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a b s t r a c t

Non-point source pollution from agricultural activities poses a significant threat to water quality by 
introducing excess nutrients like nitrogen into aquatic ecosystems, leading to issues such as eutro-
phication and groundwater contamination. In agricultural watersheds, nitrate transport involves intri-
cate physical, chemical, and biological processes influenced by meteorological conditions, hydrological 
features, and spatial topologies, making accurate short-term predictions challenging. Traditional data-
driven deep learning models often fail to incorporate physical constraints and complex spatiotem-
poral dynamics, limiting their interpretability and predictive accuracy. Here we show a hierarchical 
transformer and graph neural network model that accurately predicts watershed nitrate concentrations 
by integrating multi-source data and simulating pollutant migration. The model captures nonlinear 
multivariate temporal patterns through hierarchical transformers, fuses global meteorological and local 
hydrological features via neural networks, and models runoff topologies with physically constrained 
graph neural networks. For predicting the concentration changes of pollutants discharged from wa-
tersheds, it outperforms baselines like multi-layer perceptrons, recurrent neural networks, and long 
short-term memory networks, with state-of-the-art performance in root mean square error, mean 
absolute error, and R 2 . Ablation studies confirm the essential roles of multi-source data integration and 
watershed topological modeling in enhancing performance. This method of directly modeling physical 
processes by leveraging the characteristics of different neural network architectures opens up a new 

path for addressing the interpretability problem in neural earth system modeling, apart from the 
process-guided deep learning and differentiable modelling methods.
© 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, 
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open 

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The rapid and intensive progression of agricultural activities 
has led to an influx of nutrients into natural water bodies, signif-
icantly threatening water quality. This threat commonly materi-
alizes as a non-point source (NPS) of pollution [1–3], and it is one of

the foremost environmental concerns driving the global decline in 
water quality. NPS pollution occurs when a diverse array of pol-
lutants that originate from agricultural undertakings, with nitro-
gen and phosphorus being particularly prominent, gradually shift 
from land-based environments to water-based environments 
[4,5]. Nitrogen, an integral part of NPS pollution, is currently one of 
the most prevalent agricultural pollutants. NPS pollution origi-
nates from a broad spectrum of sources but is closely tied to hu-
man agricultural practices and is subject to the influence of 
numerous natural elements, leading to high intricacy, unpredict-
ability, and variability [6–9]. The NPS pollution emanating from
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agricultural fields, especially in nitrogenous form, gives rise to 
nitrogen loss within watersheds. This leads to soil acidification, the 
nitrate contamination of groundwater, atmospheric acid deposi-
tion, and eutrophication [10,11]. Consequently, precisely modeling 
the spread of NPS pollution and predicting its concentration levels 
are crucial for effective prevention and control.

In light of the challenges related to NPS pollution, efficacious 
strategies for its simulation and prediction merit attention. 
Therefore, significant strides have been made over the past few 

decades in the development of complex system modeling meth-
odologies aimed at scrutinizing hydrological material cycles on a 
watershed scale, namely Earth system models (ESMs) [12]. These 
methods utilize mathematical equations to delineate the material 
migration and transformation processes within a watershed, with 
a particular focus on the intricacies of NPS pollution. By con-
structing process-based models [13–15] and amalgamating diverse 
subsystems into cohesive numerical frameworks, ESMs enable the 
simulation of a wide array of physical, chemical, and biological 
processes and their mutual interactions within the Earth system. 
This comprehensive approach has not only proven indispensable 
in the realm of Earth system science but has also substantially 
augmented our comprehension and prediction of how NPS 
pollution influences water quality dynamics. The ability of 
process-based models to encapsulate various influencing pro-
cesses, such as water flow and biogeochemical cycles, accentuates 
their value in surmounting such environmental challenges. 
Nevertheless, the Earth system is extraordinarily complex and 
harbors a plethora of unknown processes. Researchers lack a 
thorough understanding of the underlying mechanisms of these 
processes, which is why the models developed fall short of accu-
rately and comprehensively representing them. Further, procuring 
detailed data on the properties of diverse processes, including 
above- and below-ground dynamics, water flow, and biogeo-
chemical processes, is no easy feat, and this curtails modeling 
capabilities over extended time periods. The limitations of 
process-based modeling become glaringly evident with nonlinear 
processes, especially in the context of high-dimensional in-
teractions among multiple systems [16], which impede the pre-
dictive accuracy for abrupt changes.

In recent years, novel artificial intelligence (AI) tools have been 
extensively employed in Earth system modeling, enhancing 
traditional methodologies and leading to remarkable achieve-
ments [17,18]. AI techniques, usually also called machine learning 
or deep learning methodologies, built upon neural networks, have 
spurred the evolution of the neural Earth system model (NESM) 
[16], which couple AI with Earth system models. However, the 
limited interpretability and credibility of AI algorithms pose sig-
nificant challenges to Earth system models, primarily stemming 
from the so-called “black box” quandary—the unknowability of 
the internal computation processes of AI models. Interpretable 
artificial intelligence (IAI) offers a promising pathway to mitigate 
these limitations, yet realizing its full potential will require over-
coming substantial challenges through sustained research efforts. 

Understanding the complex interactions between the various 
environmental factors in a watershed is essential for the effective 
prediction and management of water quality. Traditional models 
often struggle to capture the complex, nonlinear dependencies 
and spatial interactions inherent to these systems. Thus, there is a 
need for advanced methodologies that can integrate both global 
and local watershed features, providing a more comprehensive 
understanding of water quality dynamics. In this study, we 
developed a novel method called HTGNN-WNP—the hierarchical 
transformer and graph neural network model for watershed ni-
trate prediction—that addresses these modeling requirements by 
leveraging advanced machine learning techniques.

Our method adhered to the physical rules governing watershed 
runoff in the design phase of the NESM. We collected multi-year 
observational time series data on meteorology and pollution in 
the study area from official databases. AI algorithms were 
employed to mine hidden patterns of interactions among various 
variables from the data, which were then used to predict nitrate 
concentration levels in watershed runoff. This task required us to 
overcome three significant challenges: (i) extracting effective 
features and patterns from nonlinear, multivariate time series 
data, (ii) assimilating macro meteorological observation data with 
local runoff physical parameters within the model framework, and 
(iii) accurately modeling the complex topological relationships 
associated with runoff in watersheds.

We used the hierarchical transformer method to capture the 
interactive coupling relationships between the time series of 
watershed meteorological features and feature dimensions, which 
enabled us to extract complex patterns. We encoded and inte-
grated global (meteorological features covering an entire small 
watershed) and local (hydrological features of a single sub-
watershed) features through neural networks to obtain a 
comprehensive modeling perspective. Notably, we employed an 
innovative approach that involved the use of graph neural net-
works (GNNs) to model the topological relationships of runoff. 
This particular approach allowed us to mimic the physical trans-
location of pollutants within watersheds and capture spatial in-
teractions beyond the limitations of traditional time series 
methods. We applied this proposed method to predict nitrate 
concentrations at the outlet of an agricultural watershed in 
northern Texas, the United States, thus obtaining distinctive per-
spectives and valuable insights into water quality prediction.

The key contributions of our study are as follows.

• The hierarchical transformer method was used to model the 
interactive coupling relationships between the time series and 
feature dimensions of watershed meteorological features, 
significantly enhancing the extraction of complex patterns 
from multivariate data.

• Our innovative watershed hydrological modeling method 
involved integrating macro meteorological data with specific 
local hydrological features of sub-watersheds. This facilitated a 
robust and coherent fusion of diverse data sources for 
improved watershed system modeling.

• To our knowledge, this was the first study to involve the inte-
gration of GNNs with physically driven message passing rules 
to model runoff topological relationships, enabling artificial 
neural networks to simulate the pollutant migration processes 
in watersheds.

• Our deep learning framework, HTGNN-WNP, demonstrated 
exceptional performance in watershed water quality predic-
tion, as evidenced by experiments and tests conducted in the 
study area.

2. Materials and methods

2.1. Data collection and processing techniques

2.1.1. Nitrate monitoring data acquisition and processing
This research leveraged published monitoring data on nitrate 

concentrations in surface water from the national ecological ob-
servatory networks [19]. We selected observational data from a 
region in northern Texas, USA (33 ◦ 20′–33 ◦ 24′ N and 97 ◦ 47′–97 ◦ 53′ 
W), characterized by its subtropical humid climate with mean 
annual precipitation of approximately 890 mm (Fig. 1). The 
watershed covers about 40 km 2 and supports agricultural
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activities, with the land primarily divided between ecological re-
serves and farmland. Nitrate (NO 3 − -N) concentrations were
measured downstream of the watershed using a SeaBird SUNA 
underwater ultraviolet nitrate analyzer at 15-min intervals, with 
results reported in μmol L − 1 . We then calculated the daily mean 
concentrations of nitrate at the watershed outlet, covering the 
period from October 2017 to April 2024.

2.1.2. Hydrological data and spatial analysis
Hydrological data were obtained from the HydroSHEDS dataset 

[20], a high-resolution database provided by the United States 
Geological Survey and the World Wildlife Fund. We used the QGIS 
software to process high-resolution imagery sourced from Google 
Maps. This facilitated the detailed extraction of land cover types 
and spatial patterns and enabled us to accurately identify the 
physical characteristics of the runoff, such as the length, width, 
and head drop (Fig. 2a).

2.1.3. Runoff sinuosity calculation
Acknowledging sinuosity as a key hydrological indicator due to 

its capacity to moderate water flow and facilitate nitrogen trans-
formation [21], we prioritized its accurate quantification. We used 
a vectorization process for each runoff path; curvatures were 
calculated at select points and subsequently averaged, which 
resulted in a mean curvature that succinctly represented the 
runoff's sinuosity.

2.1.4. Topological relationship mapping
To clarify the topological relationships within small watershed 

runoffs, binary images of the runoff patterns were prepared using 
QGIS. The RivGraph algorithm [22] was applied thereafter to draft 
comprehensive topological maps, which enabled the clear 
encoding of nodes and their connections (Fig. 2b). This technical 
approach ensured precise runoff connectivity mapping across the 
watershed.

2.1.5. Meteorological data processing
We collected meteorological data from the National Weather 

Service's (NWS) records for three adjacent airport weather sta-
tions. By calculating the arithmetic mean of observational data 
from three meteorological stations, we approximated the site-
specific meteorological conditions accurately. For data process-
ing, wavelet transforms were used to decompose the time series 
into components that reflected low-frequency long-term trends 
and abrupt high-frequency changes to enhance the model's ability 
to capture subtle and rapid weather alterations.

2.2. Overall Framework

We developed a comprehensive framework using transformer 
architectures and GNNs to model complex interactions across 
temporal and spatial dimensions (Fig. 3).

First, the collected watershed data was preprocessed and 
divided into a training set and a test set (Fig. 3a). We used a hi-
erarchical transformer with dual transformer [23] modules to 
capture complex time series and intervariable patterns (Fig. 3b). 
We adopted feature compression methods to distill these features 
into global feature vectors that could reflect the impacts of 
meteorological conditions and historical pollution concentrations 
on the water quality of the watershed.

Neural networks were then employed to encode each sub-
watershed and capture its distinct local features (Fig. 3c). The 
variables used for feature encoding included hydrological and land 
use metrics, spatial patterns, and other physical indicators. 
Following this, we broadcasted the watershed's global features to 
each sub-watershed's features to facilitate modeling from a global 
perspective (i.e., factors influencing the entire watershed) down to 
a local perspective (i.e., factors specific to individual sub-
watersheds).

We utilized GNNs [24,25] for the spatial modeling of each sub-
watershed (Fig. 3d). The aggregation and transmission rules of the 
graph adhered to the topological relationships of the runoff within 
the watershed and thus simulated the migration process of pol-
lutants through the runoff network. This approach firmly anchored 
the model's feature transmission in the physical laws governing 
real-world environments, instead of relying purely on data-driven 
methods. Unlike conventional time series modeling [26–28], this 
graph-based approach could capture the spatial interactions of 
time series within the inherently complex, non-Euclidean water-
shed structures informed by runoff topologies. In the final phase of 
model construction, graph pooling was used to aggregate the 
features of each sub-watershed in the graph, and this information 
was integrated via a fully connected layer to predict nitrate con-
centration in the water at the watershed's outlet (Fig. 3e).

2.3. Watershed system modeling

2.3.1. Definition and notation
In this section, we introduce the key definitions and notations 

used throughout the paper. We first define the global time series 
within the watershed, including both univariate and multivariate 
time series and their respective notations. These provide the basis 
for understanding the overall characteristics of the time series 
data. We then specify the hydrological variables of the runoff 
within the watershed and their associated notations, which cap-
ture region-specific hydrological characteristics. Finally, we 
describe the watershed attribute graph and its notational defini-
tions, representing the watershed's topological and structural 
properties.

Definition 1. Global variable time series. In watershed-scale 
neural geoscience modeling, global variable time series data 
cover observations across an entire watershed, such as daily 
temperature, humidity, and precipitation. A univariate time series 
is a sequence of scalar observations over time, denoted as x = {x 1 ; 
x 2 ; …; x t } ∈ ℝ t , and t represents the length of the time series. For 
our task, the model's input global time series data involved mul-
tiple variables over time, leading to the concept of a multivariate 
time series. This set of n-dimensional vector observations over 
time can be represented as X = {x 1 ; x 2 ; …; x n } ∈ ℝ n×t , where n 
represents the number of variables.

Definition 2. Parameterization of hydrology. The hydrologicalFig. 1. Overview of the study area. 
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parameters for each sub-watershed in the watershed were defined 
as h = {h 1 ;h 2 ; …;h 12 } ∈ ℝ 12 , where the dimension 12 represents 
the number of parameters. In our study, these 12 hydrological 
parameters specifically encompassed 12 indicators: length, width, 
sinuosity, runoff drop, and the area and proportion of the imper-
vious surfaces, water bodies, ecological land, and arable land 
within each sub-watershed. The hydrological parameterization of
the whole watershed was defined as H = {h 1 ;h 2 ;…;h M } ∈ ℝ M×12 ,

where M represents the number of sub-watersheds.

Definition 3. Topological representation of the watershed. The 
topological relationships of surface runoff within a watershed are 
represented by flow paths and their connections. These are 
modeled using a directed graph G = (V ;E), where V = {v 1 ; v 2 ; v i ; … 

; v j ; v N } ∈ ℝ N×3 denotes the set of nodes (entrances, exits, and 
confluences of runoff) and E = {e 1 ; e 2 ; …; e M } denotes the set of

Fig. 2. a, Land use in the study area. b, Illustration of the topological relationships of runoff within a watershed. Red numbers represent the number of runoff nodes, and blue 
numbers represent the number of watershed runoff.

Fig. 3. Framework of the proposed method. a, Data collection and preprocessing. b, Hierarchical transformer for time-series modeling. c, Watershed hydrological modeling. d, 
Watershed topology modeling. e, Output layer. DeepMLP: deep multi-layer perceptron. GNN: graph neural networks.
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edges (runoff pathways). Here, N represents the number of nodes. 
M represents the number of edges, which is consistent with the 
number of sub-watersheds. The adjacency matrix A ∈ ℝ N×N is 
defined as follows: for nodes v i ; v j ∈ V ,

A ij = 

{

1; if there exists an edge 
( 

v i ; v j 

) 
∈ E; 

0; otherwise:
(1) 

Here, A ij denotes the (i; j) th entry of A, indicating whether 
runoff flows from node v i to node v j .

2.3.2. Hierarchical transformer for time series modeling 
Meteorological factors, such as temperature, precipitation, 

wind speed, and humidity, have both direct and indirect effects on 
the nitrogen cycle process that tend to accumulate over time and 
manifest accordingly. These variables do not operate in isolation. 
Instead, they interact with each other and collectively influence 
the changes in water quality within a watershed.

To capture these complex patterns, we employed a hierarchical 
transformer that consisted of two transformer blocks: one for 
managing dependencies in the temporal domain and the other for 
addressing dependencies in the variable dimension (Fig. 4).

The raw data were enhanced using a wavelet transformation,
which resulted in the original input data X = {x 1 ;x 2 ;…;x n } ∈ ℝ n×t .
This was then feature-encoded using a deep multi-layer percep-
tron (DeepMLP), which extended the features from low di-
mensions t to high dimensions d=2, resulting in f X ∈ ℝ n×d=2

(equation (2)).

f B;n;d=2X = Dropout 
( 
GELU 

( 
BN 

( 
Linear i 

( 
X B;n;t 

)))) 
(2)

Here, B denotes the batch size of the data processed each time, 
i.e., the number of samples processed simultaneously during each 
training step. The batch size balances computational efficiency 
with gradient update stability, thereby influencing both training 
speed and model generalization. Linear i ( ⋅) indicates a linear 
transformation applied at layer i; BN( ⋅) refers to the batch 
normalization applied after each linear transformation; and 
GELU( ⋅) is the Gaussian error linear unit activation function 
applied after batch normalization. Dropout( ⋅) denotes dropout 
with probability 0.5 applied after the GELU activation in all layers, 
which was used to mask some neurons in the neural network to 
prevent overfitting. Linear i ( ⋅) was essentially a linear neural 
network layer that was combined with BN( ⋅), GELU( ⋅), and 
Dropout( ⋅), to form a DeepMLP set. Linear i ( ⋅) was defined by a 
weight matrix W ∈ ℝ t×(d=2) that mapped the input X B;n;t to ℝ B;n;d=2 . 
This transformation projects the original input sequence from the 
time dimension t to the high-dimensional feature space d= 2, 
enabling the transformer model to capture the feature de-
pendencies of water quality in the time dimension. In general, 
when the input feature dimension is low, the attention algorithm 

of the transformer may yield nearly uniform attention weights 
across time steps (i.e., minimal differences in weights), due to the 
limited numerical dimension. After high-dimensional expansion, 
the attention calculation results are more dispersed, allowing the 
model to assign weights that more accurately reflect the intensity 
of the temporal dependencies. For example, with an input time 
series length t = 10 (e.g., 10 days of meteorological data) and high-
dimensional feature dimension d = 256, the DeepMLP would map

the input X B;n;10 to f B;n;128X . For the purpose of our study, the
dimension was set at d=2, as the remaining half was to be used for 
concatenating the features from the sub-watersheds in the sub-
sequent processing stage.

We introduced a hierarchical transformer model to effectively

capture patterns in both the temporal domain and variable di-
mensions within f X ∈ ℝ B;n;d=2 . The transformer [23] included a self-
attention mechanism that enabled each element in the input
sequence to dynamically attend to and integrate information from 

all other elements, thereby capturing long-range dependencies
and contextual relationships. To compensate for the inherent lack
of sequential order information in self-attention, explicit posi-
tional encodings were injected into the input embeddings, which
allowed the model to effectively leverage the sequence structure.
The input variable f X ∈ ℝ B;n;d=2 integrated n meteorological vari-
ables (variable dimension) and d=2-dimensional temporal fea-
tures. To capture positional dependencies in both dimensions, we 
independently apply positional encoding to the meteorological 
variable and temporal feature dimensions (Fig. 4). Subsequently, 
we used transformer-based encoders for hierarchical feature 
extraction, allowing the model to learn the complex relationships 
embedded in the meteorological variables and high-dimensional 
temporal dynamics.

In the first level of the hierarchical transformer model, posi-
tional encoding was applied to the temporal dimension d=2 as

follows: f B;d=2;nX = PE(f B;n;d=2X ; permute = (0; 2; 1); dim = d =2).
Specifically, as a fundamental component of the transformer ar-
chitecture, the PE( ⋅) function first transposed the original input 
tensor into the shape of (B; d =2; n), and then injected positional 
encoding into the dimension d=2 to construct sequential infor-
mation. This served the transformer block in capturing the 
sequential dependencies in the d=2 dimension. The encoded 
tensor was then inputted into the first transformer encoder block 
T t . In the second level, PE( ⋅) was applied to the variable dimension 
n after transposing the output tensor from the first level to (B;d =2;

n): f B;n;d=2X = PE(f B;d=2;nX ; permute = (0; 2; 1); dim = n): The enco-
ded tensor was then input into the second transformer encoder 
block T n . The hierarchical transformer model was implemented 
using the two-level operations given above, in line with the 
following equations:

f B;d=2;nX = T t
( 
f B;d=2;nX

) 
(3)

f
ʹ 

X

B;n;d=2 
= T n 

( 
f B;n;d=2X

) 
(4)

After the hierarchical transformer, we employed a feature 
compression method to compress a tensor of shape (B; n; d =2) into
a feature vector f g of shape (B; 1; d =2) and thereby obtain a
meteorological feature vector that covered the entire watershed. 
Specifically, the feature compression was implemented via a fully 
connected (FC) layer-based approach. A linear transformation with 
a weight matrix W ∈ ℝ n×1 was applied to the variable dimension n, 
which projected the n-dimensional meteorological variables onto 
a single comprehensive feature. This process was mathematically

formulated as follows: f g 
B;1;d=2

= FC(f 
ʹ B;n;d=2 
X ) = f

ʹ 

X

B;n;d=2 
× W n×1 ; 

the resulting f g 
B;1;d=2 integrated the spatial dependencies across all

meteorological variables (e.g., precipitation, temperature, humid-
ity) into a unified representation. The fully connected compression 
enabled the model to learn the adaptive weights for different 
variables and emphasize those with stronger contributions to 
watershed nitrate concentration dynamics. This mechanism 

reduced the feature dimension while preserving the critical tem-
poral patterns in the d=2 dimension and also generated a water-
shed scale meteorological feature vector.

2.3.3. Watershed hydrological modeling
In this section, we detail our hydrological modeling approach
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based on deep neural networks in three parts: sub-watershed 
hydrological feature extraction, global feature broadcasting, and 
node feature extraction. Through these steps, we achieved the fine 
modeling of hydrological data to capture the watershed's hydro-
logical characteristics. The process unfolded as follows (Fig. 5): 

Sub-watershed hydrological modeling and feature extraction. 
We extracted the sub-watershed features from the hydrological 
observational data H = {h 1 ; h 2 ; …; h M } ∈ ℝ M×12 . Sub-watershed 
features were initially extracted from the data using the 
DeepMLP (equation (5)).

f B;M;d=2H = Dropout 
( 
GELU 

( 
BN 

( 
Linear 

( 
H B;M;12 

)))) 
(5)

The watershed observational data H B;M;12 with batch size B 
served as the input for Linear( ⋅)—a linear transformation defined 
by the weight matrix W ∈ ℝ m×(d=2) , which mapped the input 

H B;M;12 to ℝ B;M;d=2 . The parameter B was consistent with that in 
equation (2). Based on Linear( ⋅), BN( ⋅), GELU( ⋅), and Dropout( ⋅) 
were combined to form a DeepMLP, and a feature matrix of the 
sub-watershed hydrology was extracted. Specifically, high-
dimensional hydrological features f H ∈ ℝ B;M;d=2 of each sub-
watershed were extracted from the input hydrological data. This 
process was used to model the interrelationships among various 
hydrological characteristics, such as the length and width of the 
runoff or the cultivated land area and its proportion in a sub-
watershed.

Subsequently, positional encoding was applied to dimension M

of the sub-watersheds and expressed as follows: f B;M;d=2H =

PE(f B;M;d=2H ; dim = M). A transformer encoder block T M was then
utilized to perform sequential modeling of the high-dimensional 
hydrological features, with the aim of capturing the potentially 
complex interactions between runoffs in the various sub-
watersheds and to further refine the features (equation (6); 
Fig. 5a).

f ʹ 
B;M;d=2 
H = T M 

( 
f B;M;d=2H

) 
(6)

Global feature broadcasting. As detailed in Section 2.3.2, the
global meteorological features f g exerted their influence on the
entire watershed. To conduct a thorough analysis, these features 
were integrated with the hydrological characteristics specific to 
the sub-watersheds. We utilized a feature broadcasting method, to
effectively merge the meteorological features f g ∈ ℝ B;1;d=2 and the

sub-watershed hydrological features f ́H∈ ℝ B;M;d=2 . This involved an
initial expansion phase, during which f g underwent expansion to
align its dimensions with those of the sub-watershed features,
resulting in f ́g∈ ℝ B;M;d=2 through M repetitions (equation (7)). This
ensured dimensional consistency between the global meteoro-
logical features and the sub-watershed hydrological features. 
Then, in the concatenation phase, the expanded meteorological 
features were combined with the hydrological features to form
ε ∈ ℝ B;M;d (equation (8)). Finally, the global feature broadcasting of
f g to the features of each sub-watershed was completed.

fʹ B;M;d=2g = f g ⊕ f g ⊕ ⋯⊕f g (M times) (7)

ε = Concat 
( 
fʹH; fǵ

) 
∈ ℝ B;M;d (8)

Node feature extraction. For nodes describing inputs, outputs, 
and confluences within the watershed, V = {v 1 ; v 2 ; v i ; …; v j ; 

v N } ∈ ℝ N×3 , we initialized feature extraction using a DeepMLP to 
extract high-dimensional features of the nodes (equation (9); 
Fig. 5b).

v = Dropout 
( 
GELU 

( 
BN 

( 
Linear 

( 
V B;N;3 

)))) 
∈ ℝ B;N;d (9)

Through the above operations, we obtained the node feature 
matrix v ∈ ℝ B;N;d and the edge feature matrix ε ∈ ℝ B;M;d , which

Fig. 4. Hierarchical transformer module. This module adopts a two-layer transformer structure, where one layer is used to model dependencies in the temporal domain and the 
other to address dependencies in the variable dimension. DeepMLP: deep multi-layer perceptron; Norm: layer normalization.

J. Sun, X. Gao, Z. Deng et al. Environmental Science and Ecotechnology 28 (2025) 100632

6



contained the meteorological information of the watershed. Here, 
d represents the feature dimension. The node feature dimension 
was kept consistent with that of the edge feature matrix for the 
next step of processing. This dimension was determined based on 
the hidden layer size of the DeepMLP used in feature extraction. 
The dimension d served as a hyperparameter, and its design 
principle was to balance out the model's performance and 
computational efficiency.

2.3.4. Watershed topology modeling
By maintaining physical consistency between the parameter 

propagation process of the GNNs and nutrient migration with the 
water flow within the watershed, the nutrient migration and 
transformation processes were simulated in the topological model 
of the watershed. As given in Definition 3, the topological rela-
tionship of watershed runoff was defined as a graph G = (V; E). 
The adjacency matrix A described the topological relationships. As 
described in Sections 2.3.2 and 2.3.3, we extracted each 
sub-watershed runoff feature ε ∈ ℝ B;M;d and the node features
v ∈ ℝ B;N;d .

Inspired by Sanchez-Lengeling et al. [29], we constructed a 
GNNs block that achieved the topological modeling of the

watershed through two key stages: message passing and infor-
mation updating. The transition from layer L to layer L + 1 simu-
lated the process of material migration within the watershed
(Fig. 6a). During this message passing stage, information was
exchanged between the nodes and edges. The adjacency matrix A
played a key role in constraining the transmission rules for the
watershed features; for instance, if the element in the ith row and
jth column was 1, it indicated that the feature of node v i was first
transmitted to edge e ij (v i →e ij ), and then information was 
conveyed from edge e ij to node v j (e ij →v j ). The feature of edge e ij 
was updated by aggregating the features from node v i and edge e ij ,
and node v j ’s feature v ́ j was subsequently updated using the newly

updated edge feature e ́ ij , along with v j ’s original feature (equation 

(10); Fig. 6b).

Given
v i ; v j ⊆ v[B; :; d] 
e ij ⊆ ε[B; :; d]

if
A ij = 1 

then
f ε : e ́

 
ij = σ 

( 
W e e ij + W v v i + b e 

) 
; Node→Edge

f v : v́j = σ 
( 
W v v j + W e e ́ ij + b v 

) 
; Edge→Node

(10)

Following the message passing stage, the updating stage took 
place, during which the node and edge features were refined 
through specific update functions, f v and f ε , which effectively 
mapped the features from layer L to layer L + 1 (Fig. 6c). In this
GNNs framework, the trainable parameters were explicitly defined
within the update functions f v and f ε and specifically encompassed 
the weight matrices W e and W v and the bias terms b e and b v 
(equation (10)). These parameters were optimized during the 
training process to enable the model to learn the dynamic material 
migration patterns within the watershed. Notably, the adjacency 
matrix A, which quantified the topological relationships of the 
runoff, was fixed a priori, serving as a physical constraint that 
dictated the order of parameter transmission between the nodes
and edges. This fixed topology ensured that the message passing 
process adhered to the inherent hydrological connectivity of the 
watershed and that the trainable parameters within the update 
functions adapted to model the nuanced material transformation 
processes driven by the water flow. The update functions were 
implemented using a set of DeepMLPs. This processing enabled the

Fig. 5. Watershed hydrological modeling module. a, Sub-watershed feature extraction block. This block extracts runoff features through a set of feature encodings and trans-
formers, and integrates meteorological features. b, Node feature extraction block. The deep features of the nodes are extracted by a feature encoder. DeepMLP: deep multi-layer 
perceptron; Norm: layer normalization.

Fig. 6. Message passing and parameter updating mechanism of the graph neural 
network (GNN) layer (four-node and three-edge simplified version). a, GNN layer. b, 
The message passing process based on the adjacency matrix. c, Parameter update. The 
features of nodes V and edges E implement parameter passing and parameter 
updating in the GNNs according to the rules of the adjacency matrix A.
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GNNs to capture the topological relationships and the dynamic 
changes of material migration within the watershed, thereby 
mimicking the water flow-driven processes to provide an accurate 
representation of nutrient migration and transformation. The 
mathematical representation of message passing and feature 
updating is shown in equation (10).

To ultimately predict the nitrate discharge concentration in the 
watershed at the final stage of the entire model, a set of graph 
pooling functions was used to aggregate the edge features ε ́ ∈
ℝ B;M;d updated by the function f ε into a feature vector f ∈ ℝ B;1;d to 
describe the nitrate discharge concentration in the watershed 
(Fig. 3d). This vector was then fed into a fully connected network 
and transformed via linear mapping and activation functions into a 
scalar prediction y ́ ∈ ℝ B;1 that represented the estimated nitrate 
concentration at the watershed outlet (Fig. 3e). The loss (mean 
squared error) between the predicted value y ́ and the observed 
nitrate concentration y was calculated, and the model parameters 
were iteratively optimized to minimize this loss and thereby make 
the predicted values approach the actual observed values.

The novelty of our use of GNNs to model the migration of 
pollutants lies in their task-specific design. We model the water-
shed topology with the material transport paths of runoff within 
the watershed as physical constraints, integrating the hydrological 
parameters (such as sinuosity and land use conditions) and 
meteorological features into the node and edge characteristics. We 
then use message passing and parameter update to simulate the 
dynamics of pollutant transport.

3. Experiments and results

3.1. Dataset

We collected meteorological data, daily nitrate concentration 
data from the watershed outlet of the study area, hydrological data 
from each sub-watershed, and the topological relationships of the 
watershed (Section 2.1). Because nitrate migration and trans-
formation exhibit time lag effects, it was necessary to balance the 
use of sufficient historical information with the risk of redundancy 
[30]. Consequently, the time series length of past data for nitrate 
concentration prediction was set to 10 days, i.e., the global variable 
time series length t = 10. The watershed comprised 21 sub-
watersheds (M = 21) and 22 nodes (N = 22). We used nitrate 
emission monitoring data from the study area between October 
2017 and April 2024 to train and evaluate our model. The training 
set comprised 75% of the overall dataset, and the test set 
comprised 25%. The global variable data structure of a single batch 
input is shown in Table 1, and Local runoff hydrological data is 
shown in Table 2. Predictions were generated sequentially along 
the timeline via a sliding window approach until the dataset was 
fully traversed.

3.2. Implementation details

Stage One. To predict the nitrate emission concentration on day 
i, we used watershed-scale time series meteorological data 
together with historical nitrate concentrations from day i− 10 to 
day i− 1. These inputs were represented as the global variables 

X 20;18;10 and processed by the DeepMLP model designed based on

equation (2) to extract high-dimensional features: f 20;18;128X ←

X 20;18;10 , where the batch size was B = 20 (i.e., 20 batches of data 
processed at a time); n = 18 (16 meteorological indicators, one 
historical nitrate concentration indicator, and one day of year 
[DOY]); the time series length was t = 10; and the high-
dimensional feature was d=2 = 128. The hierarchical

transformer model (equations (3) and (4)) was then applied for 
feature encoding, followed by feature compression, yielding a

global feature vector f g 
20;1;128 that covered the entire watershed:

f g 
20;1;128←f

ʹ 20;18;128 
X ←f 20;18;128X .

Stage Two. To model the watershed hydrological information, 
equation (5) was first used to extract high-dimensional features

f 20;21;128H from the hydrological parameters H 20;21;12 of the 21 sub-
watersheds in the study area. Feature encoding was then applied

using equation (6), yielding: f 
ʹ 20;21;128 
H ←f 20;21;128H ←H 20;21;12 . Sub-

sequently, based on equations (7) and (8), the global features were 
broadcasted to each sub-watershed, producing:

ε 20;21;256 ←(f 
ʹ 20;21;128
H ; f g 

20;1;128 
). For node information v 20;22;3 ,

high-dimensional features were extracted using equation (9):
v 20;22;256 ←v 20;22;3 .

Stage Three. Under the constraint of the topological relation-
ship (adjacency matrix A) and in line with equation (10), a GNNs 
was used to simulate the migration process of nutrients with the 
runoff in the watershed via message passing: ε 20;21;256 ;v 20;22;256 ← 

GNN(ε 20;21;256 ; v 20;22;256 ). Subsequently, graph pooling and a FC 
layer were applied to map the sub-watershed features ε 20;21;256 to 
a scalar value y ́ : y ́ ∈ ℝ 20 ←FC(ε 20;1;256 )←pooling(ε 20;21;256 ). The 
loss between the predicted and observed values was iteratively 
minimized to achieve accurate prediction, expressed as: 
min Loss(y ́ ;y).

We constructed the HTGNN-WNP model using PyTorch. Model 
training employed the Adadelta [31] as the optimizer, with ρ = 0:9 
and an initial learning rate of 0.1, which was decayed by 1% every 
20 epochs. We employed L2 regularization in the optimizer, with a 
coefficient of 1 × 10 − 4 , to mitigate overfitting and enhance 
generalization. A large batch size (B > 20) was used to approxi-
mate the dataset's overall gradient more accurately, enabling the 
model to capture global feature distributions while reducing 
sensitivity to noise in small batches. All experiments, including 
model training and testing, were conducted on a single NVIDIA 
GeForce RTX 3070 GPU. The model contained 0.59 million pa-
rameters and 2.35 billion FLOPs. The training process required 
approximately 1.3 h for the entire cycle, and the inference time 
was 0.0057 s per sample on the same GPU hardware.

3.3. Evaluation metrics

To evaluate our model's performance in predicting nitrate 
emission concentrations, we used the mean absolute error (MAE), 
root mean square error (RMSE), and the coefficient of determina-
tion (R 2 ) as the assessment metrics:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑ n

i=1

( 
y ́ i − y i 

) 2
√ 
√ 
√ 
√ (11)

MAE =
1
n

∑n

i=1

⃒
⃒ y ́ i − y i

⃒
⃒ (12)

R 2 = 1 −

∑ n

i=1

( 
y i − y ́ i 

) 2

∑ n

i=1
(y i − y) 

2 
(13)

Here, n represents the total number of samples, y i denotes the 
ith observed value, y i denotes the ith corresponding predicted
value, and y is the average of all true values. RMSE reflected the 
precision of the model and the scale of the errors, while MAE
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indicated the magnitude of the average error, with smaller values 
indicating better performance. R 2 was used to measure the pro-
portion of variation in the dependent variable that was explained 
by the independent variable, reflecting the strength of the linear 
correlation between predicted and observed variables. Its range is
[0; 1], with values closer to 1 indicating stronger predictive 
performance.

3.4. Model's performance for nitrate concentration

This study focused on predicting nitrate concentrations in 
surface water using the HTGNN-WNP. Unlike conventional ap-
proaches that directly simulate runoff dynamics, HTGNN-WNP 
incorporates runoff topological relationships as structural inputs 
to the GNNs. The model was evaluated using data from April 2023

to April 2024, and its predictions were compared with observed 
nitrate concentrations (Fig. 7). A quantitative performance 
assessment is summarized in Table 3.

The HTGNN-WNP demonstrated exceptional predictive per-
formance over the entire prediction period. The model yielded an 
RMSE of 2.29 and an MAE of 1.67, indicating that prediction errors 
were small and that the predicted values closely tracked the 
observed trends. Notably, the coefficient of determination 
(R 2 = 0.92) indicated that 92% of the variance in observed nitrate 
concentrations was explained by the model, reflecting a strong 
goodness-of-fit and robust predictive accuracy.

The model effectively captured sudden changes in nitrate levels 
throughout the prediction period (Fig. 7), demonstrating robust-
ness to sudden environmental fluctuations. Such adaptability is 
critical for forecasting water quality in dynamic systems, where 
variations are often frequent and unpredictable. Moreover, the 
HTGNN-WNP model exhibited excellent generalization and rep-
resentation capabilities, effectively integrating diverse data inputs 
and modeling complex watershed relationships. These strengths 
underscore its potential for broader application in environmental 
monitoring and management, where it may support water quality 
assessment and policymaking across similar watersheds. Overall, 
the results confirm the model's reliability for nitrate concentration 
prediction.

3.5. Comparison of the HTGNN-WNP with other methods

We compared the performance of the HTGNN-WNP against 
several advanced methods, such as multi-layer perceptron (MLP) 
[32], recurrent neural network (RNN) [33], long short-term 

memory (LSTM) [34], support vector regression (SVR) [35], gated 
recurrent unit (GRU) [36], and the transformer method [23] 
(Table 3). We reproduced these classic models and strictly fol-
lowed their original architectural designs (Supplementary Texts 
S1–S6). To ensure fairness, all models were trained on the same 
preprocessed input data (Tables 1 and 2) and evaluated using an 
identical dataset split (75% training, 25% testing). Model perfor-
mance was assessed through unified evaluation metrics (RMSE, 
MAE, and R 2 ) to ensure comparability and reproducibility. Across 
all key metrics, HTGNN-WNP consistently achieved the best 
performance.

Predicted versus observed nitrate concentrations aligned 
closely for HTGNN-WNP, with points clustering around the 1:1 
line, in contrast to the more dispersed patterns of other methods 
(Fig. 8). This agreement is consistent with the model's high R 2 

value and underscores its accuracy in capturing underlying data 
trends. The outstanding performance of the HTGNN-WNP model

Table 1
Model input parameters of global variable data.

Variable
name

Variable description

T_Max Daily maximum temperature ( ◦ F)
T_Max_D Low-frequency signal of wavelet transform of daily maximum 

temperature ( ◦ F)
T_Max_A High-frequency signal of wavelet transform of daily maximum 

temperature ( ◦ F)
T_Min Daily minimum temperature ( ◦ F)
T_Min_D Low-frequency signal of wavelet transform of daily minimum 

temperature ( ◦ F)
T_Min_A High-frequency signal of wavelet transform of daily minimum 

temperature ( ◦ F)
T_Avg Daily average temperature ( ◦ F)
T_Avg_D Low-frequency signal of wavelet transform of daily average 

temperature ( ◦ F)
T_Avg_A High-frequency signal of wavelet transform of daily average 

temperature ( ◦ F)
AWND Daily average wind speed (mph)
AWND_D Low-frequency signal of wavelet transform of daily average wind 

speed (mph)
AWND_A High-frequency signal of wavelet transform of daily average wind 

speed (mph)
RH Daily relative humidity (%)
RH_D Low-frequency signal of wavelet transform of daily relative 

humidity (%)
RH_A High-frequency signal of wavelet transform of daily relative 

humidity (%)
PRCP Daily precipitation (inches)
Nitrate Nitrate concentration (micromolar, μM)
DOY One day of the year (dimensionless)

Note: Global variable data includes meteorological data, pollutant concentration at 
the watershed outlet, and one day of the year. The time span of the data input into 
the model at one time is t = 10, indicating the sliding window length.

Table 2
Model input parameters of local runoff hydrological data.

Variable name Variable description Variable category

Len The length of the sub-watershed runoff (m) Hydrological Data (M = 21, indicating the 
number of sub-watersheds.)Wid The width of the sub-watershed runoff (m)

Sin Sinuosity of the sub-watershed runoff (dimensionless)
Elev_Diff Elevation difference within the sub-watershed (m)
Imp_Area Impervious surface area within the sub-watershed (m 2 )
Imp_Ratio Percentage of impervious surface area relative to the total area of the sub-watershed (%) 
Water_Area Area of water bodies within the sub-watershed (m 2 )
Water_Ratio Percentage of water body area relative to the total area of the sub-watershed (%) 
Eco_Area Ecological land area within the sub-watershed (m 2 )
Eco_Ratio Percentage of ecological land area relative to the total area of the sub-watershed (%) 
Agri_Area Agricultural land area within the sub-watershed (m 2 )
Agri_Ratio Percentage of agricultural land area relative to the total area of the sub-watershed (%) 
RN_Vec Runoff node vector. A vector [inlet, outlet, confluence] represents the status of a runoff 

node, with 0 for ‘No’ and 1 for ‘Yes’ with each element.
Runoff node data (N = 22, indicating the 
number of nodes)
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stems from its innovative design, comprising both hierarchical 
transformers and GNNs. This approach provided a significant 
advantage in modeling the topological relationships within the 
watershed's physical runoff layer. By jointly capturing complex 
spatial and temporal dependencies, the model achieved substan-
tial gains in predictive accuracy.

4. Discussion

4.1. Ablation experiment

We conducted two sets of ablation experiments: one to eval-
uate the contributions of different model components to water 
quality prediction, and the other to assess the impact of alternative 
data preprocessing methods on model performance.

4.1.1. Ablation experiment one: impact of various model 
components

To systematically evaluate the impact of each module, we 
developed three model variants constructed from the distinct 
components outlined in Section 2.2. Specifically, HT-WNP con-
sisted of the hierarchical transformer module (Fig. 4); HTH-WNP 
extended HT-WNP by incorporating hydrological modeling 
(Figs. 4 and 5a); and HTGNN-WNP represented the full model ar-
chitecture (Fig. 3). These ablation models enabled a structured 
analysis of the individual components’ contributions within the 
proposed framework, with the quantitative comparison presented 
in Supplementary Table S1.

The HT-WNP variant achieved an RMSE of 2.68, an MAE of 1.95, 
and an R 2 value of 0.89, indicating that the basic transformer ar-
chitecture captured substantial patterns in the nitrate concentra-
tion dynamics (Table 4). Incorporating hydrological features 
further improved performance: HTH-WNP reduced RMSE to 2.56, 
lowered MAE to 1.87, and increased R 2 to 0.90. These results 
indicate that the integration of hydrological features enhanced the 
model's ability to replicate the observed concentration trends and 
its consistency between predictions and measured values.

The complete model, HTGNN-WNP, demonstrated the best 
performance, with an RMSE of 2.29, MAE of 1.67, and R 2 of 0.92. 
Incorporating complex hydrological features and runoff topology 
substantially reduced the discrepancy between predictions and 
observations. These results emphasize the importance of consid-
ering hydrological, topological, temporal, and feature aspects, 
which together enhanced predictive accuracy. Such a compre-
hensive approach demonstrates the value of integrating multiple 
perspectives when addressing water quality prediction in complex 
environments.

4.1.2. Ablation experiment two: impact of data preprocessing 
methods

To investigate the impact of data preprocessing strategies on 
model performance, we compared the use of raw input data with 
data preprocessed by wavelet transform (WT). WT decomposes 
time series into low-frequency trends and high-frequency abrupt 
components, which enhances the extraction of nonlinear temporal 
features. The original data and WT-preprocessed data were used as 
inputs and compared, allowing a controlled comparison of pre-
processing effects.

The quantitative results show that WT preprocessing reduced 
the RMSE from 2.66 to 2.29 and the MAE from 2.02 to 1.67, and R 2 

improved from 0.89 to 0.92 (Table 5). These findings indicate that 
WT effectively mitigated noise and enhanced the model's capa-
bility to capture dynamic pollution patterns. By separating the 
frequency components of the time series, WT enabled the model to 
better distinguish changing trends (e.g., fertilization cycles) from 

short-term abrupt changes (e.g., rainfall-induced runoff), making 
it a valuable preprocessing complex hydrological and meteoro-
logical data in watershed studies.

4.2. Advantages of HTGNN-WNP in watershed water quality 
modeling

Human activities and climate change-induced NPS pollution 
are the main reasons for water quality changes in watersheds [37]. 
Accurate predictions of watershed water quality is therefore crit-
ical for managing agricultural water, soil resources, and the envi-
ronment. In this context, the HTGNN-WNP has several advantages.

4.2.1. Superior feature extraction and pattern recognition 
Extracting effective features and patterns from nonlinear, 

multivariate time series data is the key to accurate watershed 
water quality prediction. Interactions and couplings among 
different variables add significant complexity to prediction 
models, reflecting the underlying environmental processes and 
feedback mechanisms that can profoundly influence changes in 
water quality [38,39].

The HTGNN-WNP addressed this challenge using a hierarchical 
transformer constructed with dual transformer modules. Latent 
patterns were independently captured from both temporal se-
quences and multivariate dimensions, and these features were 
then integrated to enhance predictive performance. This approach 
fully leveraged the strengths of each dimension while enabling the 
model to comprehensively uncover the complex underlying dy-
namics of water quality variations.

Fig. 7. The prediction results of the hierarchical transformer and graph neural 
network model for the watershed nitrate prediction model. Note that some months 
have missing observations.

Table 3
Results of different methods for nitrate concentration prediction.

Method RMSE MAE R 2

MLP 4.31 3.59 0.72
RNN 4.27 3.36 0.72
LSTM 3.74 2.59 0.79
GRU 3.62 2.63 0.80
SVR 3.54 2.52 0.81
Transformer 3.34 2.74 0.83
HTGNN-WNP 2.29 1.67 0.92

Note: MLP, multi-layer perceptron; RNN, recurrent neural network; LSTM, long 
short-term memory; GRU, gated recurrent unit; SVR, support vector regression; 
Transformer, the transformer method; HTGNN-WNP, hierarchical transformer and 
graph neural network model for watershed nitrate prediction. Smaller root mean 
square error (RMSE) and mean absolute error (MAE), and an R 2 closer to 1 denote 
better model performance.
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4.2.2. Effective assimilation of multisource data
Runoff characteristics and local landscapes are crucial factors 

determining NPS pollution formation and spread [42–44]. As a link 
between terrestrial and aquatic environments, runoff directly af-
fects the migration rate and diffusion range of pollutants through 
characteristics such as flow velocity, discharge, and path direction 
[40,41].

Data integration is a significant aspect that allows for under-
standing and addressing NPS pollution. The HTGNN-WNP demon-
strated outstanding capabilities in this regard, particularly in 
integrating macro meteorological observation data with local 
runoff physical parameters. Watershed water quality is influenced 
by a combination of global and local factors. Our methodology 
involved encoding and combining global (meteorological features 
spanning an entire small watershed) and local (hydrological fea-
tures of a single sub-watershed) watershed characteristics via 
neural networks. This approach offered a comprehensive perspec-
tive of the watershed system, considering both the large-scale cli-
matic impacts and the specific traits of each sub-watershed. The use 
of multiscale data resulted in more accurate predictions than 
models relying on a single data type, as it captured the intricate 
interplay among the diverse factors affecting water quality.

4.2.3. Accurate modeling of topological relationships
The incorporation of GNNs within the HTGNN-WNP framework 

was a pivotal innovation. During model design, watershed

topological relationships were incorporated as physical con-
straints in simulating material migration, enabling the model to 
characterize runoff connectivity across sub-watersheds with high 
fidelity. Previous studies have shown that the connectivity delin-
eated by the topological architecture of a watershed plays an 
essential role in determining the migration and transformation of 
pollutants, such as nitrates, among diverse subregions [45,46]. 

Previous studies on water quality analysis that involved GNNs 
and topological relationships [24,46] mainly focused on topological 
feature extraction and did not integrate the connection attributes of 
the topology as physical constraints into the GNNs model. For 
example, Xia et al. [46] used topological relationships to analyze 
nutrient retention in small water bodies but did not couple the 
topological structure with time series pollution dynamics. By jointly 
integrating hydrological parameters, meteorological time series, 
and watershed topology, HTGNN-WNP provided end-to-end pre-
dictions and demonstrated strong performance in capturing abrupt 
nitrate fluctuations (Table 3). Using GNNs to embed topological 
relationships into the model enabled a more accurate representa-
tion of runoff connectivity and improved quantification of nutrient 
retention and transfer among interconnected water bodies. More-
over, the integration of GNNs enabled the model to inherently 
assimilate non-Euclidean spatial traits and interactions, often 
overlooked in conventional time series models [17,18,47]. Conse-
quently, this strategy facilitated the capture of elaborate spatio-
temporal dynamics in a manner consistent with the physical 
processes of runoff and pollutant transport. Grounding feature 
transmission in physical principles not only enhanced predictive 
accuracy but also addressed limitations inherent in purely data-
driven methods.

Fig. 8. Scatter comparison plots of nitrate concentration prediction results of hierarchical transformer and graph neural network model for watershed nitrate prediction (HTGNN-
WNP) and multiple methods. Transformer: the transformer method; SVR: support vector regression; GRU: gated recurrent unit; LSTM: long short-term memory; RNN: recurrent 
neural network; MLP: multi-layer perceptron.

Table 4
Prediction performance of ablation models for nitrate concentration.

Method RMSE MAE R 2

HT-WNP 2.68 1.95 0.89
HTH-WNP 2.56 1.87 0.90
HTGNN-WNP 2.29 1.67 0.92

Note: HT-WNP, hierarchical transformer for watershed nitrate prediction; HTH-
WNP, hierarchical transformer incorporating hydrological modeling for water-
shed nitrate prediction; HTGNN-WNP, hierarchical transformer and graph neural 
network model for watershed nitrate prediction. Smaller root mean square error 
(RMSE) and mean absolute error (MAE), and an R 2 closer to 1 denote better model 
performance.

Table 5
Quantitative performance comparison of the HTGNN-WNP model under two data 
preprocessing schemes for nitrate concentration prediction.

Model input RMSE MAE R 2

Original data 2.66 2.02 0.89
Wavelet transform-preprocessed data 2.29 1.67 0.92

Note: Smaller root mean square error (RMSE) and mean absolute error (MAE), and 
an R 2 closer to 1 denote better model performance.
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4.2.4. Feature importance analysis
To address the interpretability of the HTGNN-WNP model and 

explore the mechanistic relationships between the inputs and the 
nitrate concentration predictions, we employed permutation 
feature importance (PFI) [48], a model-agnostic method that 
quantifies the impact of each feature on model performance. PFI 
operates by randomly permuting the values of a feature and 
measuring the decrease in prediction accuracy (e.g., reduction in 
R 2 ), with larger drops indicating higher feature importance. Each 
feature was permuted 50 times to ensure statistical reliability, and 
the results were visualized to highlight the key drivers of nitrate 
dynamics.

Meteorological and historical concentration feature analysis. 
Historical nitrate concentration (Nitrate) emerged as the most 
critical factor (Fig. 9), underscoring the strong temporal autocor-
relation of nitrate levels in watershed runoff, where past concen-
trations directly influence current predictions. This reflects the 
persistence and cumulative effects characteristic of nutrient 
transport processes in watershed systems. Temperature-related 
features, such as daily maximum temperature and its low-
frequency component, were also found to be significantly im-
pactful, likely because temperature regulates microbial activity 
and nutrient transformation rates in soil and water. Among the 
meteorological features, the wavelet-transformed components (e. 
g., T_Max_D, T_Min_A, RH_A) consistently ranked among the most 
important, indicating that temperature changes affect the migra-
tion of nitrate through the hydrological cycle. Similarly, RH_A 
(high-frequency component of relative humidity) captures abrupt 
changes in atmospheric moisture, which affect soil water retention 
and subsequent nitrate leaching. The prominence of these 
wavelet-transformed features validates our preprocessing strat-
egy, which involved decomposing time series into trend and 
fluctuation components and subsequently enabled the model to 
capture both slow- and fast-varying environmental impacts on 
nitrate dynamics.

Hydrological and land use features analysis. Land use metrics, 
particularly Agricultural_Ratio (%) and Impervious_Ratio (%), 
showed the largest declines in R 2 (Fig. 10), highlighting the critical 
role of spatial land use patterns in nitrate dynamics. Agricultural 
areas directly contribute nitrate via fertilizer runoff, while

impervious surfaces enhance surface runoff velocity, accelerating 
nitrate transport to water bodies [50]. Notably, impervious sur-
faces primarily accelerate nitrate transport at the sub-catchment 
scale, whereas agricultural dominance drives nitrate accumula-
tion at the watershed scale. Hydrological features such as sinuosity 
and Elevation_Diff (m) also exhibited statistically significant con-
tributions (Fig. 10). Runoff sinuosity moderates water flow and 
nutrient retention, while elevation differences influence 
gravitational-driven transport. Although the absolute importance 
values for hydrological features appeared modest, their collective 
impact was substantial in modeling the topological transport of 
nitrates across sub-watersheds. For example, Water_Area (m 2 ) 
demonstrated a consistent negative R 2 drop, indicating that water 
body distribution affects nitrate dilution and retention.

The feature–importance analysis confirmed that HTGNN-WNP 
not only predicts nitrate concentrations with high accuracy but 
also captures mechanistic relationships. The analysis indicates 
that historical pollution loads and land use patterns are the pri-
mary factors influencing the concentration of non-point source 
pollutants in the study area. Meanwhile, the wavelet-transformed 
meteorological features lead to the model's sensitivity to both 
long-term climatic trends and short-term fluctuations. These 
findings align with prior studies [18,49], which show that nitrate 
dynamics are governed by a combination of legacy pollution, land 
management practices, and hydrometeorological conditions. By 
linking data-driven predictions with process-based interpretation, 
the PFI results positioned HTGNN-WNP as a systematic tool for 
identifying the key environmental factors that influence water-
shed water quality.

4.3. Applicability and prospects

In the context of water quality research, the HTGNN-WNP ex-
hibits remarkable applicability. First, our model offers significant 
advantages due to the universality of its data sources: it relies on 
readily accessible datasets, thereby reducing the need for complex 
data acquisition procedures and enabling implementation across 
diverse regions. Second, the model demonstrated exceptional 
proficiency in short-term pollutant concentration prediction,

Fig. 9. Impact of meteorological and historical concentration features on model 
performance. The circles represent test outliers, and the full names of the abbrevia-
tions for the x-axis variables are provided in Table 1.

Fig. 10. Influence of hydrological and land use characteristics on model performance. 
The circles represent test outliers, and the full names of the abbreviations for the x-
axis variables are provided in Table 2.
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particularly in evaluating the impact of extreme climatic phe-
nomena on pollution. Its ability to accurately capture abrupt ni-
trate concentration fluctuations induced by extreme rainfall or 
drought events can provide critical support for emergency 
response and risk assessment in water quality management. The 
HTGNN-WNP model can also interpolate missing data when esti-
mating pollutant fluxes, effectively filling observational gaps. 
Third, our method is flexible in its input data requirements. 
Anthropogenic factors within a watershed—such as the extent, 
scale, and spatial configuration of cultivated land—can be incor-
porated into the model's input features to predict the concentra-
tion of pollutant emissions. Through feature influence analysis, 
HTGNN-WNP can assist in the formulation and implementation 
of agricultural management measures and policies. 

Process-based models depict the migration and transformation 
of substances within a watershed through mathematical equations 
and rely on detailed data of hydrological and biogeochemical 
processes [12,13]. However, a large number of unknown processes 
in the Earth system, such as the nonlinear interactions between 
soil, water, and vegetation, are difficult to accurately describe with 
equations, which limits the predictive ability for sudden pollution 
events [16]. Process-based models rely on high-quality observa-
tional data and require complex processing through geographic 
information systems. The HTGNN-WNP is a data-driven deep 
learning model that learns implicit patterns without preset 
physical equations. Moreover, it uses graph neural networks to 
simulate the physical migration path of pollutants along with 
runoff. The two types of models are complementary in their 
application fields: process-based models focus on the analysis of 
mechanisms and processes, while HTGNN-WNP offers rapid, ac-
curate predictions that are more suitable for efficient management 
and decision-making.

Our method exhibited scalability and upgradability. Since NPS 
pollution arises from complex physical, chemical, and biological 
processes, future work should focus on systematically embedding 
these mechanisms into the GNNs' message-passing operations to 
develop a more interpretable framework for pollution assessment 
and prediction. Further, meteorological or hydrological model 
predictions can extend the model's prediction horizon to weekly 
or monthly timescales. Finally, the model's application scenarios 
can be expanded through extensive applied research on urban, 
forested, and cold-region watersheds.

5. Conclusion

In this study, we developed the HTGNN-WNP to predict nitrate 
concentrations in watersheds, with the aim of addressing the 
challenges posed by NPS pollution. By combining hierarchical 
transformers with graph neural networks, the model effectively 
captures complex patterns and topological relationships in a 
watershed system. Extensive experiments and comparisons 
demonstrated its superior performance over several state-of-the-
art methods. Ablation experiments revealed the significance of 
each component in the model and highlighted the importance of 
considering hydrological and topological interactions along with 
temporal and feature dependencies. The HTGNN-WNP exhibited a 
distinct advantage in predicting water quality through its ability to 
extract effective features from nonlinear time series, assimilate 
multisource data, and accurately model topological. The model's 
applicability was evidenced by its data accessibility, short-term 

prediction accuracy, and handling of missing data. Although vali-
dated in a single watershed, broader testing across diverse cli-
mates and larger systems is needed to establish generalizability. 
Future research should explore integration with process-based 
models by incorporating physical, chemical, and biological

processes into the framework, thereby enhancing interpretability, 
adaptability, and applicability to other pollutants and watersheds. 
Overall, the HTGNN-WNP model is an innovative solution for 
advancing watershed nitrate prediction and supporting water 
quality management.
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