initial coarse heatmaps. Calculating positive gradients linked
to ultimate predictions within the feature maps pinpoints
crucial image regions with heightened accuracy. Guided Grad-
CAM prevents the potential misguidance from global informa-
tion that might affect Guided Backpropagation alone.

Together, the visualization tools enhance the neural network's
transparency and interpretability. By offering a more granular and
focused examination of the model's operations on specific tasks,
they facilitate more informed decision-making, leading to better
material choices, improved maintenance strategies, and more
sustainable urban environments.

2.4. Estimation of material intensity based on aggregate building
data

Buildings are classified based on the materials used in their
walls and roofs, drawing from previous studies [24,61] that contain
detailed architectural and material data. The classification allows
for analyzing material usage patterns across different building
types. The specific material intensity is calculated by dividing the
total mass of materials used by the total floor area for a given
building type, providing a normalized matrix of material con-
sumption. The material intensity coefficient represents the average
material usage per square meter and is crucial for assessing the
sustainability of building practices. The formula used for the pro-
cessing is as follows:

Material intensitymaterial;type¼
P�

Total weight of specific materialtype
�

P
Total floor areatype

(1)

where material refers to the specific building material (e.g., con-
crete, timber), and type denotes the building category based onwall
and roof materials.

3. Results and discussion

3.1. Classification model performance and interpretability

The performances of the thirteen state-of-the-art CNN models
onmulti-category tasks are displayed in Fig. 4aec. The performance
of the models in predicting building façade materials using street
view images varies significantly. The variation in model perfor-
mance can be attributed to the complex background elements in
the outwall database, which may impede accurate classification.
Hence, analyzing and comparing model performance under com-
parable settings is essential for making an informed model selec-
tion. Based on the performance distribution depicted in Fig. 4a and
Supplementary Material Table S2, Shufflenet achieved the highest
global prediction accuracy at 78.6% for façade material classifica-
tion. In comparison, Resnet50 excelled in roof material classifica-
tion with an overall accuracy of around 80%. Detailed recall,
precision, and F1 scores for each model can be found in



Fig. 2. Composite visualization of outwall and roof materials from multi-source imagery in datasets. a, A selection of outwall material samples from Google Street View. b, Cor-
responding roof material samples retrieved from Google satellite based on geographic coordinates. PVC, polyvinyl chloride.
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Fig. 3. A dual-model approach for urban building material classification based on deep learning and multi-source imageries. The workflow begins with collecting geospatial data
and corresponding imagery and filtering out non-building elements. Advanced Convolutional Neural Networks are trained for roof and façade material classification and rigorously
evaluated for performance. The optimal models, selected for their robustness, are applied to assess material in different urban settings. GIS, Geographic Information System.
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Supplementary Materials Tables S2 and S3.
As illustrated in Fig. 5, the techniques reveal how specific re-

gions of an image contribute to the model's predictions, with
warmer areas indicating higher relevance. Grad-CAM helps localize
key informative components of the image, enhancing the precision
of forecasts by highlighting areas critical to the model's decision-
making. Understanding how different elements like window
types or decorating materials influence models' predictions can
guide architects and urban planners to align better with sustain-
ability goals or regulatory requirements. Guided Backpropagation
emphasizes the influence of each pixel during the output genera-
tion process, preserving the original image's details, which aids in
understanding the model's feature utilization. Guided Back-
propagation allows researchers to visually observe specific image
features, such as lines, edges, or texture patterns. Researchers can
enhance classification accuracy by precisely detecting the distinct
surface textures of various building materials, such as bricks, stone,
and metal plates. Simultaneously, nuanced alterations in texture
can also contribute to evaluating and monitoring the building
conditions, including assessing the signs of wear or damage to their
visual looks. These characteristics are crucial for upholding the
security of structures and conserving historical sites. Combining
contextual highlights of Grad-CAM with the detail-oriented focus
5

of Guided Backpropagation, Guided Grad-CAM provides a com-
posite view that accentuates critical features while diminishing
background noise, clearly depicting how combined textual and
contextual information guides the model's predictions. The visu-
alization tools are indispensable for dissecting complex deep-
learning models, offering insights into potential mis-
classifications, and facilitating model optimization. Enhancing the
transparency of decision-making processes within models enables
researchers and engineers to refine and implement deep learning
algorithms more efficiently, augmenting their interpretability and
utility in practical applications.

3.2. Model generalization across geographic regions

Fig. 6 showcases city-scale classification maps for roofing and
façade materials across Aarhus, Odense, Copenhagen, and Aalborg.
The maps utilize a color-coded system to denote different mate-
rials, demonstrating the model's ability to generalize across varied
urban landscapes. The visualization helps highlight the distinct
architectural styles and material usage that characterize each city,
reflecting how regional building practices adapt to local environ-
mental and socioeconomic conditions. The detailed exploration of
roofing materials is extended in Supplementary Materials



Fig. 4. Performance analysis of deep learning models in building material classification. a, F1 score distributions for different models in outwall material identification, where the F1
score illustrates the models' stability and robustness across categories. b, Matching matrix of Shufflenet for outwall identification, highlighting the model's predictive accuracy and
misclassifications. c, F1 score distribution for models classifying roof materials, comparing model efficacy. d, The accuracy matrix for Resnet50 in roof material classification shows
the proportion of correctly and incorrectly classified instances. The specific material types are defined in Table S4 (Supplementary Material), which assists in interpreting the
material classification designations.
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Figs. S5eS8. The supplementary figures offer a deeper dive into the
specific roofing materials prevalent in each city, enhancing our
understanding of the architectural diversity. For instance, Supple-
mentary Materials Figs. S5eS8 detail how different materials are
distributed across cityscapes, revealing patterns such as the prev-
alence of metal roofing in the industrial zones of Aarhus and the
dominance of cement roofing in the commercial centers of
Copenhagen. The patterns underscore the adaptability of the deep
learning model and enrich our insights into how construction
materials are influenced by local factors such as climate, history,
and urban planning policies.

Similarly, the façade material classification results are elabo-
rated upon in Supplementary Materials Figs. S9eS12. The figures
provide a granular view of how façade materials vary across the
6

urban core to the periphery of each city, offering a nuanced
perspective on the interaction between architectural design and
urban environment. For example, the prevalence of brick facades in
the historical centers contrasts with the modern materials found in
the newer developments, illustrating the dynamic evolution of
urban facades in response to changing architectural trends and
building technologies. Integrating detailed mappings and analyses,
our study demonstrates the robust generalization capabilities of
the deep learning model and provides a valuable tool for urban
planners and architects. The model's ability to accurately classify
and analyze building materials on a city-wide scale supports sus-
tainable urban development and aids in designing cities that
harmonize historical heritage with modern design. This cohesive
narrative highlights the model's technical performance and



Fig. 5. Comparative visualizations of model predictive focus for material classification.
Columns display original images alongside their Gradient-weighted Class Activation
Mapping (Grad-CAM) heatmaps indicating predictive regions, Guided Backpropagation
(GB) detailing pixel importance, and Guided Grad-CAM (G-CAM) merging both ap-
proaches to highlight critical features influencing model decisions.
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practical applications, offering a comprehensive view of material
classification across major Danish cities.
3.3. Material intensity across different construction types

We have calculated and evaluated residential and non-
residential buildings' material intensity coefficients (MIC) in
detail based on several reliable data sources [24,62,63]. The analysis
reveals the patterns in materials used across different wall and roof
combinations, highlighting their environmental impact and sus-
tainability implications. Fig. 7 visualizes the patterns for residential
buildings through heatmaps ofMICs. Certain combinations, such as
built-up roofs (Type 1, average MIC: ~1326 kg m�2) and polyvinyl
chloride (PVC) roofs (Type 2, average MIC: ~1588 kg m�2), exhibit
consistently lower MIC across various wall types, indicating higher
material efficiency and environmental friendliness. In contrast,
combinations involving cement stone roofs (Type 6) with binding
work walls yield significantly higher coefficients (2225 kg m�2),
reflecting greater material consumption and environmental
impact.While combinations involving glass walls (Type 3) and fiber
cement with asbestos (Type 5) roofs exhibit moderate coefficients
(1730 kg m�2), suggesting a trade-off between structural integrity
and material efficiency, it is noted that using asbestos in con-
struction has significantly declined in recent decades due to its
associated health risks. A comprehensive evaluation of the combi-
nations should also consider environmental impact, potential
health hazards from legacy materials, and the cost-effectiveness of
modern substitutes. Moreover, by analyzing the distribution of
specific materials and their associated construction techniques, in
combination with building construction years, it is possible to es-
timate the likely decommissioning timelines for buildings. The
7

information can provide valuable insights for urban mining initia-
tives, enabling better planning for material recovery and reuse in
specific regions.

Wall construction generally plays a more significant role in
material intensity than roof construction. For instance, binding
work walls (Type 6) exhibit the highest average material intensity
(2215 kg m�2), indicative of dense, material-intensive construction
methods. Thatched roofs (Type 9) stand out among roofing mate-
rials with higher average coefficients (1861 kg m�2), likely due to
substantial material demands or intricate installation re-
quirements. While aesthetically appealing and beneficial for natu-
ral lighting, glass roofs necessitate robust supporting structures due
to their weight and environmental load considerations. Heatmaps
for non-residential buildings, presented in Fig. S13, align with the
trends observed in residential buildings. The insights underscore
the critical role of material selection in promoting sustainability
and balancing functional and aesthetic needs with ecological
considerations.

3.4. Implications for urban sustainability and generalization of the
proposed methods

As global urbanization intensifies and the global population
grows, urban sustainability emerges as a pressing concern for
modern society [64]. World Bank data indicates that more than 50%
of the people currently reside in urban areas, accounting for over
80% of the global gross domestic product [65]. Rapid urbanization is
accompanied by substantial land, resource, and energy consump-
tion. Existing urban buildings, major contributors to global energy
consumption andwaste generation, nonetheless present significant
opportunities for sustainable development. Effective management
and retrofitting can enhance energy efficiency, reduce emissions,
and elevate regional architectural and environmental standards.
However, implementing tailored retrofit strategies across diverse
regions and building types is challenging and often hindered by
limited data availability. Only a few developed areas, such as
Manchester [12], Vienna [66], Melbourne [67], and Padua [14],
possess comprehensive cadastral data to support such strategies.
Therefore, pursuing urban sustainability in comparatively under-
developed regions or lacking historical documentation necessitates
adopting a large-scale, cost-efficient assessment technique to
address data deficiencies. Remote sensing technology offers a swift
and economical solution for characterizing urban landscapes.
Combined with geospatial data, for example, collected in the
EUBUCCO database [68], it enables the rapid estimation of building
location, size, age, surrounding environment, and energy efficiency.
Evaluating building material intensity requires distinguishing be-
tween building functions and ages, ideally supported by building
material compilation databases, such as the previously compiled
global building material intensity databases for 21 countries [20]
and 32 regions [28].

This study introduces a novel methodological framework for
assessing building material intensity by focusing on identifying
rooftop and exterior wall materials through remote sensing and
deep learning techniques. The exposed materials are key indicators
of buildings’ structural composition and significantly influence
their environmental impact. By accurately characterizing building
materials, the framework enables the development of region-
specific material intensity databases tailored to different areas'
unique building archetypes and preferences. The proposed
approach leverages the efficiency and accessibility of remote
sensing and street view data to overcome the limitations of tradi-
tional data collection methods, which often suffer from incom-
pleteness and inaccuracies. The framework can infer the underlying
material composition by analyzing the spectral signatures of the



Fig. 6. aed, The city-scale roofing classification maps of Arhus (a), Odense (b), Copenhagen (c), and Aalborg (d). The maps synthesize the results of the optimal deep learning model
applied to roof images of all urban buildings, with counts of 43,476, 84,542, 59,767, and 85,902, respectively. Each building is represented by a color-coded point based on the
classified roofing material, with the scale of data indicating near-complete urban coverage. eeh, Detailed predicted urban façade material distribution maps of Arhus (e), Odense (f),
Copenhagen (g), and Aalborg (h), denoting each material with a color-coded marker derived from 18,571, 31,695, 26,928, and 23,916 building images, respectively. The disparity in
image volumes is attributed to data unavailability and variable image quality.

K. Sun, Q. Li, Q. Liu et al. Environmental Science and Ecotechnology 24 (2025) 100538
rooftop and exterior wall materials, providing valuable insights into
embodied energy and carbon footprints. Furthermore, identifying
the materials used allows for recommending environmentally
responsible replacements during renovations or retrofits. Consid-
ering thermal performance, weight, and overall sustainability,
decision-makers can select optimal materials to enhance energy
efficiency and reduce environmental impacts. Additionally, mate-
rial combinations can help determine building energy consumption
standards, aiding urban planners in making informed decisions.

However, there are limitations to the current study, such as
sampling frequency, data quality, and resolution, which can affect
the reliability of the material assessments. Future work will focus
on incorporating additional data sources, including Light Detection
and Ranging (LiDAR) and oblique photography, to improve the ac-
curacy and comprehensiveness of material identification. Detailed
building information is crucial for decision-makers involved in
urban planning, building renovation, and policy development. By
understanding the material intensity of existing building stock,
stakeholders can make well-informed decisions about the material
selections for new constructions and retrofits, prioritizing sus-
tainable and low-carbon alternatives. Moreover, precise material
understanding enables the evaluation of building-related carbon
emissions, aiding efficient strategies to mitigate climate change.
This knowledge assists policymakers and construction pro-
fessionals pinpoint high-energy-consuming buildings, allowing for
8

specific upgrades to maximize energy conservation efforts.
4. Conclusion

This study advances the methodology for identifying construc-
tion materials through remote sensing and deep learning. It ad-
dresses a crucial gap in urban management by providing a granular
understanding of material distribution, benefiting decision-makers
in comprehending construction practices' material demands and
environmental impacts. The insights inform policies promoting
sustainable spatial planning, resource management, enhanced
building codes, and optimized retrofitting. The methodology's
adaptability ensures its applicability across diverse locations and
architectural styles, supporting sustainable urban development.
However, limitations exist, such as potential inaccuracies if exterior
walls or roofs have undergone modifications and the inability to
identify interior structures. Future research should explore incor-
porating additional data sources like building information
modeling, lidar, oblique photography, and construction drawings
for a more comprehensive assessment. A multi-scale building
performance assessment approach can be established by address-
ing these limitations and expanding applications to other project
management domains. This thorough analysis, combined with
interdisciplinary collaborations and the integration of advanced
technologies, will bolster building energy efficiency and



Fig. 7. Analysis of material intensity coefficient of residential buildings with different
combinations of wall and roof types. a, The total material intensity coefficient under
different combinations. b, The number of different material types (clay, concrete, glass
ceramic, metal, gypsum mortar, wood, and other materials) used for the corresponding
combinations. Darker colors indicate higher material intensity values, reflecting the
combination's concentration in building material use.
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sustainability, providing robust support for developing environ-
mentally friendly urban buildings.
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