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a b s t r a c t

Freshwater reservoirs are critical for water management but face increasing impacts from climate 
change, which alters their thermal regimes and affects ecosystem functions globally. In temperate re-
gions, surface water temperatures have risen at rates often surpassing those of air temperature, driven 
by atmospheric warming, hydrological processes, and reservoir morphometry. However, long-term 

studies on reservoir-specific thermal responses, particularly short-term variability, remain scarce. An 
important question is how environmental drivers influence both long-term warming trends and daily 
thermal fluctuations in managed water bodies. Here we show that over 31 years (1991–2021), surface 
water temperatures in 35 Czech reservoirs increased by an average of 0.59 ◦ C per decade, with air 
temperature, altitude, and retention time as primary predictors of mean temperatures. A novel cor-
rected metric for day-to-day variability (DTDV) revealed that inflow rate, depth, and retention time 
strongly influence short-term fluctuations, and DTDV trends positively correlated with warming rates, 
indicating linked drivers of thermal reorganization. Seasonal patterns showed strongest warming in 
April, with an anomaly of minimal change in May, likely tied to regional climatic shifts. These findings 
elucidate climate-driven thermal dynamics in reservoirs, highlighting the interaction of climatic and 
local factors. By combining statistical modeling with process-based indicators, this study informs 
adaptive strategies to mitigate impacts on water quality, stratification, and biodiversity under changing 
climates.
© 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, 
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open 

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Climate change is profoundly altering the physical, chemical, 
and biological dynamics of freshwater ecosystems worldwide. 
Lakes and reservoirs, which hold the majority of Earth's surface 
liquid freshwater, are particularly sensitive to climate-induced 
changes in temperature, ice cover, and hydrological balance [1,2]. 
Numerous studies have shown that surface water temperatures 
are increasing across a wide range of climate zones, often at rates 
exceeding those of the surrounding air, with global averages

ranging from 0.24 to 0.34 ◦ C per decade [3–5]. However, these 
trends show substantial regional, seasonal, and interannual vari-
ability, driven by local factors such as wind speed, water clarity, 
and morphometry [6,7] or even glacier meltwater and urbaniza-
tion [8,9]. In some cases, lake surface warming outpaces atmo-
spheric warming, especially during spring and early summer, 
when earlier stratification onset amplifies surface heating [10,11]. 
Conversely, increased evaporative cooling and thermal inertia may 
suppress warming in open or wind-exposed systems [5]. These 
thermal changes have widespread ecological repercussions, 
including altered stratification, oxygen depletion, enhanced 
evaporation, and shifts in thermal habitats that threaten native 
biodiversity [6,12,13]. Reductions in winter ice cover and earlier 
stratification onset are now key indicators of warming, particularly 
in temperate and polar lakes [2,14]. Furthermore, the emergence of
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“no-analogue” thermal conditions, those outside historical vari-
ability, raises concerns about long-term ecosystem resilience [12]. 
As both climate sentinels and vital water resources, understanding 
how lakes and reservoirs respond to global warming remains a 
priority for climate science and water management.

While long-term temperature trends provide essential insight 
into climate change, short-term thermal fluctuations, especially 
day-to-day temperature variability (DTDV), are increasingly 
recognized as ecologically and socially impactful. DTDV reflects 
rapid weather changes that affect organismal physiology, 
ecosystem function, and human well-being [15,16]. Unlike sea-
sonal or annual trends, DTDV captures high-frequency tempera-
ture shifts resulting from atmospheric dynamics, local topography, 
and surface energy balance [17,18]. Studies have shown that such 
variability often decreases with warming in many mid- and high-
latitude regions, largely due to Arctic amplification and weakening 
meridional temperature gradients [19,20]. However, trends can be 
regionally diverse, with increases in DTDV observed in some areas 
due to local factors such as coastal proximity or urban heat effects 
[18,21]. It is important to note that all existing studies on DTDV 
have focused exclusively on air temperature, and to date, no 
comparable analyses have been conducted for surface water 
temperature. In freshwater lakes, DTDV is supposedly influenced 
by morphometric and geographic characteristics, such as depth 
and topographic shading, with deeper lakes typically exhibiting 
greater thermal stability [22]. Despite its potential significance for 
mixing processes, ice phenology, and biological dynamics, DTDV 
remains sparsely studied in inland waters, making its manifesta-
tion in freshwater reservoirs and its relationship to broader ther-
mal trends a crucial yet underexplored dimension of climate 
change impacts.

Although numerous studies have investigated lake thermal 
responses to global climate change, Central European freshwater 
systems, especially artificial reservoirs, remain underrepresented 
in the literature. Most existing research in the region focuses on 
atmospheric parameters, such as air temperature, circulation 
types, and extremes [23,24], while comparable long-term analyses 
of lake or reservoir thermal regimes are rare [25]. Recent studies 
from the Czechia have documented significant warming of air 
temperatures and shifts in the frequency of extreme weather 
events, often linked to changing atmospheric circulation patterns 
[23,24]. However, the aquatic response to these changes, particu-
larly in man-made reservoirs, remains poorly quantified [25]. A 
few localized studies in Central Europe suggest that reservoirs may 
exhibit distinct thermal trajectories from natural lakes due to their 
shallower depths, managed hydrology, and dynamic catchment 
conditions [26,27]. The complex interplay of climate forcing and 
catchment-level influences, such as land cover change or forest 
dieback, further complicates the interpretation of thermal trends 
in reservoirs. In Poland, for example, Wang et al. [28] reported high 
variability in lake warming rates and emphasized the importance 
of understanding regional hydrometeorological drivers. Despite 
these advances, large-scale, comparative studies focusing on long-
term air–water thermal coupling across multiple reservoir systems 
in Central Europe over multi-decadal periods remain scarce. This 
gap is particularly evident for metrics beyond seasonal means, 
such as extremes and short-term variability, which are critical for 
ecological forecasting and water resource management.

In this study, we analyze long-term thermal dynamics in 35 
Czech freshwater reservoirs using a consistent 31-year dataset 
(1991–2021) of daily air and water temperature records. Our pri-
mary aim is to characterize the magnitude, direction, and vari-
ability of surface water temperature trends and assess their 
relationship with concurrent air temperature changes. We pay 
particular attention to differences between air and water warming

rates and seasonal asymmetries that may reflect changes in mixing 
regimes, stratification, or ice phenology. In addition to long-term 

trends, we quantify day-to-day temperature variability, an 
underexplored but ecologically relevant aspect of thermal 
behavior. By comparing DTDV patterns across reservoirs and 
relating them to morphometric, geographic, and climatic factors, 
we examine how physical attributes influence thermal stability. 
We also assess whether warming and short-term variability co-
occur, potentially indicating shared drivers of thermal 
reorganization.

Specifically, we address three questions: (i) What are the long-
term trends in surface water temperature, and how do they 
compare with air temperature trends? (ii) How does DTDV vary 
among reservoirs, and what are its key environmental drivers? (iii) 
Do warming and variability co-occur? We hypothesize that air 
temperature and altitude primarily control long-term warming, 
while hydrological and morphometric factors such as inflow, 
depth, and retention time shape short-term variability. Together, 
these analyses provide regionally grounded, statistically robust 
insights into how climate change is affecting managed freshwater 
systems in Central Europe.

2. Materials and methods

2.1. Freshwater reservoirs studied

Water temperature data were collected from 35 freshwater 
reservoirs in Czechia (Fig. 1) by the river-basin authorities, Povodí 
Labe (Elbe), Povodí Moravy (Morava), and Povodí Vltavy (Moldau), 
all state enterprises. The reservoirs span a wide range of charac-
teristics: altitudes from 170 to 774 m above sea level, surface areas 
from 0.12 to 49 km 2 , maximum depths from 3 to 58 m, volumes 
between 0.13 and 212 × 10 6 m 3 , watershed areas from 4.3 to 
11,850 km 2 , and mean theoretical retention times of 0.96–432 
days, calculated from long-term mean inflow rates and reservoir 
volumes provided by the respective basin authorities (see 
Supplementary Table S1).

2.2. Primary water temperature data and processing

Surface water temperature (T w ) was measured daily at 7 a.m. in 
the dam area over the period 1991–2021. The dataset was first 
cleaned to correct obvious errors, fill gaps, and ensure homoge-
neity. Specifically, isolated T w values that deviated by more than

Fig. 1. Map of Czechia with the location of the freshwater reservoirs included in the 
study. For details, see the Supplementary Table S1.
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3 ◦ C from an otherwise stable temporal sequence were replaced 
either with the mean value or, in cases of suspected typographical 
or digitization errors, with the presumed correct value. Gaps in the 
time series were interpolated linearly, with resulting values 
rounded to one decimal place. Across all reservoirs, we filled 1223 
gaps (mean length 3.5 days), affecting 4352 daily values (1.11% of 
records); 96.9% of gaps were ≤6 d, and 88% of filled days occurred 
in November–March (mean T w 2.9 ◦ C; details in Supplementary 
Table S2). In the November–March period, any T w values below
1 ◦ C were set to 0.5 ◦ C. We identified extended winter runs of 
uniform entries (e.g., 0.0, 0.01, 0.1, or 1.0 ◦ C) that varied by reser-
voir and likely reflected suspended sampling or placeholder log-
ging under snow or ice. We treated these sequences as 
placeholders rather than measurements and applied this conser-
vative homogenization to avoid data bias and artificial cross-
reservoir differences. The proportion of original versus processed 
data for each reservoir is provided in Supplementary Table S2.

2.3. Air temperature data

Monthly averages of air temperature (T air ) were obtained from 

publicly available data from the nearest Czech Hydrometeorolog-
ical Institute weather station. These stations were located on 
average 9.9 km from the respective reservoirs (range: 0–40 km) 
with altitude differences ranging from 3 to 401 m (mean: 42 m; 
see Supplementary Table S3). For each reservoir, air temperature 
trends were compared with water temperature trends.

2.4. Calculation of day-to-day variability in water temperature 
DTDV

To quantify short-term fluctuations in surface water tempera-
ture while controlling for underlying seasonal trends, we devel-
oped a corrected metric of DTDV that corrects for the confounding 
influence of seasonal trends. Traditional measures of DTDV, often 
based on the mean or standard deviation of daily changes, can be 
skewed by steady seasonal warming or cooling. Here, DTDV for 
each month was calculated as the mean of absolute daily tem-
perature changes, minus the absolute value of the average net 
change:

DTDV =
1 
N

∑N+1

i=2

⃒
⃒T w;i − T w;i− 1

⃒
⃒ −

⃒ 
⃒ 
⃒ 
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⃒ 

1
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⃒
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⃒
⃒

(1)

where T w;i is the water temperature on day i, and N is the number 
of days in the month. This formulation corrects for monotonic 
warming or cooling trends, which may artificially inflate DTDV in 
transitional months (e.g., April or November, see Supplementary 
Fig. S1 for explanation), while preserving meaningful variability 
due to weather events, hydrological inflows, or mixing dynamics.

2.5. Statistical evaluation

For each reservoir, we calculated the 31-year mean values of all 
variables and the linear trends (via ordinary linear regression 
[OLR]). Also, we computed Sen's slopes as nonparametric trend 
estimates; they were highly correlated with the OLR estimates 
(R 2 = 0.893–0.978). We tested whether the air and water tem-
perature trends were parallel and assessed the correlations be-
tween these variables. Relationships between parameters 
describing surface water thermal behavior, used as response var-
iables, were analyzed using linear correlations and generalized 
linear models (GLMs). The response variables included: long-term 

mean T w , trends in T w , mean DTDV, trends in DTDV, and the average

difference between means in T w and T air . Explanatory variables 
(predictors) related to individual reservoir characteristics included 
surface altitude (Alti), maximum depth (Z max ), T air , mean inflow 

rate (Q i ), and theoretical retention time (TRT). To reduce multi-
collinearity, predictor selection was performed by pairwise cor-
relations and variance inflation factors, with values ranging from 

2.00 to 3.52 [29]; see Supplementary Table S4 for the correlation 
matrix.

For each response variable, a candidate set of 24 GLMs 
(glm_1–glm_24) was constructed using all combinations of the 
five environmental predictors, ranging from full models to uni-
variate and null models (Supplementary Table S5). All models 
assumed a Gaussian error distribution and identity link function. 
Model selection was based on the corrected Akaike Information 
Criterion (AICc), with models having ΔAICc < 2 considered to have
substantial support. For each model, we extracted AICc weight, R 2 ,
normalized root mean square error (nRMSE), estimated regression 
coefficients, and predictor significance (p-values).

To enable comparison of prediction accuracy across response 
variables with differing scales, model residuals were evaluated 
using nRMSE, calculated as RMSE divided by the overall mean of 
the observed response variable and expressed as a percentage. 
This provides a scale-independent measure of model error, with 
lower values indicating better predictive accuracy. Only statisti-
cally significant predictors (p < 0.05) from top-ranked models 
were retained for interpretation. For the analysis of the average 
difference between T w and T air we used only the models not 
including T air as a predictor to avoid autocorrelation, as it is 
inherently part of the response variable.

Statistical calculations were performed using GraphPad PRISM 

10.2 for Windows (GraphPad Software, Boston, Massachusetts, 
USA, www.graphpad.com), Microsoft Excel 365 with Real Statistics 
Resource Pack software (Release 8.9.1). GLMs were conducted in R 
version v. 4.4.1 [30], using base functions. We checked model re-
siduals using the package DHARMa (v. 0.4.6 [31]). If necessary, we 
transformed and summarized them using the packages bbmle for 
ΔAICc, weight, and df (v. 1.0.25.1 [32]) and package performance 
for marginal R 2 (v. 0.12.3 [33]). We then used the function ggpre-
dict in the package ggeffects (v. 1.7.1 [34]) for the most parsimo-
nious model to extract the predicted data and visualised them in 
GraphPad PRISM 10.2.

3. Results

3.1. Air temperature

Long-term annual average of the T air throughout the study at 
the nearest weather stations (Supplementary Table S2) ranged 
from 5.7 to 10.2 ◦ C, with an overall mean of 8.3 ◦ C (Fig. 2a, 
Supplementary Table S6). T air was significantly negatively corre-
lated with altitude (R 2 = 0.651, p < 0.0001), corresponding to a 
vertical temperature gradient of 0.56 ◦ C per 100 m, a value slightly 
lower than the standard atmospheric lapse rate of 0.65 ◦ C per 
100 m [35]. The average seasonal pattern of T air can be seen in 
Supplementary Fig. S2. Over the study period, T air increased on 
average by 0.46 ◦ C per decade (a total increase over 31 years of 
1.41 ◦ C; R 2 = 0.282, p < 0.01), trends in T air increase at individual 
stations ranged from 0.24 to 0.71 ◦ C per decade, with all but three 
trends reaching statistical significance (Fig. 2b–Supplementary 
Table S6). Monthly analysis revealed that warming was not uni-
form throughout the year: the most pronounced increases 
(0.80–1.03 ◦ C per decade) occurred in June, November, and 
December, while May exhibited a non-significant decrease of 
0.25 ◦ C per decade and other months showed non-significant in-
creases of 0.08–0.51 ◦ C per decade. In months where the trend in
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increase in T air was significant for the average of all reservoirs, it 
was also significant at 31–35 individual reservoirs, while in the 
remaining months, the trend was not significant at any reservoir 
(Supplementary Fig. S2).

3.2. Water temperature

Over the 31 years, the T w annual mean ranged from 7.9 to 
12.3 ◦ C, with an overall mean of 10.7 ◦ C (Fig. 2a–Supplementary 
Table S6). Mean T w was significantly negatively correlated with 
surface altitude (R 2 = 0.639, p < 0.0001) and positively correlated 
with local mean T air (R 2 = 0.430, p < 0.0001). GLMs for T w mean 
performed strongly, with R 2 values between 0.81 and 0.83 and low

nRMSE values (3.88–4.11%). Altitude, TRT, and T air were the most 
influential and consistent predictors, with altitude showing a 
strong negative effect, while TRT and T air had positive effects on T w 

across models. This indicates that lower-elevation reservoirs with
longer retention times and warmer air temperatures tend to have
higher surface water temperatures (for details, see Fig. 3, Table 1).

All reservoirs exhibited a roughly linear increase in T w over the
study period, averaging an increase of 0.59 ◦ C per decade (Fig. 4a;
1.83 ◦ C over 31 years). Individual reservoir trends ranged from 0.10
to 1.25 ◦ C per decade, with all but three reservoirs showing sta-
tistically significant trends (Fig. 2b–Supplementary Table S6).
Linear regression analysis indicated that the rate of warming did 
not significantly correlate with the reservoir characteristics 
examined, nor could differences be explained by local T air trends. 
T w trend GLMs had low explanatory power (R 2 ≤ 0.18) and high 
nRMSE values (34.9–38.5%), indicating weak ability to explain 
inter-reservoir variability in long-term warming rates. Most 
models had no significant predictors, though altitude appeared in 
two models with weak but statistically significant effects. 
(R 2 = 0.12–0.17; Table 1). Monthly trends in T w varied: the most 
rapid warming occurred in April, followed by August and October 
(0.82–1.02 ◦ C per decade, with a maximum increase of 3.2 ◦ C over 
31 years), whereas February and May showed the slowest warm-
ing (approximately 0.25 ◦ C per decade). Except for May, these 
average monthly trends were statistically significant. At the indi-
vidual reservoir level, significant monthly trends in T w were 
observed in 18–31 reservoirs for all months except September and 
May (only 13 and 2 reservoirs, respectively; Fig. 5).

3.3. Relationship between T w and T air

Interannual variability in T w was primarily driven by fluctua-
tions in T air (Fig. 4a and b). Annual averages of T w across all res-
ervoirs were highly correlated with corresponding T air averages 
(R 2 = 0.863, p < 0.0001; Fig. 6a and b), indicating a tight (zero-lag) 
cross-correlation. For detrended data, the correlation increased 
further (R 2 = 0.912, p < 0.0001; Fig. 6c and d). Interestingly, both 
average and maximum deviations from the trends were greater for 
T air than for T w (0.52 ◦ C and 1.58 ◦ C versus 0.35 ◦ C and 0.94 ◦ C, 
respectively; Fig. 6c), the difference in averages being highly sta-
tistically significant (p < 0.0001, paired t-test). At the individual 
reservoir level, cross-correlation coefficients between T w and T air 
ranged from 0.445 to 0.931 (Supplementary Table S6). Although 
the average slopes of T air (0.46 ◦ C per decade) and T w (0.59 ◦ C per 
decade) differed, this difference was not statistically significant 
(p = 0.421), suggesting parallel trends. Also at the individual 
reservoir level, 28 out of 35 exhibited parallel trends 
(Supplementary Table S6). In six reservoirs, T w increased signifi-
cantly faster than T air , while in only one reservoir was the opposite 
observed. The average difference between T air and T w varied sub-
stantially (0.2–4.4 ◦ C) with an overall mean of 2.4 ◦ C. The differ-
ences were positively correlated with maximum depth (Z max ; 
R 2 = 0.292, p < 0.001) and TRT (R 2 = 0.370, p < 0.001). GLMs for 
T w –T air mean difference performed moderately well 
(R 2 = 0.50–0.54), with nRMSE between 25.8% and 26.9%. TRT and 
altitude were both significant, with TRT showing a strong positive 
effect and altitude a weak negative effect (Table 1, Supplementary
Fig. S3).

3.4. Day-to-day variability in water temperature

The mean DTDV over the entire period was 0.23 ◦ C per day, with 
individual reservoirs ranging from 0.10 to 0.41 ◦ C per day 
(Fig. 2a–Supplementary Table S7). It was positively correlated with 
Q i (R 2 = 0.179, p < 0.05) and negatively correlated with Z max

Fig. 2. Distribution of long-term means (a) and linear trends (b) in surface water 
temperature (T w ), air temperature (T air ), and day-to-day T w variability (DTDV) across 
35 Czech reservoirs during the period 1991–2021. Each point represents an individual 
reservoir; open symbols indicate statistically non-significant trends. Red lines denote 
the median, as well as the lower and upper quartiles.

Fig. 3. Relationships between mean surface water temperature (T w ) and environ-
mental predictors in the best-performing generalized linear model (GLM; glm_5) for 
35 Czech reservoirs. Panels plot mean T w plotted against surface altitude (a), theo-
retical retention time (b), mean air temperature (T air ; c), and mean inflow rate (Q i ; d). 
Red lines are the GLM fit with 95% confidence intervals (shading). Altitude, theoretical 
retention time, and T air were significant predictors (p < 0.05), whereas Q i was not. 
Model performance: R 2 = 0.832, nRMSE = 3.88%. See Table 1 for details.
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(R 2 = 0.380, p < 0.0001) and TRT (R 2 = 0.369, p < 0.001). The 
average seasonal pattern in DTDV is evident from Supplementary 
Fig. S4. GLMs of mean day-to-day variability in T w showed mod-
erate explanatory power (R 2 = 0.54–0.61) and nRMSE values

between 20.4% and 22.2%. Z max was the most consistent predictor, 
always negatively associated with DTDV. TRT and Q i also contrib-
uted to several models (Table 1, Supplementary Fig. S5).

The overall long-term trend in DTDV was significantly

Table 1
Summary of statistically significant predictors (p < 0.05) in the best-performing generalized linear models (GLMs, ΔAICc < 2) for five surface water temperature parameters 
across 35 Czech reservoirs over 31 years (1991–2021).

Parameter GLM model k ΔAICc W R 2 nRMSE (%) Significant predictors Estimate p

T w mean glm_5 4 0.0 0.330 0.832 3.88 Alti − 0.0053 <0.001
TRT 0.91 <0.001
T air 0.24 0.045

glm_4 4 0.8 0.224 0.828 3.93 Alti − 0.0052 <0.001
TRT 0.64 <0.001
T air 0.29 0.016

glm_9 3 1.2 0.184 0.811 4.11 Alti − 0.0052 <0.001
TRT 0.78 <0.001
T air 0.27 0.032

T w trend glm_24 0 0.0 0.145 0.000 38.5 None - -
glm_21 1 0.5 0.113 0.053 37.5 None - -
glm_19 1 0.6 0.109 0.051 37.5 None - -
glm_15 2 0.6 0.108 0.118 36.3 Alti 0.0008 0.040
glm_10 3 0.9 0.093 0.177 34.9 Alti 0.0008 0.035

DTDV mean glm_18 2 0.0 0.194 0.552 22.2 Z max − 0.15 <0.001
Q i 0.039 0.001

glm_3 4 0.9 0.125 0.609 20.4 Z max − 0.12 0.006
glm_7 3 0.9 0.122 0.574 20.4 Z max − 0.11 0.013
glm_13 2 1.0 0.119 0.539 22.2 TRT − 0.056 0.001
glm_8 3 1.5 0.094 0.568 21.7 TRT − 0.067 <0.001

Z max − 0.082 0.037
glm_11 3 1.8 0.078 0.563 21.7 Z max − 0. 17 <0.001

Q i 0.044 0.001
glm_2 4 2.0 0.073 0.597 20.9 Z max − 0.12 0.006

DTDV trend glm_7 3 0.0 0.154 0.238 158 Q i − 0.027 0.004
Z max 0.058 0.029
TRT − 0.029 0.041

glm_21 1 0.1 0.147 0.111 168 Q i − 0.014 0.042
glm_2 4 0.6 0.115 0.287 153 Q i − 0.030 0.001

Z max 0.067 0.013
glm_11 3 0.7 0.110 0.223 158 Q i − 0.021 0.008
glm_16 2 1.5 0.072 0.140 168 Q i − 0.018 0.023
glm_18 2 1.7 0.066 0.136 168 Q i − 0.014 0.049
glm_24 0 1.8 0.062 0.000 179 None - -

T w –T air mean difference glm_8 3 0.0 0.333 0.541 25.8 TRT 0.92 <0.001
Alti − 0.0020 0.013

glm_14 2 0.2 0.296 0.500 26.9 TRT 1.13 <0.001
Alti − 0.0019 0.024

Note: The modeled parameters include long-term mean surface water temperature (T w mean), long-term trend in T w (T w trend), mean day-to-day variability in T w (DTDV 
mean), long-term trend in DTDV (DTDV trend), and mean difference between T w and air temperature (T w –T air mean difference). Predictors include mean air temperature 
(T air ), surface altitude (Alti), maximum depth (Z max ), mean inflow rate (Q i ), and mean theoretical retention time (TRT). For the analysis of the T w –T air mean difference, T air was 
excluded as a predictor to avoid mathematical autocorrelation. Table columns include the model identification, number of predictors (k), ΔAICc (difference from the top-
ranked model), Akaike weight (W), coefficient of determination (R 2 ), and normalized root mean square error (nRMSE, expressed as a percentage of the overall mean of 
the modeled parameter). nRMSE provides a scale-independent indicator of model prediction accuracy, with lower values indicating a better fit. Only statistically significant 
predictors (p < 0.05) are shown. For a complete list of candidate models and predictors included, see Supplementary Table S5.

Fig. 4. a–c, Long-term trends in surface water temperature (T w ; a), air temperature (T air ; b), and day-to-day T w variability (DTDV; c) in 35 Czech reservoirs. Points are annual means 
across reservoirs; the blue band shows the minimum–maximum range; red lines show linear trends. d, Relationship between steepness of trends in T w and DTDV in individual 
reservoirs, represented by blue points. The red line shows the linear trend.
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increasing at 0.019 ◦ C per day per decade (p < 0.001, R 2 = 0.316), 
though individual reservoir trends varied vastly from − 0.081 to 
0.076 ◦ C per day per decade. Trends were significantly increasing 
in 20 reservoirs, non-significant in 12, and significantly decreasing 
in three (Fig. 2b–Supplementary Table S7). Moreover, many DTDV 
trends exhibited non-linear patterns such as deceleration or shifts 
in behavior in the latter half of the study period (Fig. 4c). Therefore, 
Sen's slopes were reported alongside linear regression slopes, with 
both estimates being highly correlated (R 2 = 0.978). At the reser-
voir level, trends in DTDV were only weakly negatively correlated 
with Q i (R 2 = 0.115, p < 0.05) and reservoir volume (R 2 = 0.114, 
p < 0.05). GLMs for trends in DTDV performed weakly, with low R 2 

values (0–0.29) and very high nRMSE (153–179%), suggesting poor 
model accuracy. Inflow rate appeared as a significant negative 
predictor in most models, while Z max and TRT showed weaker or 
inconsistent effects (Table 1, Supplementary Fig. S6). Notably, a 
strong and highly statistically significant positive relationship was 
observed between trends in DTDV and corresponding trends in T w 

(R 2 = 0.414, p < 0.0001; Fig. 4d). As for trends in monthly average

DTDV, significant increasing trends were detected only in April and 
December (0.057 and 0.020 ◦ C per day per decade, respectively). In 
contrast, non-significant increases (ranging from 0.011 to 0.037 ◦ C 
per day per decade) were observed in other months, except for 
October and November, which exhibited marginally decreasing 
trends (− 0.001 and − 0.007 ◦ C per day per decade, respectively). At 
the individual reservoir level, significant increasing monthly 
trends in DTDV were identified in 1–21 reservoirs, while significant 
decreasing trends were observed in up to 3 reservoirs 
(Supplementary Fig. S4).

4. Discussion

4.1. Long-term temperature trends

The pronounced surface water warming observed in Czech 
reservoirs (~0.59 ◦ C per decade, range: 0.10–1.25 ◦ C per decade) is 
consistent with, but slightly exceeds, the rates typically reported 
for lakes in the temperate climate zone. Numerous recent studies 
across Europe and North America have confirmed widespread and 
significant increases in lake surface water temperature over the 
past several decades, with notable implications for aquatic eco-
systems. O'Reilly et al. [3], in a landmark synthesis of 235 globally 
distributed lakes, reported an average summer surface warming 
rate of 0.34 ◦ C per decade from 1985 to 2009, with a clear signal of 
enhanced warming in temperate-zone lakes. European studies 
have further shown substantial regional variability: for example, in 
Central European lakes, Woolway et al. [11] documented annual 
increases in T w ranging from 0.2 to 0.5 ◦ C per decade over the last 
half-century, with the strongest warming generally occurring in 
spring and early summer. Similarly, Dokulil [7] found that annual 
maximum surface water temperatures in ten European lakes 
increased at an average rate of 0.58 ◦ C per decade between 1966 
and 2015, with inter-lake differences related to local climate, lake 
morphometry, and geographic location. Long-term data from 

Hungarian lakes and rivers further confirm these patterns, 
revealing intensified surface water warming over the past 150 
years [36]. Recent findings from Poland's lowland lakes [28] 
corroborate these trends, with annual warming rates ranging from 

0.14 to 0.69 ◦ C per decade, and even higher values recorded in 
some summer months. These values demonstrate a broad align-
ment with the trends observed in Czech reservoirs.

Importantly, studies from northern Europe suggest that surface 
warming rates in high-latitude lakes can vary substantially 
depending on local climatic drivers. In Lake Inari, a pristine Arctic

Fig. 5. Monthly changes in mean average water temperatures (T w ) across 35 Czech 
reservoirs between 1991 and 2021. Blue lines show reservoir-level monthly means; 
the blue band spans the minimum–maximum range across the reservoir; red lines 
indicate linear trends. Numbers in parentheses indicate the number of reservoirs with 
a significant positive trend in T w . Numbers on the second line are trend slopes ( ◦ C per 
decade); asterisks denote statistical significance (*p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001), n.s.: not significant.

Fig. 6. Comparison of trends in surface water temperature (T w ) and air temperature (T air ). a, Trends in annual mean temperatures from 1991 to 2021; symbols represent averages 
across 35 Czech reservoirs, and lines indicate linear trends. The trends in T w and T air are not significantly different (p = 0.421). b, Correlation between corresponding annual means 
of T w and T air ; each symbol represents one year (averaged across all reservoirs), with years labelled. c, Annual deviations of T w and T air from their respective long-term linear 
trends. d, The correlation between these detrended anomalies, emphasizing their interannual covariation independent of overall warming.
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Lake in northern Finland, a six-decade dataset revealed a signifi-
cant surface water warming trend of 0.25 ◦ C per decade during 
summer (July–September), while deep water temperatures 
remained largely unchanged, indicating intensified summer 
stratification [37]. In contrast, Lake Kallavesi in central Finland 
experienced strong and statistically significant warming trends 
not only at the surface, but also in deep and depth-averaged water 
temperatures, with surface and bottom waters warming at rates 
close to or even exceeding local air temperature trends [38]. These 
northern lakes thus illustrate region-specific warming patterns: 
while both are experiencing the impacts of climate change, the 
thermal response varies due to local factors such as lake 
morphometry, ice cover duration, and atmospheric 
teleconnections.

Long-term reconstructions indicate that surface water warm-
ing accelerated markedly after the 1980s, reflecting both gradual 
climate change and punctuated climate regime shifts [4,11]. 
Overall, the rates reported for Czech reservoirs are at the upper 
end but within the range observed in similar climatic settings, 
aligning especially closely with recent European multi-lake syn-
theses [7,11,28]. This supports the growing consensus that 
temperate zone lakes and reservoirs are experiencing significant, 
and in some cases, accelerating warming, with profound ecological 
consequences.

The ecological consequences of surface water warming are 
wide-ranging and increasingly evident across temperate fresh-
water systems. One major outcome is the intensification and 
prolongation of thermal stratification, which reduces vertical 
mixing [39]. Warming-induced declines in oxygen solubility have 
contributed to widespread lake deoxygenation, while longer and 
stronger stratification further enhances bottom-water hypoxia, 
especially in eutrophic and mesotrophic reservoirs, by limiting 
vertical mixing and promoting oxygen depletion through micro-
bial decomposition [40]. Anoxic conditions can further trigger 
internal loading of phosphorus, reinforcing eutrophication and 
promoting bloom-forming taxa. Elevated surface temperatures 
also shift plankton phenology, advancing the timing of key suc-
cessional events such as spring diatom blooms, potentially 
decoupling food web interactions [39]. Perhaps most critically, 
warming has been strongly linked to the increasing frequency, 
duration, and intensity of cyanobacterial blooms [41]. Cyanobac-
teria are favored in warmer, stratified conditions due to their high 
temperature optima and physiological traits such as buoyancy 
regulation [42]. These blooms pose risks not only to biodiversity 
and ecosystem functioning but also to water quality, public health, 
and reservoir management. Collectively, these processes highlight 
that surface water warming is not a passive climatic signal, but an 
active driver of ecological change in freshwater reservoirs.

4.2. Factors affecting reservoir thermal patterns

Warming rates in lakes and reservoirs are highly variable and 
reflect a complex interplay between regional climate forcing and 
site-specific characteristics such as depth, surface area, catchment 
land use, and management practices [43,44]. In our analysis, 
thermal dynamics of Czech reservoirs were shaped by a combi-
nation of climatic and hydromorphological drivers, with their 
relative importance differing across thermal metrics. The most 
influential predictors included surface altitude, TRT, Z max , and Q i . 
These variables affected long-term mean surface temperatures, 
day-to-day variability, and the degree of thermal coupling with air 
temperature.

Consistent with previous studies [45,46], T w was positively 
associated with TRT and T air , and negatively with altitude. Reser-
voirs situated at lower elevations, with longer residence times and

higher ambient T air , tended to exhibit higher T w . The influence of 
TRT likely reflects thermal inertia: in systems with low flushing 
rates, prolonged residence time allows greater absorption and 
retention of solar heat [47,48]. This can elevate surface tempera-
tures and enhance the persistence of summer stratification. In 
contrast, long-term trends in T w were only weakly explained by 
the tested predictors. Although altitude appeared in a few top-
performing models, their low explanatory power (typically 
R 2 < 0.2) suggests that spatial variability in warming rates is sha-
ped by more complex, site-specific processes, not captured by our 
variable set. Potential drivers include land-use changes in reser-
voir catchments (e.g., increased urbanization, deforestation, or 
agricultural intensification) that can influence thermal inputs via 
altered runoff characteristics, turbidity, or nutrient loading [49], 
local wind patterns influencing stratification and heat exchange 
[39,50], or reservoir operation regimes, such as drawdowns and 
artificial mixing. Internal processes (e.g., groundwater inflows, 
sediment heat fluxes), though unexamined here, may also 
contribute. This aligns with findings that lakes often display in-
dividual thermal trajectories even under similar climatic condi-
tions [3,50], and understanding these trajectories will require 
integrated approaches that combine climatic, hydro-
morphological, land-use, and management data.

The difference between T w and T air , used here as a proxy for 
air–water thermal decoupling, was best explained by TRT and 
altitude. In reservoirs with long residence times, delayed re-
sponses to short-term atmospheric fluctuations can result in T w 

exceeding T air during warm periods. Conversely, higher-altitude 
systems may experience stronger coupling due to increased 
wind exposure and reduced heat accumulation. These findings are 
consistent with studies that emphasize the role of morphometry 
and hydrology in modulating atmospheric–aquatic thermal 
coupling [1].

The reservoir morphometric features also shape both the 
magnitude and seasonality of warming. Shallow or small-volume 
lakes tend to mix more frequently and can warm or cool rapidly, 
while deeper, stratified systems may experience more persistent 
surface warming, with deeper layers lagging [51]. Some studies 
suggest that shallow lakes are more sensitive to T air changes [40], 
whereas others have shown greater surface warming in deeper, 
clearer lakes due to reduced vertical mixing [51]. Water clarity and 
trophic status also influence heat absorption [4,11]: transparent 
systems may warm more rapidly, while eutrophic waters may 
respond differently due to light attenuation by phytoplankton; 
however, these data were not available for the whole reservoir 
dataset. Nonetheless, the prevailing warming signal across reser-
voirs appears largely driven by atmospheric conditions. Even 
downstream of large dams, such as China's Three Gorges, surface 
waters have warmed at rates (~0.58 ◦ C per decade) similar to 
natural lake systems [52]. While some lakes have warmed more 
rapidly than air due to earlier stratification, reduced wind speeds, 
or increased transparency [7,10], recent global analyses indicate 
that, on average, T w may now be increasing slightly more slowly 
than T air , largely due to increased evaporation, though Central 
Europe remains a regional exception to this trend [5]. 

Anthropogenic operations such as water level drawdowns, 
altered inflow regimes, or artificial mixing can further complicate 
thermal responses. While the prevailing warming signal across 
reservoirs appears largely driven by atmospheric conditions, 
management interventions can, in some cases, override climatic 
forcing. A striking example comes from the Brno Reservoir. In 
terms of morphometry and hydrodynamics (Z max 19 m, surface 
area 2.59 km 2 , volume 13 × 10 6 m 3 , TRT 19.4 days), Brno would be 
expected to warm at ~0.5–0.6 ◦ C per decade, close to the dataset 
average. Yet it exhibited the lowest and statistically insignificant
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warming of all study sites (0.1 ◦ C per decade). This anomaly can be 
explained by a suite of remediation measures implemented to 
combat recurrent cyanobacterial blooms, including inflow phos-
phorus precipitation, bottom drying, liming, and fish stock 
manipulation [53]. Most importantly, since 2010, 15 mixing towers 
have continuously pumped hypolimnetic water upward, effec-
tively suppressing surface warming. This case highlights how 

remediation strategies designed to improve water quality may 
unintentionally alter long-term temperature trajectories. Such 
management-driven thermal modifications need to be considered 
when interpreting reservoir temperature records and assessing 
climate impacts.

4.3. Seasonal heterogeneity in surface water warming

Long-term trends in lake and reservoir surface temperatures 
across the temperate zone frequently exhibit marked seasonal 
heterogeneity, with different months warming at different rates 
[10,11]. While many studies report the most rapid warming during 
spring, often attributed to earlier onset of stratification and an 
extended heating season [4], this is not a universal pattern. In our 
analysis of Czech reservoirs, we found that April exhibited the 
strongest surface warming (averaging 0.8–1.0 ◦ C per decade), 
whereas May showed the weakest warming (~0.25 ◦ C per decade), 
and trends were statistically non-significant at most sites. Similar 
findings have emerged from other regions. For example, in a study 
of 25 Polish lakes, Wang et al. [28] reported that spring warming 
was weaker than warming in summer or autumn. In six long-term 

monitored lakes in Wisconsin, USA, Lathrop et al. [43] observed 
peak warming in September. In contrast, a recent study from 

Hungary reported the fastest warming in winter and spring, fol-
lowed by autumn and summer [36]. Globally, the seasonal timing 
of maximum warming varies by region: Central European lakes 
tend to warm most rapidly in spring, while warming in British and 
Irish lakes peaks in winter, and in Lake Superior during summer 
[1]. These patterns demonstrate that seasonal warming is shaped 
by both regional climate and lake-specific characteristics, and 
caution against using summer-only data to infer broader thermal 
trends [10].

4.4. Temporal asymmetry within spring

An especially striking pattern in our dataset is the contrast 
between strong warming in April and the absence of a significant 
trend in May (Fig. 5). Air temperature trends show a similar 
pattern, with an even negative trend in May (Supplementary 
Fig. S2), reinforcing the view that surface water thermal behavior 
is closely coupled to atmospheric conditions. This consistent 
asymmetry across most reservoirs and in air temperature records 
points to a common climatic driver. While individual cold years 
near the end of the study period may contribute to dampening the 
May trend [23], our analysis of air temperature trends at nearby 
stations adjacent to the studied reservoirs matched national av-
erages closely (R 2 = 0.995), and the negligible May trend has 
persisted over four decades (1985–2024, not shown). This re-
inforces the conclusion that spring warming in Central European 
lakes and reservoirs is not uniformly distributed across months, 
and that apparent trend anomalies in May are robust features of 
the thermal regime.

The muted warming observed in May likely reflects broader 
atmospheric dynamics. Although detailed attribution is beyond 
the scope of this study, the persistence of the weak May trend over 
multiple decades suggests a climatic origin, potentially linked to 
late-spring circulation anomalies, atmospheric blocking events, or 
land–atmosphere feedbacks [54,55]. For instance, Ionita et al. [56]

showed that the period 2007–2020 was characterized by a 
reduction of ~50% of the usual April rainfall amount in combina-
tion with extremely high air temperatures over large areas in 
central Europe, while no such anomalies have been noticed in May.

Recent research by Kop� a � cek et al. [27] provides one of the
possible mechanistic explanations for this “May anomaly.” Their 
long-term analysis of Bohemian Forest lakes (1998–2022) revealed 
a significant and persistent increase in May cloudiness, which led 
to reduced incoming solar radiation and stagnant or even 
declining air temperature during this month. This regional in-
crease in May cloud cover appears to offset the expected warming 
signal from global climate change. In contrast, cloudiness in March 
and April has decreased over the same period, helping to explain 
the more pronounced warming earlier in spring. This pattern is 
consistent with broader findings across Europe, where increases in 
cloudiness have been linked to local cooling or reduced warming 
[57], while decreases in cloud cover result in enhanced solar 
heating.

Hydrological conditions, such as higher inflows and unstable 
stratification, may further contribute to thermal inertia in surface 
waters during this month. While increased concentrations of 
colored dissolved organic matter from catchments (brownifica-
tion) can amplify warming under stable conditions [58,59], its 
effect may be diminished in May due to stronger mixing. Overall, 
the divergence between April and May warming underscores the 
importance of examining climate responses at a monthly resolu-
tion and highlights a seasonal “stall” in surface warming during 
late spring. The inclusion of cloud cover and atmospheric circu-
lation dynamics into future climate and lake thermal models may 
improve the mechanistic understanding of such seasonal 
asymmetries.

4.5. Day-to-day temperature variability approach

To avoid conflating gradual seasonal warming with short-term 

fluctuations, we introduced a corrected DTDV metric. Traditional 
DTDV, defined as the absolute difference in temperature between 
two consecutive days, tends to increase during spring and summer 
simply because of the underlying seasonal warming trend. Our 
correction subtracts the net monthly change before averaging 
daily differences, enabling a more accurate measure of high-
frequency thermal variability driven by short-term processes 
such as weather events, inflow pulses, or mixing disturbances. This 
correction ensures that DTDV reflects genuine high-frequency 
instability rather than long-term seasonal warming. While DTDV 
is a well-established concept in atmospheric sciences, frequently 
applied to assess thermal variability and its ecological conse-
quences [17,18,20], its application to aquatic systems remains 
limited. Few studies have accounted for background seasonal drift 
when quantifying water temperature variability [16,60]. Our cor-
rected DTDV thus represents a conceptual advance by allowing 
clearer comparisons across time and space, free from the artifact of 
seasonal slope. From an ecological standpoint, capturing short-
term variability is particularly important, as aquatic organisms 
respond more directly to rapid fluctuations than to long-term 

trends. Short-term thermal instability can affect metabolic rates, 
stress responses, growth, reproduction, and species interactions 
[22,60,61]. It also influences ecosystem-level processes such as 
mixing, stratification, nutrient cycling, and bloom development. 

Our analysis showed that hydromorphological features of res-
ervoirs modulate DTDV patterns. Deeper reservoirs with longer 
TRT tend to have lower DTDV values, likely due to the dampening 
effect of higher thermal inertia and stable stratification regimes. 
Conversely, reservoirs with high inflow rates showed elevated 
DTDV, likely resulting from inflow-driven mixing that enhances
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surface temperature fluctuations. This is consistent with findings 
by Novikmec et al. [22] and Doubek et al. [60], who linked such 
patterns to both lake depth and storm-induced turbulence.

With climate change expected to increase the frequency and 
intensity of storms [60,62], corrected DTDV may serve as a useful 
indicator of short-term physical instability in lakes and reservoirs. 
Storms often trigger rapid thermal changes through wind-driven 
mixing and precipitation, which can temporarily disrupt stratifi-
cation. While surface temperature shifts are often modest (<2 ◦ C), 
their ecological consequences, such as changes in light availability 
and nutrient redistribution, can be significant [62]. Elevated DTDV 
values may thus indicate disturbances that reset or disrupt suc-
cessional dynamics in phytoplankton assemblages. Such distur-
bances may prevent dominance by competitive taxa like bloom-
forming cyanobacteria and instead favor opportunistic or fast-
growing taxa, such as diatoms [62,63]. For instance, Thran-Khac 
et al. [64] observed that storm-driven mixing events coincided 
with temporary shifts away from cyanobacterial dominance in a 
eutrophic reservoir, while Znachor et al. [63] documented 
increased growth and enhanced vertical redistribution of diatoms 
after extreme rainfall. Corrected DTDV may thus reflect ecologi-
cally meaningful disturbances that reshape community structure, 
especially in reservoirs where vertical monitoring is limited. As a 
cost-effective surface-based metric, it offers potential for early 
warning of instability or increased bloom risk under future climate 
variability.

Interestingly, we found a strong positive correlation between 
long-term trends in T w and DTDV, despite both being only weakly 
explained by the tested predictors. This suggests shared external 
drivers such as wind patterns or solar radiation, or internal feed-
backs like changing stratification regimes [1,65]. By filtering out 
seasonal trends, our corrected DTDV helps isolate these dynamics 
and may serve as a valuable complementary tool for climate 
impact assessments. In many freshwater systems, ecological re-
sponses may be more tightly coupled to variability than to mean 
warming trends. Finally, by adapting the DTDV framework from 

atmospheric sciences to surface water temperature, we provide a 
new perspective for aquatic systems. The relationships we 
observed between DTDV, morphometry, and inflow suggest that 
similar processes shaping air temperature variability also operate 
in lakes and reservoirs, but are additionally modulated by water 
column structure, retention time, and human interventions.

4.6. Linking DTDV with water column stability: the case of the 
� Rímov Reservoir

Among all studied reservoirs, the � Rímov Reservoir (Z max 43 m,
surface area 2.1 km 2 , volume 34 × 10 6 m 3 , TRT ~100 days) stands 
out as the only site with long-term, detailed data on both DTDV and 
vertical stability of the water column [26]. This unique dataset 
enables us to explore the mechanistic underpinnings of DTDV in 
greater depth. Specifically, we observed an inverse relationship 
between DTDV and water column stability (R 2 = 0.425, p < 0.001, 
Supplementary Fig. S7) over the period 1998–2021, which re-
inforces the interpretation of corrected DTDV as a meaningful in-
dicator of thermal instability. Elevated DTDV in periods of low 

stability supports the notion that short-term surface temperature 
fluctuations are amplified under weaker stratification and more
frequent mixing, conditions common in hydrologically dynamic or 
meteorologically sensitive periods. The �Rímov Reservoir is one of
the most intensively studied reservoirs in Europe and has served as 
a model system for decades [26,66,67]. In our study, the reservoir 
exhibited a significant but moderate long-term warming trend in 
T w (0.47 ◦ C per decade), closely aligning with both the Czech 
reservoir average and comparable European temperate lakes. Its

seasonal warming pattern was typical, with the strongest trends in 
spring and early summer. Importantly, the reservoir did not exhibit 
thermal anomalies or abrupt variability trends over the 31 years, 
suggesting relative resilience to external disturbances. Prior 
studies also point to its stable hydrological regime and trophic 
state as key factors contributing to its predictable thermal 
behavior [26,67]. The coupling of DTDV with stratification metrics
in the � Rímov Reservoir highlights the potential for using short-
term variability as a proxy for deeper structural changes in reser-
voir thermal regimes. In systems where full vertical monitoring is 
not feasible, corrected DTDV could offer a cost-effective indicator 
of dynamic shifts in water column stability, particularly relevant 
under scenarios of increasing climate variability.

5. Study limitations and future directions

While our analysis is based on one of the most comprehensive 
long-term datasets of reservoir surface temperatures in Central 
Europe, several limitations should be acknowledged. First, 
although data gaps in the temperature records were infrequent 
and generally short, interpolation may introduce a small degree of 
uncertainty, even if unlikely to affect the long-term trends re-
ported. Second, air temperature was derived from gridded datasets 
at a regional scale, which may not fully capture fine-scale vari-
ability in local meteorological conditions. Third, although our 
dataset covers 35 reservoirs, representing a relatively high number 
compared to most regional studies, it does not encompass the full 
diversity of reservoirs even within Czechia, especially at the ex-
tremes of morphometry, size, and operational regimes. Fourth, 
while longer-term datasets exist for several of the reservoirs, we 
limited our analysis to the 1991–2021 period to ensure consistency 
and comparability across all study sites. Finally, some potentially 
important drivers of thermal variability, such as water trans-
parency, trophic state, and detailed operational data, were un-
available for the full dataset and could not be included in the 
statistical models. Recognizing these limitations is important for 
contextualizing our findings, while also highlighting avenues for 
future research.

6. Conclusions

Present results highlight the critical role of water column sta-
bility and stratification processes in shaping surface temperature 
dynamics in reservoir systems. Deep, low-elevation reservoirs 
with long retention times are predisposed to stronger and more 
persistent thermal stratification, reduced diel temperature fluc-
tuations, and a greater decoupling from atmospheric tempera-
tures. These features have profound ecological consequences, 
affecting oxygen and nutrient distribution, biogeochemical 
cycling, and the thermal habitat availability for aquatic organisms 
[40,68]. Conversely, reservoirs with high inflow rates and shallow 

morphometry are more susceptible to hydrologically driven mix-
ing and thermal instability. Given projected increases in air tem-
perature and changes in hydrological regimes due to climate 
change [69], these findings have significant implications for the 
future thermal behavior of artificial water bodies. Models that 
incorporate both climatic variables, key hydromorphological 
characteristics, and, if available, trophic state characteristics will 
be better equipped to predict the magnitude and ecological con-
sequences of warming in reservoirs. This understanding is essen-
tial for informing adaptive management strategies, particularly 
concerning water quality, reservoir stratification control, and 
biodiversity conservation under future climate scenarios.
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