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Non-point source pollution from agricultural activities poses a significant threat to water quality by
introducing excess nutrients like nitrogen into aquatic ecosystems, leading to issues such as eutro-
phication and groundwater contamination. In agricultural watersheds, nitrate transport involves intri-
cate physical, chemical, and biological processes influenced by meteorological conditions, hydrological
features, and spatial topologies, making accurate short-term predictions challenging. Traditional data-
driven deep learning models often fail to incorporate physical constraints and complex spatiotem-
poral dynamics, limiting their interpretability and predictive accuracy. Here we show a hierarchical
transformer and graph neural network model that accurately predicts watershed nitrate concentrations
by integrating multi-source data and simulating pollutant migration. The model captures nonlinear
multivariate temporal patterns through hierarchical transformers, fuses global meteorological and local
hydrological features via neural networks, and models runoff topologies with physically constrained
graph neural networks. For predicting the concentration changes of pollutants discharged from wa-
tersheds, it outperforms baselines like multi-layer perceptrons, recurrent neural networks, and long
short-term memory networks, with state-of-the-art performance in root mean square error, mean
absolute error, and R?. Ablation studies confirm the essential roles of multi-source data integration and
watershed topological modeling in enhancing performance. This method of directly modeling physical
processes by leveraging the characteristics of different neural network architectures opens up a new
path for addressing the interpretability problem in neural earth system modeling, apart from the
process-guided deep learning and differentiable modelling methods.
© 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

the foremost environmental concerns driving the global decline in
water quality. NPS pollution occurs when a diverse array of pol-

The rapid and intensive progression of agricultural activities
has led to an influx of nutrients into natural water bodies, signif-
icantly threatening water quality. This threat commonly materi-
alizes as a non-point source (NPS) of pollution [1-3], and it is one of
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lutants that originate from agricultural undertakings, with nitro-
gen and phosphorus being particularly prominent, gradually shift
from land-based environments to water-based environments
[4,5]. Nitrogen, an integral part of NPS pollution, is currently one of
the most prevalent agricultural pollutants. NPS pollution origi-
nates from a broad spectrum of sources but is closely tied to hu-
man agricultural practices and is subject to the influence of
numerous natural elements, leading to high intricacy, unpredict-
ability, and variability [6-9]. The NPS pollution emanating from
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agricultural fields, especially in nitrogenous form, gives rise to
nitrogen loss within watersheds. This leads to soil acidification, the
nitrate contamination of groundwater, atmospheric acid deposi-
tion, and eutrophication [10,11]. Consequently, precisely modeling
the spread of NPS pollution and predicting its concentration levels
are crucial for effective prevention and control.

In light of the challenges related to NPS pollution, efficacious
strategies for its simulation and prediction merit attention.
Therefore, significant strides have been made over the past few
decades in the development of complex system modeling meth-
odologies aimed at scrutinizing hydrological material cycles on a
watershed scale, namely Earth system models (ESMs) [12]. These
methods utilize mathematical equations to delineate the material
migration and transformation processes within a watershed, with
a particular focus on the intricacies of NPS pollution. By con-
structing process-based models [13-15] and amalgamating diverse
subsystems into cohesive numerical frameworks, ESMs enable the
simulation of a wide array of physical, chemical, and biological
processes and their mutual interactions within the Earth system.
This comprehensive approach has not only proven indispensable
in the realm of Earth system science but has also substantially
augmented our comprehension and prediction of how NPS
pollution influences water quality dynamics. The ability of
process-based models to encapsulate various influencing pro-
cesses, such as water flow and biogeochemical cycles, accentuates
their value in surmounting such environmental challenges.
Nevertheless, the Earth system is extraordinarily complex and
harbors a plethora of unknown processes. Researchers lack a
thorough understanding of the underlying mechanisms of these
processes, which is why the models developed fall short of accu-
rately and comprehensively representing them. Further, procuring
detailed data on the properties of diverse processes, including
above- and below-ground dynamics, water flow, and biogeo-
chemical processes, is no easy feat, and this curtails modeling
capabilities over extended time periods. The limitations of
process-based modeling become glaringly evident with nonlinear
processes, especially in the context of high-dimensional in-
teractions among multiple systems [16], which impede the pre-
dictive accuracy for abrupt changes.

In recent years, novel artificial intelligence (Al) tools have been
extensively employed in Earth system modeling, enhancing
traditional methodologies and leading to remarkable achieve-
ments [17,18]. Al techniques, usually also called machine learning
or deep learning methodologies, built upon neural networks, have
spurred the evolution of the neural Earth system model (NESM)
[16], which couple Al with Earth system models. However, the
limited interpretability and credibility of Al algorithms pose sig-
nificant challenges to Earth system models, primarily stemming
from the so-called “black box” quandary—the unknowability of
the internal computation processes of Al models. Interpretable
artificial intelligence (IAI) offers a promising pathway to mitigate
these limitations, yet realizing its full potential will require over-
coming substantial challenges through sustained research efforts.

Understanding the complex interactions between the various
environmental factors in a watershed is essential for the effective
prediction and management of water quality. Traditional models
often struggle to capture the complex, nonlinear dependencies
and spatial interactions inherent to these systems. Thus, there is a
need for advanced methodologies that can integrate both global
and local watershed features, providing a more comprehensive
understanding of water quality dynamics. In this study, we
developed a novel method called HTGNN-WNP—the hierarchical
transformer and graph neural network model for watershed ni-
trate prediction—that addresses these modeling requirements by
leveraging advanced machine learning techniques.
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Our method adhered to the physical rules governing watershed
runoff in the design phase of the NESM. We collected multi-year
observational time series data on meteorology and pollution in
the study area from official databases. Al algorithms were
employed to mine hidden patterns of interactions among various
variables from the data, which were then used to predict nitrate
concentration levels in watershed runoff. This task required us to
overcome three significant challenges: (i) extracting effective
features and patterns from nonlinear, multivariate time series
data, (ii) assimilating macro meteorological observation data with
local runoff physical parameters within the model framework, and
(iii) accurately modeling the complex topological relationships
associated with runoff in watersheds.

We used the hierarchical transformer method to capture the
interactive coupling relationships between the time series of
watershed meteorological features and feature dimensions, which
enabled us to extract complex patterns. We encoded and inte-
grated global (meteorological features covering an entire small
watershed) and local (hydrological features of a single sub-
watershed) features through neural networks to obtain a
comprehensive modeling perspective. Notably, we employed an
innovative approach that involved the use of graph neural net-
works (GNNs) to model the topological relationships of runoff.
This particular approach allowed us to mimic the physical trans-
location of pollutants within watersheds and capture spatial in-
teractions beyond the limitations of traditional time series
methods. We applied this proposed method to predict nitrate
concentrations at the outlet of an agricultural watershed in
northern Texas, the United States, thus obtaining distinctive per-
spectives and valuable insights into water quality prediction.

The key contributions of our study are as follows.

e The hierarchical transformer method was used to model the
interactive coupling relationships between the time series and
feature dimensions of watershed meteorological features,
significantly enhancing the extraction of complex patterns
from multivariate data.

e Our innovative watershed hydrological modeling method
involved integrating macro meteorological data with specific
local hydrological features of sub-watersheds. This facilitated a
robust and coherent fusion of diverse data sources for
improved watershed system modeling.

e To our knowledge, this was the first study to involve the inte-

gration of GNNs with physically driven message passing rules

to model runoff topological relationships, enabling artificial
neural networks to simulate the pollutant migration processes
in watersheds.

Our deep learning framework, HTGNN-WNP, demonstrated

exceptional performance in watershed water quality predic-

tion, as evidenced by experiments and tests conducted in the
study area.

2. Materials and methods
2.1. Data collection and processing techniques

2.1.1. Nitrate monitoring data acquisition and processing

This research leveraged published monitoring data on nitrate
concentrations in surface water from the national ecological ob-
servatory networks [19]. We selected observational data from a
region in northern Texas, USA (33°20-33°24' N and 97°47'-97°53'
W), characterized by its subtropical humid climate with mean
annual precipitation of approximately 890 mm (Fig. 1). The
watershed covers about 40 km? and supports agricultural
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activities, with the land primarily divided between ecological re-
serves and farmland. Nitrate (NO3-N) concentrations were
measured downstream of the watershed using a SeaBird SUNA
underwater ultraviolet nitrate analyzer at 15-min intervals, with
results reported in pmol L™!. We then calculated the daily mean
concentrations of nitrate at the watershed outlet, covering the
period from October 2017 to April 2024.

2.1.2. Hydrological data and spatial analysis

Hydrological data were obtained from the HydroSHEDS dataset
[20], a high-resolution database provided by the United States
Geological Survey and the World Wildlife Fund. We used the QGIS
software to process high-resolution imagery sourced from Google
Maps. This facilitated the detailed extraction of land cover types
and spatial patterns and enabled us to accurately identify the
physical characteristics of the runoff, such as the length, width,
and head drop (Fig. 2a).

2.1.3. Runoff sinuosity calculation

Acknowledging sinuosity as a key hydrological indicator due to
its capacity to moderate water flow and facilitate nitrogen trans-
formation [21], we prioritized its accurate quantification. We used
a vectorization process for each runoff path; curvatures were
calculated at select points and subsequently averaged, which
resulted in a mean curvature that succinctly represented the
runoff’s sinuosity.

2.14. Topological relationship mapping

To clarify the topological relationships within small watershed
runoffs, binary images of the runoff patterns were prepared using
QGIS. The RivGraph algorithm [22] was applied thereafter to draft
comprehensive topological maps, which enabled the clear
encoding of nodes and their connections (Fig. 2b). This technical
approach ensured precise runoff connectivity mapping across the
watershed.

2.1.5. Meteorological data processing

We collected meteorological data from the National Weather
Service's (NWS) records for three adjacent airport weather sta-
tions. By calculating the arithmetic mean of observational data
from three meteorological stations, we approximated the site-
specific meteorological conditions accurately. For data process-
ing, wavelet transforms were used to decompose the time series
into components that reflected low-frequency long-term trends
and abrupt high-frequency changes to enhance the model's ability
to capture subtle and rapid weather alterations.
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Fig. 1. Overview of the study area.
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2.2. Overall Framework

We developed a comprehensive framework using transformer
architectures and GNNs to model complex interactions across
temporal and spatial dimensions (Fig. 3).

First, the collected watershed data was preprocessed and
divided into a training set and a test set (Fig. 3a). We used a hi-
erarchical transformer with dual transformer [23] modules to
capture complex time series and intervariable patterns (Fig. 3b).
We adopted feature compression methods to distill these features
into global feature vectors that could reflect the impacts of
meteorological conditions and historical pollution concentrations
on the water quality of the watershed.

Neural networks were then employed to encode each sub-
watershed and capture its distinct local features (Fig. 3c). The
variables used for feature encoding included hydrological and land
use metrics, spatial patterns, and other physical indicators.
Following this, we broadcasted the watershed's global features to
each sub-watershed's features to facilitate modeling from a global
perspective (i.e., factors influencing the entire watershed) down to
a local perspective (i.e., factors specific to individual sub-
watersheds).

We utilized GNNs [24,25] for the spatial modeling of each sub-
watershed (Fig. 3d). The aggregation and transmission rules of the
graph adhered to the topological relationships of the runoff within
the watershed and thus simulated the migration process of pol-
lutants through the runoff network. This approach firmly anchored
the model's feature transmission in the physical laws governing
real-world environments, instead of relying purely on data-driven
methods. Unlike conventional time series modeling [26-28], this
graph-based approach could capture the spatial interactions of
time series within the inherently complex, non-Euclidean water-
shed structures informed by runoff topologies. In the final phase of
model construction, graph pooling was used to aggregate the
features of each sub-watershed in the graph, and this information
was integrated via a fully connected layer to predict nitrate con-
centration in the water at the watershed's outlet (Fig. 3e).

2.3. Watershed system modeling

2.3.1. Definition and notation

In this section, we introduce the key definitions and notations
used throughout the paper. We first define the global time series
within the watershed, including both univariate and multivariate
time series and their respective notations. These provide the basis
for understanding the overall characteristics of the time series
data. We then specify the hydrological variables of the runoff
within the watershed and their associated notations, which cap-
ture region-specific hydrological characteristics. Finally, we
describe the watershed attribute graph and its notational defini-
tions, representing the watershed's topological and structural
properties.

Definition 1. Global variable time series. In watershed-scale
neural geoscience modeling, global variable time series data
cover observations across an entire watershed, such as daily
temperature, humidity, and precipitation. A univariate time series
is a sequence of scalar observations over time, denoted as x = {x1,
X2,...,Xt} € Rt, and t represents the length of the time series. For
our task, the model's input global time series data involved mul-
tiple variables over time, leading to the concept of a multivariate
time series. This set of n-dimensional vector observations over
time can be represented as X = {X{, X, ..., Xy} € R"*, where n
represents the number of variables.

Definition 2. Parameterization of hydrology. The hydrological
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Fig. 2. a, Land use in the study area. b, Illustration of the topological relationships of runoff within a watershed. Red numbers represent the number of runoff nodes, and blue

numbers represent the number of watershed runoff.
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parameters for each sub-watershed in the watershed were defined
as h = {hy,h,,...,h;5} € R'2, where the dimension 12 represents
the number of parameters. In our study, these 12 hydrological
parameters specifically encompassed 12 indicators: length, width,
sinuosity, runoff drop, and the area and proportion of the imper-
vious surfaces, water bodies, ecological land, and arable land
within each sub-watershed. The hydrological parameterization of
the whole watershed was defined as H = {hy h,,...,hy} € RM*12,

where M represents the number of sub-watersheds.

Definition 3. Topological representation of the watershed. The
topological relationships of surface runoff within a watershed are
represented by flow paths and their connections. These are
modeled using a directed graph G = (V,E), where V = {v{,v5,v;, ...
,Vj,UN} € RN*3 denotes the set of nodes (entrances, exits, and
confluences of runoff) and E = {eq,e;,...,ey} denotes the set of
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edges (runoff pathways). Here, N represents the number of nodes.

M represents the number of edges, which is consistent with the

number of sub-watersheds. The adjacency matrix A e RV is

defined as follows: for nodes v;,v; € V,

Aj= { 1, if there exists an ec}ge (vhvj) €E, 1)
0, otherwise.

Here, A;; denotes the (i,j) th entry of A, indicating whether
runoff flows from node v; to node v;.

2.3.2. Hierarchical transformer for time series modeling

Meteorological factors, such as temperature, precipitation,
wind speed, and humidity, have both direct and indirect effects on
the nitrogen cycle process that tend to accumulate over time and
manifest accordingly. These variables do not operate in isolation.
Instead, they interact with each other and collectively influence
the changes in water quality within a watershed.

To capture these complex patterns, we employed a hierarchical
transformer that consisted of two transformer blocks: one for
managing dependencies in the temporal domain and the other for
addressing dependencies in the variable dimension (Fig. 4).

The raw data were enhanced using a wavelet transformation,
which resulted in the original input data X = {*,X;,...,X,} € R™<,
This was then feature-encoded using a deep multi-layer percep-
tron (DeepMLP), which extended the features from low di-

mensions t to high dimensions d/2, resulting in fy ¢ R"<4/2
(equation (2)).

£, = Dropout (GELU (BN (Linear; (X2"1) ) )) (2)

Here, B denotes the batch size of the data processed each time,
i.e., the number of samples processed simultaneously during each
training step. The batch size balances computational efficiency
with gradient update stability, thereby influencing both training
speed and model generalization. Linear;(-) indicates a linear
transformation applied at layer i; BN(-) refers to the batch
normalization applied after each linear transformation; and
GELU(-) is the Gaussian error linear unit activation function
applied after batch normalization. Dropout(-) denotes dropout
with probability 0.5 applied after the GELU activation in all layers,
which was used to mask some neurons in the neural network to
prevent overfitting. Linear;(-) was essentially a linear neural
network layer that was combined with BN(-), GELU(-), and
Dropout(-), to form a DeepMLP set. Linear;(-) was defined by a
weight matrix W € R (@/2) that mapped the input X3 to RB14/2,
This transformation projects the original input sequence from the
time dimension t to the high-dimensional feature space d/ 2,
enabling the transformer model to capture the feature de-
pendencies of water quality in the time dimension. In general,
when the input feature dimension is low, the attention algorithm
of the transformer may yield nearly uniform attention weights
across time steps (i.e., minimal differences in weights), due to the
limited numerical dimension. After high-dimensional expansion,
the attention calculation results are more dispersed, allowing the
model to assign weights that more accurately reflect the intensity
of the temporal dependencies. For example, with an input time
series length t = 10 (e.g., 10 days of meteorological data) and high-
dimensional feature dimension d = 256, the DeepMLP would map
the input X™10 to £,2™128 For the purpose of our study, the
dimension was set at d/2, as the remaining half was to be used for
concatenating the features from the sub-watersheds in the sub-
sequent processing stage.

We introduced a hierarchical transformer model to effectively
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capture patterns in both the temporal domain and variable di-
mensions within fy € RB4/2 The transformer [23] included a self-
attention mechanism that enabled each element in the input
sequence to dynamically attend to and integrate information from
all other elements, thereby capturing long-range dependencies
and contextual relationships. To compensate for the inherent lack
of sequential order information in self-attention, explicit posi-
tional encodings were injected into the input embeddings, which
allowed the model to effectively leverage the sequence structure.
The input variable fy € RB"4/2 integrated n meteorological vari-
ables (variable dimension) and d/2-dimensional temporal fea-
tures. To capture positional dependencies in both dimensions, we
independently apply positional encoding to the meteorological
variable and temporal feature dimensions (Fig. 4). Subsequently,
we used transformer-based encoders for hierarchical feature
extraction, allowing the model to learn the complex relationships
embedded in the meteorological variables and high-dimensional
temporal dynamics.

In the first level of the hierarchical transformer model, posi-
tional encoding was applied to the temporal dimension d/2 as
follows: f,>4/2" — PE(f,2™4/2 permute = (0, 2, 1); dim = d /2).
Specifically, as a fundamental component of the transformer ar-
chitecture, the PE(-) function first transposed the original input
tensor into the shape of (B,d/2,n), and then injected positional
encoding into the dimension d/2 to construct sequential infor-
mation. This served the transformer block in capturing the
sequential dependencies in the d/2 dimension. The encoded
tensor was then inputted into the first transformer encoder block
Tt. In the second level, PE( -) was applied to the variable dimension
n after transposing the output tensor from the first level to (B,d /2,
n): fE"42 — PE(f,29/%" permute = (0,2,1); dim=n). The enco-
ded tensor was then input into the second transformer encoder
block T ™. The hierarchical transformer model was implemented
using the two-level operations given above, in line with the
following equations:

fXB,d/z,n _Tt (fXB‘d/ln) (3)

f)r(B,n,d/Z _Tn (fXB,nd/Z) (4)

After the hierarchical transformer, we employed a feature
compression method to compress a tensor of shape (B,n,d /2) into
a feature vector f; of shape (B,1,d/2) and thereby obtain a
meteorological feature vector that covered the entire watershed.
Specifically, the feature compression was implemented via a fully
connected (FC) layer-based approach. A linear transformation with
aweight matrix W € R"™! was applied to the variable dimension n,
which projected the n-dimensional meteorological variables onto
a single comprehensive feature. This process was mathematically

/ ‘ Bnd/2
B1d/2 _ Fc(fxBﬁnﬁd/z) ~f, n.d/ w Wnsls

the resulting f; integrated the spatial dependencies across all
meteorological variables (e.g., precipitation, temperature, humid-
ity) into a unified representation. The fully connected compression
enabled the model to learn the adaptive weights for different
variables and emphasize those with stronger contributions to
watershed nitrate concentration dynamics. This mechanism
reduced the feature dimension while preserving the critical tem-
poral patterns in the d/2 dimension and also generated a water-
shed scale meteorological feature vector.

formulated as follows: fg
B.1d/2

2.3.3. Watershed hydrological modeling
In this section, we detail our hydrological modeling approach
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based on deep neural networks in three parts: sub-watershed
hydrological feature extraction, global feature broadcasting, and
node feature extraction. Through these steps, we achieved the fine
modeling of hydrological data to capture the watershed's hydro-
logical characteristics. The process unfolded as follows (Fig. 5):
Sub-watershed hydrological modeling and feature extraction.
We extracted the sub-watershed features from the hydrological
observational data H = {hy, hy, ..., hy;} € RM*12, Sub-watershed
features were initially extracted from the data using the
DeepMLP (equation (5)).
fEMA2 Dropout(GELU (BN (Linear(HBM’lz)))) (5)
The watershed observational data H®™12 with batch size B
served as the input for Linear(-)—a linear transformation defined
by the weight matrix W e R™<(@/2) which mapped the input

HBM12 to RBMd/2 The parameter B was consistent with that in
equation (2). Based on Linear(-), BN(-), GELU(-), and Dropout( -)
were combined to form a DeepMLP, and a feature matrix of the
sub-watershed hydrology was extracted. Specifically, high-

dimensional hydrological features fy € REM:4/2 of each sub-
watershed were extracted from the input hydrological data. This
process was used to model the interrelationships among various
hydrological characteristics, such as the length and width of the
runoff or the cultivated land area and its proportion in a sub-
watershed.

Subsequently, positional encoding was applied to dimension M

of the sub-watersheds and expressed as follows: f,_,B"IVI‘”l/2 =

PE(fHB‘M’d/z, dim = M). A transformer encoder block TM was then
utilized to perform sequential modeling of the high-dimensional
hydrological features, with the aim of capturing the potentially
complex interactions between runoffs in the various sub-
watersheds and to further refine the features (equation (6);
Fig. 5a).

fl,_IB,M,cl/Z _™ (fg,M,d/z) (6)

Global feature broadcasting. As detailed in Section 2.3.2, the
global meteorological features f; exerted their influence on the
entire watershed. To conduct a thorough analysis, these features
were integrated with the hydrological characteristics specific to
the sub-watersheds. We utilized a feature broadcasting method, to
effectively merge the meteorological features f; € RF-1¢/2 and the
sub-watershed hydrological features f;;c R¥M.4/2_ This involved an
initial expansion phase, during which f; underwent expansion to
align its dimensions with those of the sub-watershed features,
resulting in fye REM4/2 through M repetitions (equation (7)). This
ensured dimensional consistency between the global meteoro-
logical features and the sub-watershed hydrological features.
Then, in the concatenation phase, the expanded meteorological
features were combined with the hydrological features to form
& € RBMd (equation (8)). Finally, the global feature broadcasting of
fe to the features of each sub-watershed was completed.

" =fy @ fy © ~@fy (M times) (7)
e:Concat(ﬂ,,fé) € RBMd (8)

Node feature extraction. For nodes describing inputs, outputs,
and confluences within the watershed, V = {vq, v, vj, ..., v},

vy} € RV*3, we initialized feature extraction using a DeepMLP to

extract high-dimensional features of the nodes (equation (9);

Fig. 5b).

v:Dropout(GELU (BN (Linear(VB*Ns)))) € RBNA (9)
Through the above operations, we obtained the node feature

matrix v € RBN4 and the edge feature matrix e € REMA which
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Fig. 5. Watershed hydrological modeling module. a, Sub-watershed feature extraction block. This block extracts runoff features through a set of feature encodings and trans-
formers, and integrates meteorological features. b, Node feature extraction block. The deep features of the nodes are extracted by a feature encoder. DeepMLP: deep multi-layer

perceptron; Norm: layer normalization.

contained the meteorological information of the watershed. Here,
d represents the feature dimension. The node feature dimension
was kept consistent with that of the edge feature matrix for the
next step of processing. This dimension was determined based on
the hidden layer size of the DeepMLP used in feature extraction.
The dimension d served as a hyperparameter, and its design
principle was to balance out the model's performance and
computational efficiency.

2.3.4. Watershed topology modeling

By maintaining physical consistency between the parameter
propagation process of the GNNs and nutrient migration with the
water flow within the watershed, the nutrient migration and
transformation processes were simulated in the topological model
of the watershed. As given in Definition 3, the topological rela-
tionship of watershed runoff was defined as a graph G = (V,E).
The adjacency matrix A described the topological relationships. As
described in Sections 2.3.2 and 2.3.3, we extracted each
sub-watershed runoff feature ¢ ¢ RBM4 and the node features
ve RBNA,

Inspired by Sanchez-Lengeling et al. [29], we constructed a
GNNs block that achieved the topological modeling of the

a Layer L

Layer L+1

4 of, - >V,
Vitpe
V,—%& )
L < - f - »e
e,..e. > V. e >V,

Message passing Parameter update

<SS <
Ai

)
L83
o D0
¥y 3

ViB44) £B83.4)

Fig. 6. Message passing and parameter updating mechanism of the graph neural
network (GNN) layer (four-node and three-edge simplified version). a, GNN layer. b,
The message passing process based on the adjacency matrix. ¢, Parameter update. The
features of nodes V and edges & implement parameter passing and parameter
updating in the GNNs according to the rules of the adjacency matrix A.

watershed through two key stages: message passing and infor-
mation updating. The transition from layer L to layer L + 1 simu-
lated the process of material migration within the watershed
(Fig. 6a). During this message passing stage, information was
exchanged between the nodes and edges. The adjacency matrix A
played a key role in constraining the transmission rules for the
watershed features; for instance, if the element in the ith row and
jth column was 1, it indicated that the feature of node v; was first
transmitted to edge e; (v;—»e;), and then information was
conveyed from edge e;; to node vj(e;; —v;). The feature of edge e;
was updated by aggregating the features from node v; and edge e;;,

and node v;’s feature ,,]{ was subsequently updated using the newly

updated edge feature ¢
(10); Fig. 6b).

/

i along with v;’s original feature (equation

Given

v, v; C V[B,:,d]

e;j Ce[B,:,d
if

Aj=1 (10)
then

fe: e;-j = o(Weeij + Wy + be); Node—Edge

fv: v} = U(W,,vj + Wee'ij + bv); Edge—Node

Following the message passing stage, the updating stage took
place, during which the node and edge features were refined
through specific update functions, f, and f., which effectively
mapped the features from layer L to layer L + 1 (Fig. 6¢). In this
GNNs framework, the trainable parameters were explicitly defined
within the update functions f, and f. and specifically encompassed
the weight matrices W, and W, and the bias terms b, and b,
(equation (10)). These parameters were optimized during the
training process to enable the model to learn the dynamic material
migration patterns within the watershed. Notably, the adjacency
matrix A, which quantified the topological relationships of the
runoff, was fixed a priori, serving as a physical constraint that
dictated the order of parameter transmission between the nodes
and edges. This fixed topology ensured that the message passing
process adhered to the inherent hydrological connectivity of the
watershed and that the trainable parameters within the update
functions adapted to model the nuanced material transformation
processes driven by the water flow. The update functions were
implemented using a set of DeepMLPs. This processing enabled the
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GNNs to capture the topological relationships and the dynamic
changes of material migration within the watershed, thereby
mimicking the water flow-driven processes to provide an accurate
representation of nutrient migration and transformation. The
mathematical representation of message passing and feature
updating is shown in equation (10).

To ultimately predict the nitrate discharge concentration in the
watershed at the final stage of the entire model, a set of graph
pooling functions was used to aggregate the edge features ¢ €
REM.d ypdated by the function f. into a feature vector f € RB1.4 to
describe the nitrate discharge concentration in the watershed
(Fig. 3d). This vector was then fed into a fully connected network
and transformed via linear mapping and activation functions into a
scalar prediction y' € RB! that represented the estimated nitrate
concentration at the watershed outlet (Fig. 3e). The loss (mean
squared error) between the predicted value y' and the observed
nitrate concentration y was calculated, and the model parameters
were iteratively optimized to minimize this loss and thereby make
the predicted values approach the actual observed values.

The novelty of our use of GNNs to model the migration of
pollutants lies in their task-specific design. We model the water-
shed topology with the material transport paths of runoff within
the watershed as physical constraints, integrating the hydrological
parameters (such as sinuosity and land use conditions) and
meteorological features into the node and edge characteristics. We
then use message passing and parameter update to simulate the
dynamics of pollutant transport.

3. Experiments and results
3.1. Dataset

We collected meteorological data, daily nitrate concentration
data from the watershed outlet of the study area, hydrological data
from each sub-watershed, and the topological relationships of the
watershed (Section 2.1). Because nitrate migration and trans-
formation exhibit time lag effects, it was necessary to balance the
use of sufficient historical information with the risk of redundancy
[30]. Consequently, the time series length of past data for nitrate
concentration prediction was set to 10 days, i.e., the global variable
time series length t = 10. The watershed comprised 21 sub-
watersheds (M = 21) and 22 nodes (N = 22). We used nitrate
emission monitoring data from the study area between October
2017 and April 2024 to train and evaluate our model. The training
set comprised 75% of the overall dataset, and the test set
comprised 25%. The global variable data structure of a single batch
input is shown in Table 1, and Local runoff hydrological data is
shown in Table 2. Predictions were generated sequentially along
the timeline via a sliding window approach until the dataset was
fully traversed.

3.2. Implementation details

Stage One. To predict the nitrate emission concentration on day
i, we used watershed-scale time series meteorological data
together with historical nitrate concentrations from day i—10 to
day i—1. These inputs were represented as the global variables

X 201810 3pq processed by the DeepMLP model designed based on

equation (2) to extract high-dimensional features: fxzo‘w‘us«—

X 201810 \where the batch size was B = 20 (i.e., 20 batches of data
processed at a time); n = 18 (16 meteorological indicators, one
historical nitrate concentration indicator, and one day of year
[DOY]); the time series length was t = 10; and the high-
dimensional feature was d/2 = 128. The hierarchical
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transformer model (equations (3) and (4)) was then applied for

feature encoding, followed by feature compression, yielding a

global feature vector fgzo‘”28 that covered the entire watershed:

20,1,128  (20,18,128 20,18,128
fg (_fx <_fx .

Stage Two. To model the watershed hydrological information,
equation (5) was first used to extract high-dimensional features

£,7%21128 from the hydrological parameters H22112 of the 21 sub-

watersheds in the study area. Feature encoding was then applied

using equation (6), yielding: fi’izom,128(_sz0,21,128<_H20A21A12' Sub-

sequently, based on equations (7) and (8), the global features were
broadcasted to each sub-watershed, producing:

s20~21~256<—(f:0’21’128, f2°1128) For node information v 20223,

high-dimensional features were extracted using equation (9):
12022256 4, 20,223

Stage Three. Under the constraint of the topological relation-
ship (adjacency matrix A) and in line with equation (10), a GNNs
was used to simulate the migration process of nutrients with the
runoff in the watershed via message passing: £20-21256 y20.22,256 _
GNN(g20:21.256 12022.256) gybsequently, graph pooling and a FC
layer were applied to map the sub-watershed features £20-21.256 o
a scalar value y': y € R20—F(C(£20:1:256) pooling(¢20-21:256), The
loss between the predicted and observed values was iteratively
minimized to achieve accurate prediction, expressed as:
min Loss(y,y).

We constructed the HTGNN-WNP model using PyTorch. Model
training employed the Adadelta [31] as the optimizer, with p = 0.9
and an initial learning rate of 0.1, which was decayed by 1% every
20 epochs. We employed L2 regularization in the optimizer, with a
coefficient of 1 x 1074 to mitigate overfitting and enhance
generalization. A large batch size (B > 20) was used to approxi-
mate the dataset's overall gradient more accurately, enabling the
model to capture global feature distributions while reducing
sensitivity to noise in small batches. All experiments, including
model training and testing, were conducted on a single NVIDIA
GeForce RTX 3070 GPU. The model contained 0.59 million pa-
rameters and 2.35 billion FLOPs. The training process required
approximately 1.3 h for the entire cycle, and the inference time
was 0.0057 s per sample on the same GPU hardware.

3.3. Evaluation metrics

To evaluate our model's performance in predicting nitrate
emission concentrations, we used the mean absolute error (MAE),
root mean square error (RMSE), and the coefficient of determina-
tion (R?) as the assessment metrics:

(11)
1,
MAE:E;W;‘*%} (12)
n 2
Z(%’—J/,)
RP=1-5! (13)
> i —¥)?

Here, n represents the total number of samples, y; denotes the
ith observed value, y; denotes the ith corresponding predicted
value, and y is the average of all true values. RMSE reflected the
precision of the model and the scale of the errors, while MAE
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Table 1
Model input parameters of global variable data.

Variable Variable description

name

T_Max Daily maximum temperature (°F)

T_Max_D Low-frequency signal of wavelet transform of daily maximum
temperature (°F)

T_Max_A  High-frequency signal of wavelet transform of daily maximum
temperature (°F)

T_Min Daily minimum temperature (°F)

T_Min_D  Low-frequency signal of wavelet transform of daily minimum
temperature (°F)

T_Min_A  High-frequency signal of wavelet transform of daily minimum
temperature (°F)

T_Avg Daily average temperature (°F)

T_Avg_D  Low-frequency signal of wavelet transform of daily average
temperature (°F)

T_Avg_ A  High-frequency signal of wavelet transform of daily average
temperature (°F)

AWND Daily average wind speed (mph)

AWND_D Low-frequency signal of wavelet transform of daily average wind
speed (mph)

AWND_A  High-frequency signal of wavelet transform of daily average wind
speed (mph)

RH Daily relative humidity (%)

RH_D Low-frequency signal of wavelet transform of daily relative
humidity (%)

RH_A High-frequency signal of wavelet transform of daily relative
humidity (%)

PRCP Daily precipitation (inches)

Nitrate Nitrate concentration (micromolar, pM)

DOY One day of the year (dimensionless)

Note: Global variable data includes meteorological data, pollutant concentration at
the watershed outlet, and one day of the year. The time span of the data input into
the model at one time is t = 10, indicating the sliding window length.

indicated the magnitude of the average error, with smaller values
indicating better performance. R?> was used to measure the pro-
portion of variation in the dependent variable that was explained
by the independent variable, reflecting the strength of the linear
correlation between predicted and observed variables. Its range is
[0, 1], with values closer to 1 indicating stronger predictive
performance.

3.4. Model's performance for nitrate concentration

This study focused on predicting nitrate concentrations in
surface water using the HTGNN-WNP. Unlike conventional ap-
proaches that directly simulate runoff dynamics, HTGNN-WNP
incorporates runoff topological relationships as structural inputs
to the GNNs. The model was evaluated using data from April 2023

Table 2
Model input parameters of local runoff hydrological data.
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to April 2024, and its predictions were compared with observed
nitrate concentrations (Fig. 7). A quantitative performance
assessment is summarized in Table 3.

The HTGNN-WNP demonstrated exceptional predictive per-
formance over the entire prediction period. The model yielded an
RMSE of 2.29 and an MAE of 1.67, indicating that prediction errors
were small and that the predicted values closely tracked the
observed trends. Notably, the coefficient of determination
(R? = 0.92) indicated that 92% of the variance in observed nitrate
concentrations was explained by the model, reflecting a strong
goodness-of-fit and robust predictive accuracy.

The model effectively captured sudden changes in nitrate levels
throughout the prediction period (Fig. 7), demonstrating robust-
ness to sudden environmental fluctuations. Such adaptability is
critical for forecasting water quality in dynamic systems, where
variations are often frequent and unpredictable. Moreover, the
HTGNN-WNP model exhibited excellent generalization and rep-
resentation capabilities, effectively integrating diverse data inputs
and modeling complex watershed relationships. These strengths
underscore its potential for broader application in environmental
monitoring and management, where it may support water quality
assessment and policymaking across similar watersheds. Overall,
the results confirm the model's reliability for nitrate concentration
prediction.

3.5. Comparison of the HTGNN-WNP with other methods

We compared the performance of the HTGNN-WNP against
several advanced methods, such as multi-layer perceptron (MLP)
[32], recurrent neural network (RNN) [33], long short-term
memory (LSTM) [34], support vector regression (SVR) [35], gated
recurrent unit (GRU) [36], and the transformer method [23]
(Table 3). We reproduced these classic models and strictly fol-
lowed their original architectural designs (Supplementary Texts
S$1-S6). To ensure fairness, all models were trained on the same
preprocessed input data (Tables 1 and 2) and evaluated using an
identical dataset split (75% training, 25% testing). Model perfor-
mance was assessed through unified evaluation metrics (RMSE,
MAE, and R?) to ensure comparability and reproducibility. Across
all key metrics, HTGNN-WNP consistently achieved the best
performance.

Predicted versus observed nitrate concentrations aligned
closely for HTGNN-WNP, with points clustering around the 1:1
line, in contrast to the more dispersed patterns of other methods
(Fig. 8). This agreement is consistent with the model's high R?
value and underscores its accuracy in capturing underlying data
trends. The outstanding performance of the HTGNN-WNP model

Variable name Variable description

Variable category

Len The length of the sub-watershed runoff (m)

Wid The width of the sub-watershed runoff (m)

Sin Sinuosity of the sub-watershed runoff (dimensionless)
Elev_Diff Elevation difference within the sub-watershed (m)

Hydrological Data (M = 21, indicating the
number of sub-watersheds.)

Imp_Area Impervious surface area within the sub-watershed (m?)

Imp_Ratio Percentage of impervious surface area relative to the total area of the sub-watershed (%)
Water_Area Area of water bodies within the sub-watershed (m?)

Water_Ratio Percentage of water body area relative to the total area of the sub-watershed (%)
Eco_Area Ecological land area within the sub-watershed (m?)

Eco_Ratio Percentage of ecological land area relative to the total area of the sub-watershed (%)
Agri_Area Agricultural land area within the sub-watershed (m?)

Agri_Ratio Percentage of agricultural land area relative to the total area of the sub-watershed (%)
RN_Vec Runoff node vector. A vector [inlet, outlet, confluence] represents the status of a runoff

node, with 0 for ‘No’ and 1 for ‘Yes’ with each element.

Runoff node data (N = 22, indicating the
number of nodes)




J. Sun, X. Gao, Z. Deng et al.

stems from its innovative design, comprising both hierarchical
transformers and GNNs. This approach provided a significant
advantage in modeling the topological relationships within the
watershed's physical runoff layer. By jointly capturing complex
spatial and temporal dependencies, the model achieved substan-
tial gains in predictive accuracy.

4. Discussion
4.1. Ablation experiment

We conducted two sets of ablation experiments: one to eval-
uate the contributions of different model components to water
quality prediction, and the other to assess the impact of alternative
data preprocessing methods on model performance.

4.1.1. Ablation experiment one: impact of various model
components

To systematically evaluate the impact of each module, we
developed three model variants constructed from the distinct
components outlined in Section 2.2. Specifically, HT-WNP con-
sisted of the hierarchical transformer module (Fig. 4); HTH-WNP
extended HT-WNP by incorporating hydrological modeling
(Figs. 4 and 5a); and HTGNN-WNP represented the full model ar-
chitecture (Fig. 3). These ablation models enabled a structured
analysis of the individual components’ contributions within the
proposed framework, with the quantitative comparison presented
in Supplementary Table S1.

The HT-WNP variant achieved an RMSE of 2.68, an MAE of 1.95,
and an R? value of 0.89, indicating that the basic transformer ar-
chitecture captured substantial patterns in the nitrate concentra-
tion dynamics (Table 4). Incorporating hydrological features
further improved performance: HTH-WNP reduced RMSE to 2.56,
lowered MAE to 1.87, and increased R? to 0.90. These results
indicate that the integration of hydrological features enhanced the
model's ability to replicate the observed concentration trends and
its consistency between predictions and measured values.

The complete model, HTGNN-WNP, demonstrated the best
performance, with an RMSE of 2.29, MAE of 1.67, and R? of 0.92.
Incorporating complex hydrological features and runoff topology
substantially reduced the discrepancy between predictions and
observations. These results emphasize the importance of consid-
ering hydrological, topological, temporal, and feature aspects,
which together enhanced predictive accuracy. Such a compre-
hensive approach demonstrates the value of integrating multiple
perspectives when addressing water quality prediction in complex
environments.

50

—=— Observed
—= Predicted

40

Nitrate concentration (umol L")

Apr  May Jun Jul Oct Nov Dec Jan Feb Mar Apr
2023 2023 2023 2023 2023 2023 2023 2024 2024 2024 2024

Fig. 7. The prediction results of the hierarchical transformer and graph neural
network model for the watershed nitrate prediction model. Note that some months
have missing observations.

10

Environmental Science and Ecotechnology 28 (2025) 100632

Table 3

Results of different methods for nitrate concentration prediction.
Method RMSE MAE R?
MLP 431 3.59 0.72
RNN 4.27 3.36 0.72
LSTM 3.74 2.59 0.79
GRU 3.62 2.63 0.80
SVR 3.54 2.52 0.81
Transformer 3.34 2.74 0.83
HTGNN-WNP 2.29 1.67 0.92

Note: MLP, multi-layer perceptron; RNN, recurrent neural network; LSTM, long
short-term memory; GRU, gated recurrent unit; SVR, support vector regression;
Transformer, the transformer method; HTGNN-WNP, hierarchical transformer and
graph neural network model for watershed nitrate prediction. Smaller root mean
square error (RMSE) and mean absolute error (MAE), and an R? closer to 1 denote
better model performance.

4.1.2. Ablation experiment two: impact of data preprocessing
methods

To investigate the impact of data preprocessing strategies on
model performance, we compared the use of raw input data with
data preprocessed by wavelet transform (WT). WT decomposes
time series into low-frequency trends and high-frequency abrupt
components, which enhances the extraction of nonlinear temporal
features. The original data and WT-preprocessed data were used as
inputs and compared, allowing a controlled comparison of pre-
processing effects.

The quantitative results show that WT preprocessing reduced
the RMSE from 2.66 to 2.29 and the MAE from 2.02 to 1.67, and R?
improved from 0.89 to 0.92 (Table 5). These findings indicate that
WT effectively mitigated noise and enhanced the model's capa-
bility to capture dynamic pollution patterns. By separating the
frequency components of the time series, WT enabled the model to
better distinguish changing trends (e.g., fertilization cycles) from
short-term abrupt changes (e.g., rainfall-induced runoff), making
it a valuable preprocessing complex hydrological and meteoro-
logical data in watershed studies.

4.2. Advantages of HTGNN-WNP in watershed water quality
modeling

Human activities and climate change-induced NPS pollution
are the main reasons for water quality changes in watersheds [37].
Accurate predictions of watershed water quality is therefore crit-
ical for managing agricultural water, soil resources, and the envi-
ronment. In this context, the HTGNN-WNP has several advantages.

4.2.1. Superior feature extraction and pattern recognition

Extracting effective features and patterns from nonlinear,
multivariate time series data is the key to accurate watershed
water quality prediction. Interactions and couplings among
different variables add significant complexity to prediction
models, reflecting the underlying environmental processes and
feedback mechanisms that can profoundly influence changes in
water quality [38,39].

The HTGNN-WNP addressed this challenge using a hierarchical
transformer constructed with dual transformer modules. Latent
patterns were independently captured from both temporal se-
quences and multivariate dimensions, and these features were
then integrated to enhance predictive performance. This approach
fully leveraged the strengths of each dimension while enabling the
model to comprehensively uncover the complex underlying dy-
namics of water quality variations.
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Table 4

Prediction performance of ablation models for nitrate concentration.
Method RMSE MAE R?
HT-WNP 2.68 1.95 0.89
HTH-WNP 2.56 1.87 0.90
HTGNN-WNP 2.29 1.67 0.92

Note: HT-WNP, hierarchical transformer for watershed nitrate prediction; HTH-
WNP, hierarchical transformer incorporating hydrological modeling for water-
shed nitrate prediction; HTGNN-WNP, hierarchical transformer and graph neural
network model for watershed nitrate prediction. Smaller root mean square error
(RMSE) and mean absolute error (MAE), and an R? closer to 1 denote better model
performance.

4.2.2. Effective assimilation of multisource data

Runoff characteristics and local landscapes are crucial factors
determining NPS pollution formation and spread [42-44]. As a link
between terrestrial and aquatic environments, runoff directly af-
fects the migration rate and diffusion range of pollutants through
characteristics such as flow velocity, discharge, and path direction
[40,41].

Data integration is a significant aspect that allows for under-
standing and addressing NPS pollution. The HTGNN-WNP demon-
strated outstanding capabilities in this regard, particularly in
integrating macro meteorological observation data with local
runoff physical parameters. Watershed water quality is influenced
by a combination of global and local factors. Our methodology
involved encoding and combining global (meteorological features
spanning an entire small watershed) and local (hydrological fea-
tures of a single sub-watershed) watershed characteristics via
neural networks. This approach offered a comprehensive perspec-
tive of the watershed system, considering both the large-scale cli-
matic impacts and the specific traits of each sub-watershed. The use
of multiscale data resulted in more accurate predictions than
models relying on a single data type, as it captured the intricate
interplay among the diverse factors affecting water quality.

4.2.3. Accurate modeling of topological relationships
The incorporation of GNNs within the HTGNN-WNP framework
was a pivotal innovation. During model design, watershed

1

Table 5
Quantitative performance comparison of the HTGNN-WNP model under two data
preprocessing schemes for nitrate concentration prediction.

Model input RMSE MAE R?
Original data 2.66 2.02 0.89
Wavelet transform-preprocessed data 2.29 1.67 0.92

Note: Smaller root mean square error (RMSE) and mean absolute error (MAE), and
an R? closer to 1 denote better model performance.

topological relationships were incorporated as physical con-
straints in simulating material migration, enabling the model to
characterize runoff connectivity across sub-watersheds with high
fidelity. Previous studies have shown that the connectivity delin-
eated by the topological architecture of a watershed plays an
essential role in determining the migration and transformation of
pollutants, such as nitrates, among diverse subregions [45,46].

Previous studies on water quality analysis that involved GNNs
and topological relationships [24,46] mainly focused on topological
feature extraction and did not integrate the connection attributes of
the topology as physical constraints into the GNNs model. For
example, Xia et al. [46] used topological relationships to analyze
nutrient retention in small water bodies but did not couple the
topological structure with time series pollution dynamics. By jointly
integrating hydrological parameters, meteorological time series,
and watershed topology, HTGNN-WNP provided end-to-end pre-
dictions and demonstrated strong performance in capturing abrupt
nitrate fluctuations (Table 3). Using GNNs to embed topological
relationships into the model enabled a more accurate representa-
tion of runoff connectivity and improved quantification of nutrient
retention and transfer among interconnected water bodies. More-
over, the integration of GNNs enabled the model to inherently
assimilate non-Euclidean spatial traits and interactions, often
overlooked in conventional time series models [17,18,47]. Conse-
quently, this strategy facilitated the capture of elaborate spatio-
temporal dynamics in a manner consistent with the physical
processes of runoff and pollutant transport. Grounding feature
transmission in physical principles not only enhanced predictive
accuracy but also addressed limitations inherent in purely data-
driven methods.
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4.2.4. Feature importance analysis

To address the interpretability of the HTGNN-WNP model and
explore the mechanistic relationships between the inputs and the
nitrate concentration predictions, we employed permutation
feature importance (PFI) [48], a model-agnostic method that
quantifies the impact of each feature on model performance. PFI
operates by randomly permuting the values of a feature and
measuring the decrease in prediction accuracy (e.g., reduction in
R?), with larger drops indicating higher feature importance. Each
feature was permuted 50 times to ensure statistical reliability, and
the results were visualized to highlight the key drivers of nitrate
dynamics.

Meteorological and historical concentration feature analysis.
Historical nitrate concentration (Nitrate) emerged as the most
critical factor (Fig. 9), underscoring the strong temporal autocor-
relation of nitrate levels in watershed runoff, where past concen-
trations directly influence current predictions. This reflects the
persistence and cumulative effects characteristic of nutrient
transport processes in watershed systems. Temperature-related
features, such as daily maximum temperature and its low-
frequency component, were also found to be significantly im-
pactful, likely because temperature regulates microbial activity
and nutrient transformation rates in soil and water. Among the
meteorological features, the wavelet-transformed components (e.
g., T_Max_D, T_Min_A, RH_A) consistently ranked among the most
important, indicating that temperature changes affect the migra-
tion of nitrate through the hydrological cycle. Similarly, RH_A
(high-frequency component of relative humidity) captures abrupt
changes in atmospheric moisture, which affect soil water retention
and subsequent nitrate leaching. The prominence of these
wavelet-transformed features validates our preprocessing strat-
egy, which involved decomposing time series into trend and
fluctuation components and subsequently enabled the model to
capture both slow- and fast-varying environmental impacts on
nitrate dynamics.

Hydrological and land use features analysis. Land use metrics,
particularly Agricultural_Ratio (%) and Impervious_Ratio (%),
showed the largest declines in R? (Fig. 10), highlighting the critical
role of spatial land use patterns in nitrate dynamics. Agricultural
areas directly contribute nitrate via fertilizer runoff, while
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Fig. 9. Impact of meteorological and historical concentration features on model
performance. The circles represent test outliers, and the full names of the abbrevia-
tions for the x-axis variables are provided in Table 1.
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Fig. 10. Influence of hydrological and land use characteristics on model performance.
The circles represent test outliers, and the full names of the abbreviations for the x-
axis variables are provided in Table 2.

impervious surfaces enhance surface runoff velocity, accelerating
nitrate transport to water bodies [50]. Notably, impervious sur-
faces primarily accelerate nitrate transport at the sub-catchment
scale, whereas agricultural dominance drives nitrate accumula-
tion at the watershed scale. Hydrological features such as sinuosity
and Elevation_Diff (m) also exhibited statistically significant con-
tributions (Fig. 10). Runoff sinuosity moderates water flow and
nutrient retention, while elevation differences influence
gravitational-driven transport. Although the absolute importance
values for hydrological features appeared modest, their collective
impact was substantial in modeling the topological transport of
nitrates across sub-watersheds. For example, Water_Area (m?)
demonstrated a consistent negative R? drop, indicating that water
body distribution affects nitrate dilution and retention.

The feature-importance analysis confirmed that HTGNN-WNP
not only predicts nitrate concentrations with high accuracy but
also captures mechanistic relationships. The analysis indicates
that historical pollution loads and land use patterns are the pri-
mary factors influencing the concentration of non-point source
pollutants in the study area. Meanwhile, the wavelet-transformed
meteorological features lead to the model's sensitivity to both
long-term climatic trends and short-term fluctuations. These
findings align with prior studies [18,49], which show that nitrate
dynamics are governed by a combination of legacy pollution, land
management practices, and hydrometeorological conditions. By
linking data-driven predictions with process-based interpretation,
the PFI results positioned HTGNN-WNP as a systematic tool for
identifying the key environmental factors that influence water-
shed water quality.

4.3. Applicability and prospects

In the context of water quality research, the HTGNN-WNP ex-
hibits remarkable applicability. First, our model offers significant
advantages due to the universality of its data sources: it relies on
readily accessible datasets, thereby reducing the need for complex
data acquisition procedures and enabling implementation across
diverse regions. Second, the model demonstrated exceptional
proficiency in short-term pollutant concentration prediction,
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particularly in evaluating the impact of extreme climatic phe-
nomena on pollution. Its ability to accurately capture abrupt ni-
trate concentration fluctuations induced by extreme rainfall or
drought events can provide critical support for emergency
response and risk assessment in water quality management. The
HTGNN-WNP model can also interpolate missing data when esti-
mating pollutant fluxes, effectively filling observational gaps.
Third, our method is flexible in its input data requirements.
Anthropogenic factors within a watershed—such as the extent,
scale, and spatial configuration of cultivated land—can be incor-
porated into the model's input features to predict the concentra-
tion of pollutant emissions. Through feature influence analysis,
HTGNN-WNP can assist in the formulation and implementation
of agricultural management measures and policies.

Process-based models depict the migration and transformation
of substances within a watershed through mathematical equations
and rely on detailed data of hydrological and biogeochemical
processes [12,13]. However, a large number of unknown processes
in the Earth system, such as the nonlinear interactions between
soil, water, and vegetation, are difficult to accurately describe with
equations, which limits the predictive ability for sudden pollution
events [16]. Process-based models rely on high-quality observa-
tional data and require complex processing through geographic
information systems. The HTGNN-WNP is a data-driven deep
learning model that learns implicit patterns without preset
physical equations. Moreover, it uses graph neural networks to
simulate the physical migration path of pollutants along with
runoff. The two types of models are complementary in their
application fields: process-based models focus on the analysis of
mechanisms and processes, while HTGNN-WNP offers rapid, ac-
curate predictions that are more suitable for efficient management
and decision-making.

Our method exhibited scalability and upgradability. Since NPS
pollution arises from complex physical, chemical, and biological
processes, future work should focus on systematically embedding
these mechanisms into the GNNs' message-passing operations to
develop a more interpretable framework for pollution assessment
and prediction. Further, meteorological or hydrological model
predictions can extend the model's prediction horizon to weekly
or monthly timescales. Finally, the model's application scenarios
can be expanded through extensive applied research on urban,
forested, and cold-region watersheds.

5. Conclusion

In this study, we developed the HTGNN-WNP to predict nitrate
concentrations in watersheds, with the aim of addressing the
challenges posed by NPS pollution. By combining hierarchical
transformers with graph neural networks, the model effectively
captures complex patterns and topological relationships in a
watershed system. Extensive experiments and comparisons
demonstrated its superior performance over several state-of-the-
art methods. Ablation experiments revealed the significance of
each component in the model and highlighted the importance of
considering hydrological and topological interactions along with
temporal and feature dependencies. The HTGNN-WNP exhibited a
distinct advantage in predicting water quality through its ability to
extract effective features from nonlinear time series, assimilate
multisource data, and accurately model topological. The model's
applicability was evidenced by its data accessibility, short-term
prediction accuracy, and handling of missing data. Although vali-
dated in a single watershed, broader testing across diverse cli-
mates and larger systems is needed to establish generalizability.
Future research should explore integration with process-based
models by incorporating physical, chemical, and biological
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processes into the framework, thereby enhancing interpretability,
adaptability, and applicability to other pollutants and watersheds.
Overall, the HTGNN-WNP model is an innovative solution for
advancing watershed nitrate prediction and supporting water
quality management.
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