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a b s t r a c t

Urban greenspaces enhance human well-being and promote sustainable development in rapidly ur-
banizing regions by delivering vital ecosystem services, including cooling, air purification, and recrea-
tion. In China, where cities accommodate a large share of the population amid persistent environmental 
pressures, disparities in greenspace exposure pose a major obstacle to equitable access; these disparities 
arise from geographic, climatic, socioeconomic, and landscape factors. Although awareness of such 
inequalities is growing, their long-term trajectories, demographic and city-scale patterns, and viable 
spatial optimization approaches remain largely unexplored. Here we show that greenspace exposure 
inequality across 246 Chinese cities increased by 25% from 2000 to 2020 and is projected to rise further 
by 12.2–15.7% by 2050 under middle-of-the-road and fossil-fueled development scenarios, dispropor-
tionately affecting older, less-educated women and megacity residents. Geodetector and random forest 
analyses reveal that this rise results from interactions among greenspace coverage, population density, 
and patch connectivity, which explain 83.9% of the inequality. A network-based optimization approach 
that improves patch connectivity—without expanding total greenspace—can reduce disparities by 
10.3–20.8%, with greater efficacy in high-inequality cities and among vulnerable populations. Our results 
highlight how precise landscape interventions can advance social equity in greenspace access, sup-
porting Sustainable Development Goal 11 for inclusive, resilient urban environments.
© 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, 
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open 

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Urban areas currently accommodate more than half of the 
global population, with projections indicating an increase to 68% 
by 2050 [1]. However, climate change and environmental degra-
dation threaten residents’ well-being [2,3]. Greenspace is a crucial

component of nature-based solutions [4,5] that provides multiple 
ecosystem services, such as cooling, air purification, and recreation 
[6–8]. Thus, the design and protection of greenspaces are effective 
strategies for achieving the United Nations Sustainable Develop-
ment Goal 11 (SDG 11)—sustainable cities and communities [4,9]. 
However, achieving this goal through the provision of universal 
greenspaces remains a considerable challenge.

Greenspace provision (total or per capita) is the main indi-
cator of greenspace accessibility [10–12]; in this context, the 
population-weighted exposure framework, which examines 
human–greenspace supply–demand relationships, has been 
widely adopted to assess greenspace exposure [4,13–15]. Ac-
cording to this framework, greenspace exposure improved in 
1028 global cities from 2000 to 2018 [15], reducing associated 
inequality, particularly in the cities in the Global North, highly
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urbanized areas [16], and developed countries [17]. Moreover, 
greenspace exposure inequality is mainly attributable to geog-
raphy, climate, socio-economics, and greenspace landscape 
[14,15,18]. Specifically, geographic and climatic factors (e.g., 
temperature and precipitation) contribute to greenspace provi-
sion by influencing vegetation growth [18–20], socio-economic 
factors (e.g., population distribution and road construction) 
affect the allocation of greenspace resources through spatial 
planning and management [4,15], and greenspace landscape 
factors (e.g. connectivity and fragmentation) impact exposure 
inequalities by regulating the spatial form and structural 
configuration of greenspace patches [13,21,22]. However, differ-
ences in greenspace exposure inequalities between population 
groups and across city sizes remain unclear [23–25]. Therefore, 
there is an urgent need to assess structural differences in 
greenspace exposure inequalities and to propose forward-
looking, differentiated measures to address the challenges of 
future climate and socio-economic change.

Spatial optimization strategies based on urban greenspaces are 
attracting increasing attention. Studies have found that increasing 
greenspace provision is an effective way to mitigate inequalities in 
human greenspace exposure [15,22] and facilitate several envi-
ronmental benefits (e.g., cooling) [26,27]. However, increasing 
such provision within cities is difficult due to cost and spatial 
constraints [12,18,28]. Thus, effectively improving greenspace 
exposure in limited urban spaces through, for example, optimizing 
the patch connectivity within the spatial structure of greenspace 
networks, is crucial for urban planning [29,30]. Theoretically, 
protecting greenspace network cores involves the construction of 
multi-tiered ecological corridors that connect isolated greenspace 
patches and increase residential greenspace exposure by 
enhancing the linkage of these patches to their surroundings 
[31,32], ultimately reducing associated exposure inequalities [33]. 
Optimizing greenspace networks can also reduce the average 
distance residents travel to access greenspaces, thereby improving 
accessibility and reducing related inequalities [22,34]. In practice, 
increasing the connectivity of greenspace patches creates a more 
connected path network, mitigating exposure inequalities by 
improving residents’ access to greenspaces [30,35], particularly in 
densely populated areas [34]. However, simulation studies inte-
grating spatial constraints and network optimization are rare, 
leaving a gap surrounding in the climate-resilient development of 
greenspace planning for healthy cities [36].

To address this gap, this study combines multi-source data and 
methods to characterize the spatiotemporal changes in greenspace 
exposure inequality within Chinese cities under various shared 
socio-economic pathways and representative concentration 
pathways (SSP-RCPs) from 2000 to 2050, assessing differences 
across regions, demographics, and city sizes. It identifies the 
dominant factors of greenspace exposure inequality and proposes 
an optimization strategy to mitigate such inequality by enhancing 
the physical and spatial connectivity of the greenspace patches 
within network structures. Results provide forward-looking sug-
gestions for more equitable urban greenspace planning, acceler-
ating the realization of SDG 11's goal of making cities and human 
settlements inclusive, safe, resilient, and sustainable.

2. Materials and methods

2.1. Study area

This study selected 246 Chinese cities with urban areas larger 
than 90 km 2 in 2020. These cities encompassed 212 administrative 
units (including prefectural cities and municipalities) and 76.9% of 
China's population [22]. To identify contiguous areas of each city,

the study used an urban area identification approach based on 
impervious surface distribution density [37] and urban clustering 
algorithms [38]; the applicability of this method was validated by 
related studies [6,39] (see Supplementary Text S1 for details). 
Thus, greenspace exposure was measured for the majority of the 
population in China's six geographic subregions [22,40]. The study 
further divided all cities into four groups according to their urban 
area: small cities (with urban sizes in the 0th–25th percentile), 
medium cities (25th–50th percentile), large cities (50th–75th 
percentile), and megacities (75th–100th percentile). The findings 
of this study can provide a reference for urban greening in other 
cities.

2.2. Data sources

The urban land cover data were based on projections of Chinese 
urban land cover [41] using four scenarios corresponding to the 
SSP-RCPs: sustainable (SSP1-2.6), middle of the road (SSP2-4.5), 
regional rivalry (SSP3-7.0), and fossil-fueled (SSP5-8.5) [42]. In this 
notation, the number following SSP represents different socio-
economic pathways, and the number following RCP represents 
the future radiative forcing level versus the pre-industrial period. 
This dataset was developed by integrating the Global Change 
Analysis Model and the Future Land Use Simulation (FLUS) model 
[43] for land simulation with a 30 m resolution from the year 2000 
to the year 2100 and includes eight urban land cover types 
(grassland, forest, shrub, water, cropland, barren, urban, and ice). 
This dataset offers two key advantages: (1) it can identify green-
space with higher spatial detail and greater historical accuracy 
(more than 1.7 times) than the previously commonly used 1 km 

resolution projection data [44,45] and (2) it considers the decline 
in demand for urban land based on future population decline to 
limit urban land growth [41,46]. In addition, this study used the 
latest 100 m Chinese population grid projection data and city-level 
population structure projection data under the SSPs [22]. The 
population grid projection data were built based on machine 
learning and showed good correlation with the historical data [47] 
(mean R 2 = 0.83, range: 0.80–0.86). The city-level demographic 
structure data were projected based on age, gender, and education 
using recursive multidimensional model and showed high accu-
racy with the validation of population census data [22]. The 
climate data were obtained from downscaled 1 km Coupled Model 
Intercomparison Project Phase 6 climate data from WorldClim 

(https://worldclim.org), and topography (elevation and slope), 
gross domestic product, and distance to urban areas and roads 
were obtained from the Resources and Environment Science and 
Data Center [6]. To ensure that the data covered the same temporal 
span, this study employed grid-scale analysis using bilinear spatial 
interpolation to resample relevant data to a 30 m resolution and 
administrative area-scale analysis (i.e., population structure in-
equalities) to aggregate relevant data to the administrative level.

2.3. Methods

The workflow of this study includes (1) assess the spatiotem-
poral dynamics of greenspace exposure and its inequality (Fig. 1a); 
(2) determine the dominant factors of greenspace exposure 
inequality (Fig. 1b); (3) identify the network of greenspaces 
(Fig. 1c); and (4) design a spatial optimization strategy using the 
FLUS model (Fig. 1d).

2.3.1. Greenspace exposure and inequality
In this study, forests, grassland, and shrubs were considered to 

be greenspace. To quantify greenspace exposure and its inequality, 
the study applied the population-weighted exposure model and
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Gini index [4,14,15]:

G d =

∑ M
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where G d is greenspace exposure with a buffer of d; P i represents 
the population of grid i; and E i,d represents the greenspace 
coverage of grid i with a buffer of d, considering both central and 
nearby greenspace with a buffer of d. Previous studies found that 
500 m was a reasonable range for greenspace exposure assessment 
[4,15], hence d is set 500 m. n is the total population, g i is the 
magnitude of greenspace exposure for individual i (grid or city 
unit), and M is the total grid number. H represents the Gini index of 
greenspace exposure, ranging from 0 (absolute equality) to 1 
(absolute inequality). A sensitivity analysis of greenspace exposure 
showed consistent results with different buffer distances 
(Supplementary Table S1).

To further estimate populations’ greenspace exposure by age, 
sex, and education level, we first calculated the average green-
space exposure for each year from 2020 to 2050. Then, we esti-
mated greenspace exposure inequality based on the urban 
population structure of the administrative units. We aggregated 
the data into five age groups (i.e., 0–19, 20–39, 40–59, 60–79, and 
>80 years), five education levels (i.e., illiterate, primary, secondary, 
bachelor, and master and above), and two sex groups (i.e., male 
and female). We also compared the historical results of greenspace 
exposure and inequality in 2020 with those in a related study [4], 
finding strong agreement (R 2 > 0.8, Supplementary Fig. S1).

2.3.2. Drivers of greenspace exposure inequality 
We selected five categories of explanatory variables and 

examined their relationships with greenspace exposure
inequality: (1) geographic (latitude and longitude); (2) topo-
graphic (elevation and slope); (3) climatic (mean annual precipi-
tation and mean annual temperature); (4) socio-economic 
(proportion of population and urban land); and (5) greenspace 
landscape variables. Based on previous studies [4,18,48,49], we 
calculated five landscape variables for greenspace patches using
the Fragstats software at a 30 m grid [50], where coverage rate 
represents composition, mean patch size and patch density 
represent fragmentation, and aggregation index and cohesion in-
dex represent connectedness (Supplementary Table S2). We 
rescaled all variables to a range of 0–1 using the 
maximum–minimum normalization method. Subsequently, we 
used Pearson's correlation coefficient (>0.3 and p value < 0.001) 
and partial correlation coefficient (>0.2 and p value < 0.001) for 
variable filtering. This study quantified the nonlinear relationship 
(q value) between the drivers and greenspace exposure inequality 
and the interaction contribution of the drivers using Geodetector 
[51,52] (Supplementary Text S2). Moreover, we performed the 
SHapley Additive exPlanations algorithm in the random forest [53] 
to verify the relationships between the variables and the Gini in-
dex of greenspace exposure. All data were randomly split into 80% 
and 20% for training and validation, respectively. Hyper-
parameters, including the number of trees to build, the number of 
features to use for splitting, the minimum leaf node size, and the 
maximum depth of the tree used, were tuned based on a grid 
search approach [54] (Supplementary Text S3).

2.3.3. Greenspace network identification
First, we used the morphological spatial pattern analysis 

model to extract greenspace patches with important implications 
for increasing connectivity and to identify greenspace network 
corridors for each city. Based on previous studies [55,56], a total 
of seven non-overlapping landscape features (i.e., core, bridge, 
islet, loop, edge, perforation, and branch) were identified using 
the eight-neighborhood analysis approach (Supplementary

Fig. 1. Workflow of this study. a, Greenspace exposure and its inequality. b, Driver of greenspace exposure inequality. c, Greenspace network identification. d, Spatial optimization 
strategy. MSPA: Morphological spatial pattern analysis; MCR: Minimum cumulative resistance; FLUS model: Future Land Use Simulation model.
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Table S3). Second, based on circuit theory, we selected the core of 
greenspace patches in landscape connectivity as “sources” [55]. 
Resistance indicators and weights were established based on 
related studies [31,56], including nine elements (e.g., topography, 
land cover type, population, economic development, and infra-
structure; Supplementary Table S4). Finally, the greenspace 
network and its buffer (consistent with greenspace exposure: 
500 m) were identified using the minimum cumulative resis-
tance model [57]:

C = f min 

∑i=m

j=k

( 
D ij × R i 

) 
(3)

where C is the cumulative resistance of greenspace sources, f min 
represents the minimum cumulative resistance, D ij is the spatial 
distance from source grid i to source grid j, m and k represent the 
number of source grid i and j, respectively. R i represents the 
resistance coefficient at grid i. Then, the ArcGIS software Linkage 
Mapper tool was applied to extract greenspace network corridors.

2.3.4. Network optimization strategy for greenspace exposure 
inequality

First, two rules were set for the network optimization strategy:
(1) the “greenspace source” patches and the greenspace patches 
within the greenspace network and its buffer zones would not be 
transferred to other land classes during the land cover change, and
(2) the total number of greenspaces in the target year (i.e., 2020 or 
2050) would remain unchanged, with greenspace exposure 
inequality mitigated only by optimizing the urban landscape 
structure. The choice of these rules was mainly because (i) limi-
tations in urban space prohibit a large increase in greenspace [22] 
and (ii) urban landscape optimization is more practicable and 
cost-effective than extensive greening for Chinese cities [32]. 
Therefore, greenspace network connectivity (measured by the 
cohesion index) can be used as a proxy for optimization in the 
context of constant greenspace provision [58].

Second, urban land cover was simulated using the FLUS model 
to implement the proposed network optimization strategy for 
each city. This model utilizes machine learning and cellular auto-
mation methods to effectively simulate urban land cover change 
processes [43,44]. We set up a transfer rule by increasing the 
transition costs of greenspace patches in the “Cost Matrix” module 
of the FLUS model and conducted sensitivity testing of the pa-
rameters (Supplementary Text S4). The simulated greenspace area 
for the target year remained constant, as predicted in the future 
urban land cover dataset [41] (i.e., no extra greenspace was 
introduced). To evaluate spatial uncertainty in the simulated re-
sults, we performed 1000 independent simulations to determine 
the probability of greenspace appearing at each location [58]. The 
effectiveness of the network optimization strategy is illustrated by 
comparing the resultant greenspace exposure inequalities with 
the original ones for the years 2020 and 2050. Finally, we selected 
Beijing and Hefei as typical cases for analysis. Since Beijing and 
Hefei are typical cities in the mid-to-late and early-to-mid stages 
of urbanization, respectively, they can provide targeted references 
for greenspace planning for cities at different development stages 
and offer effective practical information for related long-term 

spatial planning [41].

3. Results

3.1. Spatiotemporal patterns of greenspace exposure inequality

The results showed a rapid 25.2% increase in historical

greenspace exposure inequality from 2000 to 2020 (Fig. 2a), 
especially in the north (55.5 ± 11.7%; mean ± standard deviation) 
and southeast (35.7 ± 10.0%) regions (Fig. 2b and c). The predicted 
paths substantially differed under different future scenarios. Un-
der the regional rivalry and fossil-fueled scenarios, greenspace 
exposure inequality was expected to increase by 12.2% and 15.7%, 
respectively, with a more pronounced increase in the northeast 
region (>20%) (Fig. 2c). This result is completely opposite to that 
observed under the sustainable and middle of the road scenarios, 
which reduced greenspace exposure inequality (<10%), especially 
in the midcentral region (Fig. 2c). In addition, greenspace exposure 
inequality (1.1–1.8 times) and its change rate (1.2–2.7 times) were 
generally higher in the northeast, north, and northwest regions 
than in other regions (Supplementary Fig. S2). Under the sus-
tainable scenario, more than 80% of cities showed decreases in 
exposure inequality, especially in the midcentral region 
(10.2 ± 5.4%). However, under the regional rivalry scenario, more 
than 70% of cities faced intensifying greenspace exposure 
inequality, especially in the north region (20.5 ± 8.3%).

3.2. Regional and structural differentiation of greenspace exposure 
inequality

This study found that, under the regional rivalry scenario, an 
additional 31.1 million people would be without exposure to 
greenspace by 2050 compared to 2020 (Fig. 3a). Under the fossil-
fueled scenario, this number was estimated to be 18.2 million, 
located mainly in the northern and southeastern cities (>87%). 
Under the middle-of-the-road scenario, the population without 
exposure to greenspace decreased by 1.1 million. Under the sus-
tainable scenario, this population decreased by more than 20.8 
million, of which 41.4% were in the southeast region. 

Structurally, greenspace exposure inequality tends to be higher 
among the elderly (age >60), females, and individuals with low 

education (illiterate and primary), as well as in megacities 
(Fig. 3b–d). Under the scenario scenarios, greenspace exposure 
inequality grew rapidly (>20%) among the elderly and in groups 
with low education levels (Fig. 3b and c); moreover, it was 
significantly greater for females than for males (two-sample t-test, 
p value < 0.01). Megacities exhibited the highest greenspace 
exposure inequality (Gini index >0.61) under the regional rivalry 
and fossil-fueled scenarios (Fig. 3d), though small- and medium-
sized cities also exhibit large increases (>20%). Comparatively, 
under the sustainable scenario, there were fewer differences in 
Gini index values across sex, age, education level, and city size, and 
the greenspace exposure inequality for the elderly, the less-
educated, and women, as well as for megacities, was reduced by 
an average of 26.7% (range: 23.8–30.1%).

3.3. Dominant factors in greenspace exposure inequality

Statistical analysis revealed that latitude in the geographic 
variable, precipitation in the climatic variable, population density 
in the socio-economic variable, and coverage and cohesion index 
in the greenspace landscape variable were significantly associated 
with the Gini index of greenspace exposure (Table 1). Moreover, 
population density (q = 0.58 ± 0.15) and greenspace coverage 
(q = 0.55 ± 0.17) primarily influenced greenspace exposure 
inequality, followed by cohesion index (q = 0.54 ± 0.12), latitude 
(q = 0.51 ± 0.18), and aggregation index (q = 0.42 ± 0.14). The 
interaction analysis indicated that, together, coverage rate, popu-
lation density, and cohesion index explained 83.9% of the Gini 
index of greenspace exposure, implying that greenspace supply, 
population demand, and patch connectivity interactively caused 
most greenspace exposure inequality. The random forest model
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results showed that the model explained over 85% of the variance 
(Supplementary Table S5), with coverage rate and cohesion index 
as important drivers. The importance of these two factors was 
higher under regional rivalry and fossil-fueled scenarios 
(Supplementary Fig. S3). Therefore, it is reasonable to optimize 
greenspace network connectivity (measured by the cohesion in-
dex) as a spatial strategy to mitigate inequalities in greenspace 
exposure.

3.4. Network optimization strategy for mitigating greenspace 
exposure inequality

Overall, the network optimization strategy proposed in this 
study could increase greenspace network connectivity by an 
average of 12.6–18.2%, while reducing the Gini index of greenspace 
exposure by an average of 10.3–20.8% (Fig. 4a). These percentages 
were higher in 2020 and under the regional rivalry and fossil-
fueled scenarios. In particular, greenspace exposure inequality 
declined more sharply among women—especially older women 
(19.2 ± 6.1%) and women with lower educational levels 
(19.4 ± 8.2%)—and in megacities (20.7 ± 10.5%). Spatially, the 
network optimization strategy used in this study demonstrated a

stronger potential for connectivity increase and greenspace 
exposure inequality mitigation in the northeast region 
(Supplementary Fig. S4), which was more evident under the 
regional rivalry and fossil-fueled scenarios (Fig. 4b). In contrast, 
the mitigation benefits in the midcentral region were lower 
(Fig. 4b), indicating that a network optimization strategy involving 
optimizing the greenspace network can effectively mitigate 
greenspace exposure inequalities through increasing patch con-
nectivity, especially for particularly at-risk population groups and 
cities.

In practice, a detailed analysis of city-specific optimization 
strategy is needed; therefore, this study selected Hefei and Beijing 
as case cities to simulate the greenspace pattern and its spatial 
uncertainty (Fig. 5, Supplementary Fig. S5). The results revealed 
that our strategy can increase greenspace connectivity by an 
average of 12.9–20.6% in Hefei and 17.2–26.3% in Beijing and can 
mitigate greenspace exposure inequality by 13.1–25.3% and 
18.7–31.7%, respectively (Supplementary Fig. S6a). The higher ends 
of these ranges occur in 2020 and under the regional rivalry and 
fossil-fueled scenarios. In addition, the cohesion index increases 
and stabilizes at 400 and 600 simulations for Hefei and Beijing 
(Supplementary Fig. S6b), respectively, indicating that the

Fig. 2. Spatial-temporal patterns of greenspace exposure inequality measured by the Gini index. Temporal dynamic (a), regional differences (b), and region-level spatiotemporal 
changes (c) in greenspace exposure inequality. Larger bubble sizes represent higher Gini index values. NE: northeast region; NC: north region; SE: southeast region; MS: mid-
central region; NW: northwest region; SW: southwest region. Error bars represent the 10th–90th percentiles.
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simulation results had reached their optimum value. Based on the 
rules and greenspace sources and network corridors (Fig. 5a–c), 
the simulation obtained the optimized greenspace exposure 
pattern in 2050 under the fossil-fueled scenario (Fig. 5b–d). 
Comparative results showed that the proposed strategy could in-
crease greenspace exposure by an average of 180.3% in Hefei and 
108.2% in Beijing, with results being more pronounced in the urban 
core and peripheral areas. Further, the strategy could reduce 
associated inequality from 0.46 and 0.61 in Hefei and Beijing to 
0.37 and 0.45, respectively.

4. Discussion and implications

4.1. Discussion

As urbanization intensifies, greenspaces are receiving increasing 
attention due to their environmental, health, and socio-economic 
benefits [4,18,25,59]. China's urbanization has dramatically 
changed the way people access nature, resulting in greenspace 
exposure inequality [14,60,61]. However, the long-term trends of 
integrating historical and future human exposure to greenspaces 
are unclear, and sociodemographic differences pose analytical

Fig. 3. Regional and structural differences in human exposure to greenspace under four SSP-RCPs scenarios. a, Population change without exposure to greenspace in different 
regions compared to 2020. b–d, Gini indices for greenspace exposure by age (b), education level (c), and city size (d). A two-sample t-test was used to compare males' and females' 
Gini index values for greenspace exposure. NW: northwest region; NE: northeast region; NC: north region; SE: southeast region; MS: midcentral region; SW: southwest region.

Table 1
Correlations (mean ± standard deviation) between explanatory variables and greenspace exposure inequality.

Category Variable Abbreviation Correlation Partial correlation q value

Geographic Latitude Lat 0.46 ± 0.06**** 0.26 ± 0.02**** 0.51 ± 0.18****
Longitude Long 0.23 ± 0.03*** 0.11 ± 0.01** 0.32 ± 0.14****

Topographic Elevation Elev 0.13 ± 0.02** 0.05 ± 0.01 # 0.27 ± 0.10***
Slope Slope 0.05 ± 0.04 # 0.01 ± 0.01 # 0.15 ± 0.08**

Climatic Mean temperature Tem − 0.11 ± 0.02** − 0.05 ± 0.01 # 0.26 ± 0.11****
Mean precipitation Prcp − 0.36 ± 0.04**** − 0.24 ± 0.01**** 0.3 ± 0.17****

Socio-economic Urban land ratio Const 0.41 ± 0.04**** 0.17 ± 0.02 0.42 ± 0.13****
Population density Popd 0.52 ± 0.03**** 0.28 ± 0.03**** 0.58 ± 0.15****

Landscape Mean patch size MPS − 0.36 ± 0.06**** − 0.15 ± 0.01** 0.37 ± 0.21****
Patch density PD − 0.22 ± 0.04* − 0.10 ± 0.01* 0.31 ± 0.16****
Coverage rate CR − 0.49 ± 0.05**** − 0.27 ± 0.01**** 0.55 ± 0.17****
Aggregation index AI − 0.35 ± 0.02*** − 0.21 ± 0.01*** 0.42 ± 0.14****
Cohesion index CI − 0.43 ± 0.05**** − 0.24 ± 0.03**** 0.54 ± 0.12****

Note: The partial correlation coefficient is derived by controlling for all other variables. ****, ***, **, *, and # indicate the proportions of p value < 0.001 for 100%, 75%, 50%, 
25%, and 0%, respectively.
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challenges [4,13,62]. This study addresses these gaps by employing 
high-resolution future urban land cover and population data to 
predict the spatiotemporal changes in greenspace exposure 
inequality under various SSP-RCPs. By quantifying differences 
across regions, city sizes, and demographic characteristics, the study 
highlights the dependence of greenspace exposure inequality on the 
chosen development path. This study further proposes and vali-
dates a spatial mitigation strategy for greenspace exposure 
inequality in a specific, practical, and localized way. This strategy 
can provide policy support for the equitable use of greenspace re-
sources across global cities. The findings reveal that appropriately 
increasing greenspace network connectivity can reduce greenspace 
exposure inequality by an average of 10.3–20.8%. This strategy is 
essential for achieving equal environmental sustainability within 
the constraints of urban spaces.

In contrast to previous studies [13,22], by integrating historical 
and future trends, this study found that inequalities in greenspace 
exposure were closely linked to urbanization pathways. During the 
historical phase (2000–2020), China's rapid urbanization and a 
large population influx encroached on substantial amounts of 
greenspace, resulting in a dramatic increase in greenspace expo-
sure inequality [63,64]. During the future phase (2020–2050),

results varied widely by scenario. Under the regional rivalry and 
fossil-fueled scenarios, greenspace exposure inequality would in-
crease in more than 70% of cities due to the land overuse presumed 
in these scenarios [65,66], which significantly augmented expo-
sure inequality (Fig. 2f and g). Conversely, the low population 
growth rates and environmentally friendly lifestyles of the sus-
tainable scenario reduced the need for urban expansion [45,65]. 
Coupling these factors with advanced green technologies that 
could increase greenspace provision, this scenario reduced 
greenspace exposure inequality (Fig. 2a), thus emphasizing the 
critical role of addressing the interrelated social issues of devel-
opment path, greenspace, and equity [42]. The north‒south 
divergence in greenspace exposure and inequality was accentu-
ated and even exacerbated in the regional rivalry and fossil-fueled 
scenarios. Low rainfall and low average temperatures limited the 
amount of greenspace and increased the costs associated with 
greenspace provision and maintenance, especially in the arid, 
rainless, and urban-planning-lagging cities in the northwest re-
gion [67,68]. Additionally, dense urban land patterns in urban 
planning encouraged the concentration of limited greenspace in 
certain communities, increasing the likelihood of unequal green-
space arrangements [13].

Fig. 4. Network optimization strategy for greenspace exposure inequality mitigation in 2020–2050. a, Mean change (%) of the connectivity (measured by the cohesion index) and 
inequality (measured by the Gini index) for greenspace by scenario, age, education level, and city size. b, Simulation patterns that achieve maximum mitigation in greenspace 
exposure inequality at the region level under four scenarios. Error bars represent the 10th–90th percentiles. NC: north region; MS: midcentral region.
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This study found that humans are unevenly exposed to green-
spaces. In particular, older and less educated women and megacity 
residents will be threatened by greater inequalities. Under the 
fossil-fueled scenario, the elderly population in China was expected 
to reach half of the total population by 2050 (Supplementary 
Fig. S7), consistent with previous studies [47,69]. For this group, 
large reductions in greenspace will exacerbate exposure inequality. 
Low-income and low-education groups living in areas with inade-
quate infrastructure will yield a dearth of greenspace resources 
[13,64]; some women may lack awareness of or exhibit cultural 
preferences (e.g., physical activity habits) for ignoring the need for 
greenspace, resulting in a lack of initiative to visit greenspaces 
[4,22]. More importantly, urbanization, ageing (up to 36–50% in 
2050 under four scenarios, Supplementary Fig. S7), and climate 
change amplify future public health risks, such as heat-related 
excess mortality, for these groups [70], while greenspace expo-
sure inequality further exacerbates health inequities [41,59]. Addi-
tionally, megacities will face higher greenspace exposure inequality 
due to dense populations and inadequate greenspace provision, 
with housing market-driven residential segregation potentially 
exacerbating inequalities [7,60]. The sustainable scenario showed 
considerable potential for mitigating greenspace exposure 
inequality (Fig. 2c and 3a), providing a way forward for urban 
greening management. Therefore, understanding future multi-
scenario trends in greenspace exposure in Chinese cities at fine 
temporal and spatial scales is important for designing long-term 

nature-based solutions to improve urban resilience to climate 
change and the protection of large at-risk populations.

4.2. Implications

Greenspace landscape, climatic conditions, and socio-
economics are the main drivers of greenspace exposure 
inequality, consistent with previous findings [4,15]. Due to the 
limited availability of space within cities, direct and substantial 
increases in greenspace coverage can have enormous economic 
costs [12,18]. Our strategy offers new ideas for sharing equal 
greenspace resources. The modelling results showed that 
increasing the network connectivity of greenspace patches is an 
effective strategy for mitigating greenspace exposure inequality in 
urbanization, even without adding new greenspace (Figs. 3 and 4). 
For example, greenspace fragmentation due to urban expansion 
often occurs in densely populated areas [6,48]; thus, future urban 
planning could increase the spatial accessibility and connectivity 
of greenspace by building eco-corridors to connect different 
greenspace patches. Furthermore, improving the connectivity of 
greenspace patches (measured by the cohesion index) can reduce 
the distance travelled to greenspaces [4,22,49], strengthen 
ecosystem stability and urban resilience to climate risks [18,41,58], 
and ultimately improve greenspace accessibility and resident 
well-being [5]. Nevertheless, greenspace exposure inequality 
optimization strategy based on connectivity still faces potential 
implementation challenges, such as inadequate existing infra-
structure, uneven resource allocation, and competing interests 
among multiple parties. Therefore, it is imperative to effectively 
address these concerns through stakeholder coordination, public 
participation, and technical support.

Fig. 5. Optimization strategy to mitigate greenspace exposure inequality in Hefei (a–b) and Beijing (c–d). a, c, Source and network corridors of greenspace. b, d, Original and 
optimization patterns of greenspace exposure (G d ) in 2050.
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Specifically, for rapidly urbanizing cities, compact urban land 
use and renewal planning should be implemented to improve 
spatial accessibility and equity in greening by integrating green-
space functions (e.g., cooling, recreation, and sightseeing) and 
increasing patch connectivity through the introduction of small 
patches, depressions, rises, and other designs in large greenspaces. 
Our optimization strategy demonstrated strong mitigation po-
tential in northern cities (Fig. 4b), effectively addressing this 
potentially salient problem. For highly urbanized cities, in addition 
to implementing sound planning and policy support for local 
conditions, it is crucial to consider the trade-offs and dynamic 
trends between the supply and demand and the spatial distribu-
tion of greenspace to promote a win-win situation in terms of 
environmental justice and urban efficiency. In addition, future 
greenspace planning should consider the demands of disadvan-
taged groups (e.g., the elderly, women, and people with low edu-
cation levels) and different urbanization stages to develop more 
human-centered optimization strategies.

4.3. Limitations and perspectives

Some limitations and uncertainties should be acknowledged. 
First, multi-scenario analysis is beneficial for anticipating possible 
trends in greenspace exposure and developing forward-looking 
intervention strategies; however, this study was unable to cap-
ture the spatial details of greenspace exposure in the demographic 
structure. Since inconsistencies in the spatiotemporal resolution of 
some input data may lead to deviations in greenspace distribution 
simulations, further work should build a refined dataset with clear 
spatial information to improve simulation accuracy. In addition, 
future land cover and population projections cannot consider all 
relevant factors, such as greenspace allocation due to future 
extreme events and population control policies [22,41], thereby 
increasing the uncertainty of the analyses. Second, numerous 
landscape factors impact greenspace exposure inequality. 
Although this study selected commonly used and practical factors, 
additional factors should be included to strengthen the mitigation 
strategy. Moreover, although the population-weighted exposure 
model is a commonly used method of measuring greenspace 
exposure [4,13,14,21], exposure based on the buffer coverage 
metric cannot discriminate between physical accessibility (e.g., 
park entrances, opening hours) and greenspace quality (e.g., 
vegetation types, facility availability), which may lead to an over-
estimation of actual accessibility [14,63]. Therefore, future studies 
should explore the synergistic optimization of greenspace acces-
sibility and quality (e.g., location, type, and safety) and use multi-
agent simulation models (e.g., agent-based models) to improve 
analysis accuracy. Third, the Gini coefficient assumes equal utility 
of greenspace across different population groups and spaces [64], 
ignoring inter-group disparities and behavioral dimensions (e.g., 
visiting frequency or duration). To provide a more nuanced un-
derstanding of greenspace inequality, future work should apply 
additional indices (e.g., the Atkinson and Theil indices [15]) and 
incorporate them with accessibility analyses (e.g., based on 
OpenStreetMap road networks), points of interest, and spatialized 
population structure data.

5. Conclusion

Assessing multi-scenario trends and structural differences in 
greenspace exposure inequality, and proposing targeted, practi-
cable mitigation strategies, are essential for urban adaptation and 
addressing climate change, thereby improving residents’ well-
being and promoting sustainable urban development. This study 
comprehensively assessed the evolutionary trends and structural

differences of greenspace exposure inequality in China from 2000 
to 2050. Under the regional rivalry and fossil-fueled scenarios, 
inequality in greenspace exposure is projected to be higher among 
older women with lower education levels and among residents of 
northern regions and megacities, whereas under the sustainable 
scenario, these disparities are substantially reduced. In addition, 
greenspace coverage, population density, and patch connectivity 
interactively accounted for 83.9% of greenspace exposure 
inequality. The study found that even without adding new 

greenspace, optimizing greenspace connectivity can reduce 
greenspace exposure inequality by 10.3–20.8% across four future 
scenarios, with the effect more pronounced in northern cities. 
Therefore, future urban greening should focus on optimizing ur-
ban landscape patterns to achieve universal greenspace availabil-
ity for residents.
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