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a b s t r a c t

Buildings are among the largest contributors to global energy consumption and carbon emissions, making 
their transformation essential for advancing environmental sustainability goals. Innovative technologies 
such as artificial intelligence (AI) and digital twins (DTs) offer powerful tools for optimizing performance 
in smart, green, and zero-energy buildings. However, existing research remains fragmented—AI and 
AI-driven DT applications are often confined to isolated functions or specific building types—resulting in a 
limited, non-cohesive understanding of their collective potential in the built environment. This frag-
mentation, in turn, has hindered the development of integrated strategies that link building-level effi-
ciencies with the broader environmental objectives of smart cities. To address these interrelated gaps, this 
study conducts a comprehensive systematic review of leading-edge AI and AI-powered DT solutions 
applied across smart, green, and zero-energy buildings. It aims to provide a holistic understanding of how 

these solutions enhance environmental performance through the analysis of key building-related in-
dicators. By synthesizing, comparing, and evaluating recent research, it examines how AI and AI-powered 
DT technologies facilitate integrated, system-level strategies that promote environmentally sustainable 
smart practices across the built environment. The study reveals that AI enhances smart buildings by 
enabling dynamic energy optimization, occupant-centered environmental control, improved thermal 
comfort, renewable energy integration, and predictive system management. In green buildings, AI con-
tributes to greater resource efficiency, minimizes construction and operational waste, promotes the use of 
sustainable materials, strengthens cost estimation and risk assessment processes, and supports adaptive 
design strategies. For zero-energy buildings, AI facilitates multi-objective optimization, advances 
explainable and transparent AI-driven control systems, supports performance benchmarking against net 
and nearly zero-energy standards, and enables renewable energy integration tailored to diverse climatic 
and regulatory contexts. Furthermore, AI-powered DTs enable real-time environmental monitoring, 
predictive analytics, anomaly detection, and adaptive operational strategies, thereby enhancing building 
performance, energy optimization, and resilience. At broader spatial scales, these technologies foster 
interconnected urban ecosystems, advancing environmental sustainability, sustainable development, and 
smart city initiatives. Building on these insights, this study introduces a novel integrated framework that 
positions AI and AI-driven DTs as systemic enablers of environmentally sustainable smart built and urban 
environments, emphasizing their cross-scale convergence in promoting carbon neutrality, circular 
economy principles, climate resilience, and regenerative urban strategies. The findings offer actionable 
pathways for advancing research agendas, inform practical strategies for building and urban system 

design, and provide evidence-based recommendations for policymakers committed to fostering more 
intelligent, sustainable, and resilient urban futures. This work establishes AI and AI-driven DTs as 
transformative catalysts for realizing the next generation of resource-efficient, carbon-neutral, and 
ecologically integrated urban ecosystems.
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1. Introduction

Rapid urbanization, escalating ecological degradation, intensi-
fying climate risks, and increasing resource constraints have made 
the development of sustainable smart cities a global imperative. 
Within this framework, as urban populations continue to expand, 
the carbon footprint of the built environment has grown sig-
nificantly—buildings alone account for nearly 40% of global 
energy-related carbon dioxide (CO 2 ) emissions. This positions the 
building sector as a critical driver for advancing the environmental 
goals of sustainable urban development. In this context, environ-
mental sustainability denotes the capacity to maintain ecological 
systems and resource cycles in balance by ensuring that human 
activities remain within the regenerative and absorptive limits of 
the natural environment. The building industry is among the 
largest consumers of natural resources and one of the major 
contributors to ecological pressures. Buildings are responsible for 
considerable energy use, environmental impacts, material con-
sumption, and waste generation throughout their life cycle, from 

construction and operation to eventual demolition.
In response, recent technological innovations—particularly 

Artificial Intelligence (AI), Artificial Intelligence of Things (AIoT), 
Urban Digital Twins (UDTs), and their convergence—have created 
new opportunities to tackle pressing environmental challenges in 
sustainable urban and built environments [1–6]. These advanced 
technologies enable dynamic, data-driven decision-making 
capable of optimizing energy consumption and reducing carbon 
footprints, as well as enhancing the performance, resilience, and 
adaptability of the built environment. Reflecting this technological 
shift, sustainable smart cities are increasingly prioritizing envi-
ronmental strategies across key domains, including renewable 
energy, resource management, transportation management, 
pollution control, waste management, ecosystem protection, 
biodiversity conservation, and climate resilience [3,4,7–15], 
thereby aligning more closely with the environmental objectives 
of the Sustainable Development Goals (SDGs) [16–18]. This tran-
sition is marked by a growing emphasis on smart energy grids, 
adaptive energy management, renewable energy integration, 
decarbonization, and pollution mitigation [19,20–22,23,24].
By integrating AI with the Internet of Things (IoT), DTs, Building 

Information Modeling (BIM), and Cyber-Physical Systems (CPS) 
across diverse building typologies and domains [2,5,25–36], the 
Architecture, Engineering, and Construction (AEC) industry is un-
dergoing rapid transformation. This shift is driving more intelli-
gent, adaptive, and sustainable practices across the sector [37–41]. 
Within this dynamic landscape and transformative shift, key 
building typologies—namely smart buildings, green buildings, and 
Zero-Energy Buildings (ZEBs)—have emerged as critical arenas 
where AI, AIoT, DTs, and CPS converge. These technologies drive 
impactful environmental outcomes, support climate mitigation 
efforts, and advance sustainable development objectives.
AI, particularly Machine Learning (ML) and Deep Learning (DL), 

is transforming smart buildings by enhancing automation, energy 
efficiency, occupant comfort, and safety, among others. Equipped 
with advanced systems and relying heavily on AI, IoT, and real-
time data, smart buildings involve monitoring and control opera-
tions such as heating, ventilation, air conditioning, lighting, and 
security to improve efficiency, comfort, and performance. AI-
driven systems leverage data generated via IoT devices, DTs, and 
predictive analytics to optimize energy consumption, improve 
photovoltaic self-consumption, and enable sustainable carbon 
peak management (e.g., Ref. [42–45]). Smart vision and DL 
contribute to automation in construction and intelligent building-
transportation integration, facilitating real-time monitoring and 
efficiency improvements [46,47]. AI-powered occupant profiling

enhances thermal comfort and energy savings, while predictive 
models support fire safety, health applications, and personalized 
decision-making in smart environments [48–51]. Furthermore, AI-
driven control frameworks, such as borehole thermal energy 
storage and wastewater heat recovery, optimize energy distribu-
tion, and ML-based predictive models aid in cost-efficient smart 
building operations [52,53]. These advancements underscore AI's 
critical role in transforming smart buildings into dynamic, self-
optimizing systems that leverage predictive analytics, adaptive 
control strategies, and autonomous decision-making. These sys-
tems advance environmental objectives by optimizing resource 
use, minimizing operational costs, anticipating maintenance 
needs, and continuously adapting to occupant behaviors and 
environmental conditions.
Regarding AI integration into green buildings, it reflects a par-

allel focus on sustainable design, green innovation, and resource 
and lifecycle optimization. These structures are designed to 
minimize environmental impact through energy efficiency, sus-
tainable materials, water conservation, and waste reduction. 
Increasingly, AI is being applied to both the design and perfor-
mance enhancement of green buildings, with an emphasis on 
improving environmental and operational effectiveness and 
enabling multi-level integration [9,54–56] and energy system 

optimization, including biogas energy supply modeling and multi-
objective energy optimization approaches [57–60]. AI also con-
tributes to sustainability evaluation and performance analysis, 
including energy consumption assessment and cost reasonable-
ness prediction in green building projects [61,62]. In addition, AI is 
increasingly applied in cost estimation, risk assessment, and 
overall project evaluation in green buildings, supporting more 
informed decision-making and optimized resource allocation 
[63–66]. ML techniques are further applied to evaluate thermal 
conductivity improvements using nano-insulations [67] and to 
enhance thermal comfort using random forest (RF) and non-
dominated sorting genetic algorithm II (NDSGA) [58]. Finally, 
hybrid AI models that combine neural networks and decision 
support tools are employed to assess the waste management and 
energy-saving potential in green buildings [68].
While green buildings primarily emphasize passive design 

strategies, material sustainability, and overall environmental 
impact reduction, ZEBs, net-zero energy buildings (NZEBs), nearly-
zero energy buildings (nZEBs), and positive energy buildings 
(PEBs) explicitly focus on achieving operational energy neutrality 
or surplus. In this area, AI plays a critical role through predictive 
optimization, smart energy management, and renewable energy 
integration. ZEBs, nZEBs, NZEBs, and PEBs are defined as follows, 
each uniquely contributing to environmental goals [69]:

• ZEBs achieve net-zero annual operational energy by balancing 
on-site renewable generation with consumption, without 
relying on external sources.

• nZEBs have very low energy demand, mostly supplied by high-
efficiency systems, with only a small part coming from external 
sources.

• NZEBs achieve a net-zero annual energy balance through on-
site renewable generation and minimal external energy 
imports.

• PEBs produce more energy than they consume annually, 
generating surplus energy that can be exported to the grid.

Research focuses on load forecasting and energy management, 
using ML and neural network models to predict building energy 
demand, separate heating, ventilation, and air conditioning 
(HVAC) loads, and support energy optimization in smart and NZEB 
homes [70–72]. AI is also applied to the design and performance
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optimization of energy systems, including hybrid optimization 
methods, surrogate modeling, and battery-based autonomy 
enhancement to improve comfort, efficiency, and building per-
formance [33,73–75]. Moreover, research also explores control 
strategies using AI, including application programming interface 
(API)-integrated smart grid controls, predictive neural network-
based energy control, and adaptive systems for dynamic building 
operations [76–78]. Moreover, several studies provide more 
comprehensive insights into AI applications for ZEBs and PEBs, 
system integration, and research frontiers [79–81]. Further, AI is 
leveraged in DT applications and smart city frameworks to support 
ZEB assessment and integration into sustainable urban systems 
[69].
The convergence of AI and DT technologies further enhances 

the potential for simulation-based optimization, continuous per-
formance monitoring, and the integration of smart cities. This 
synergy enhances building performance, sustainability, and oper-
ational efficiency. This is evidenced by recent research on AI-
enabled DT for energy consumption prediction, focusing on 
improving energy modeling, forecasting loads, and optimizing 
building energy use in real time [28,29,34]. Other studies utilize AI 
and DTs for thermal comfort monitoring, providing frameworks 
for maintaining occupant well-being while optimizing HVAC sys-
tems and energy balance [26]. The synergy of AI and DTs is also 
evident in predictive analytics and energy management, where 
CPS and AIoT infrastructures contribute to monitoring emissions, 
forecasting CO 2 equivalents, and improving asset performance 
across the building lifecycle [25,27,82,83]. In urban-scale applica-
tions, DTs are combined with AI and IoT to support sustainable 
smart city and building environments [5]. In addition, compre-
hensive studies focus on assessing the characteristics, applica-
tions, and challenges of AI-powered DTs in building performance 
simulation and intelligent built environments [84,85].
Despite the growing interest in smart, green, and zero-energy 

building (SGZEB) typologies—and the emerging points of conver-
gence enabled by AI and DTs—the current literature remains 
fragmented, often analyzing AI and AI-driven DT applications in 
isolation or focusing on specific types of buildings and aspects of 
environmental sustainability. Specifically, while existing review 

studies have explored various applications of AI in smart buildings, 
they often focus on certain domains such as AIoT integration, ML-
driven energy management, DT applications, thermal comfort 
optimization, and energy efficiency [42,53,86–88]. Other review 

studies have examined AI techniques for green buildings [89,90], 
AI-driven carbon emission forecasting [91], computational intel-
ligence for HVAC system optimization [92], and AI and DT appli-
cations for zero-energy, net-zero energy, and positive energy 
buildings [27,69,80]. The roles of AI in fire safety [50], predictive 
control-based energy management [45], and building perfor-
mance simulation [84] have also been reviewed. While these re-
view studies provide valuable insights, they often adopt a 
fragmented approach, addressing AI and/or DT solutions in isola-
tion rather than as part of a system-level approach. There is also a 
lack of a unified framework that consolidates AI- and DT-driven 
strategies across SGZEB typologies through the lens of environ-
mental sustainability, providing an integrated and holistic 
perspective.
To address these gaps, this study conducts a comprehensive 

systematic review of leading-edge AI and AI-powered DT solutions 
applied across smart, green, and zero-energy buildings. It aims to 
provide a holistic understanding of how these solutions enhance 
environmental performance through the analysis of key building-
related indicators. By synthesizing, comparing, and evaluating 
recent research, it examines how AI and AI-powered DT technol-
ogies facilitate integrated, system-level strategies that promote

environmentally sustainable practices across the built environ-
ment. It highlights the interconnectedness among AI and DT 
technologies, building typologies, and environmental objectives in 
shaping more adaptive, efficient, resilient, and low-impact build-
ing systems. The study, by bridging these domains, offers deeper 
insights into the transformative potential of AI and AI-driven DTs 
in advancing sustainable smart buildings and establishes a struc-
tured foundation for future research and practical implementa-
tion. To achieve the overall aim and meet the objectives, this study 
is guided by the following research questions (RQs):

RQ1: How is AI currently applied to enhance the environmental 
performance of smart buildings?

This question focuses on applications of AI in intelligent 
building management systems, predictive analytics, and energy 
optimization in smart buildings.

RQ2: What role does AI play in optimizing the environmental 
performance of green buildings?

This question addresses AI's integration in sustainable design, 
green certifications, decision-support tools, and project manage-
ment processes such as cost estimation and risk assessment.

RQ3: How does AI contribute to improving the environmental 
performance of zero-energy, net-zero-energy, and nearly-zero-
energy, and positive-energy buildings?

This question examines the intersection of AI with energy-
efficient building technologies, renewable energy integration, 
and performance benchmarking in highly energy-efficient 
buildings.

RQ4: In what ways can AI-powered DT technologies be lever-
aged to advance environmental goals in building systems or 
environments?

This question investigates the potential of AI-enabled DT 
frameworks for real-time monitoring, simulation, and system-
level sustainability assessment.

RQ5: How can AI- and DT-enabled SGZEBs align with and 
contribute to advancing environmental sustainability, sustain-
able development, and sustainable smart cities?

This question explores the role of AI and DT integration in 
scaling building-level sustainability practices to broader urban and 
global agendas.

This study makes several concrete contributions to the evolving 
discourse on AI, DTs, and environmentally sustainable smart built 
environments:

• Conceptual integration of AI and DT for SGZEBs: The study 
develops a cohesive, principle-based framework that links AI 
and DT technologies across SGZEBs, highlighting their syner-
gistic potential for advancing environmental sustainability in 
the built environment.

• Cross-typology reinforcement: It demonstrates how data-
driven control in smart buildings, circularity in green build-
ings, and renewable integration in ZEBs can reinforce each 
other in a continuous feedback loop by analyzing how sus-
tainability principles flow between different building 
typologies.
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• Bridging building and urban scales: It positions buildings not as 
isolated assets but as interconnected actors within wider urban 
systems, demonstrating how AI–DT integration enables a sys-
temic transition from building-level optimization to urban-
level environmental performance and resilience.

• Advancing theory and practice: It synthesizes fragmented AI-
and DT-related research into a unified perspective, providing 
both theoretical grounding (linking simulations, models, and 
real-time applications) and practical guidance for researchers, 
practitioners, and policy-makers.

• Strategic alignment with sustainability agendas: It aligns the 
AI–DT framework with broader environmental and societal 
goals, including net-zero transitions, circular economy adop-
tion, climate resilience, and SDGs.

• Bridging innovation and implementation: It connects techno-
logical advancements in AI and DT with real-world application 
pathways, providing practical recommendations for diverse 
stakeholders and supporting the systemic transformation of 
buildings and cities towards environmental sustainability.

This study is structured as follows: Section 2 provides a survey 
of related work, identifying current research trends and high-
lighting key gaps in the integration of AI technologies in sustain-
able smart buildings. Section 3 outlines the systematic literature 
review methodology, including its integration with bibliometric 
analysis to ensure a comprehensive and structured exploration of 
the field. Section 4 presents the outcomes of the bibliometric 
analysis, offering a quantitative overview of research patterns and 
trends. Section 5 details the results of the tabulated thematic 
analysis and the thematic synthesis of the literature on the three 
building typologies and their integration with AI and DTs. It also 
introduces, illustrates, and elaborates on the novel integrated 
framework developed to drive environmental goals across SGZEBs. 
Additionally, it examines the relationship between the proposed 
framework and the broader objectives related to environmental 
resilience, sustainable development, and sustainable smart cities. 
Section 6 provides a comprehensive discussion, summarizing the 
key findings in relation to the research questions, offering a 
comparative analysis with previous related studies, exploring 
implications for research, practice, and policymaking, addressing 
the identified challenges, barriers, and methodological limitations, 
and suggesting future research directions. Finally, Section 7 con-
cludes the study by synthesizing the key insights, emphasizing the 
contributions made, and offering final reflections on the future 
prospects for sustainable smart built environments.

2. Related work

AI has emerged as a key driver in the development of smart and 
sustainable buildings, offering transformative solutions for auto-
mation, energy optimization, improved performance, and 
achieving net-zero energy goals. Various review studies have 
examined AI's applications in the built environment, yet they often 
adopt a fragmented approach, focusing on specific domains or 
technologies rather than providing a comprehensive framework 
that integrates AI-driven strategies for environmental sustain-
ability. This section synthesizes existing literature on AI applica-
tions in smart and sustainable buildings, highlighting key 
contributions and limitations that shape the research gap. 
AI-driven automation in smart buildings has focused on inte-

grating AI and AIoT to enhance operational efficiency, safety, and 
occupant comfort. Sleem and Elhenawy [42] provided an overview 

of AIoT technologies in smart buildings, emphasizing their role in 
optimizing building functionality, reducing energy consumption, 
and improving security. However, their study also addressed

challenges such as data privacy concerns and interoperability is-
sues, which hinder large-scale AIoT adoption. Similarly, Qolomany 
et al. [87] reviewed the role of ML and big data in smart building 
automation, detailing how predictive analytics can enhance real-
time decision-making.
AI applications in energy management have gained significant 

attention, particularly through the use of ML models and DT 
technology. Alanne and Sierla [53] examined ML applications in 
smart buildings, focusing on how autonomous learning processes 
can enable adaptive energy management. Their study also dis-
cussed the role of DTs as AI-powered training environments for 
optimizing energy use. In contrast, Wang et al. [43] explored dig-
ital twin applications specifically for carbon peak management. 
They highlight their ability to monitor emissions in real time and 
model net-zero energy strategies.
Several studies have focused on the potential of AI in green and 

sustainable buildings, particularly in optimizing resource effi-
ciency and minimizing ecological impact. Rodríguez-Gracia et al. 
[89] conducted a bibliometric analysis of AI applications in green 
and smart buildings, identifying key themes such as energy opti-
mization, structural stability, and reduction of environmental 
impact. Debrah et al. [55] complemented this perspective by 
examining AI in green buildings through a mixed-methods 
approach, combining bibliometric and systematic analyses to 
present a comprehensive overview of state-of-the-art research. 
Their study identifies key research trends, major hotspots, and 
knowledge gaps, highlighting future directions including the 
integration of DTs, AIoT, blockchain, robotics, four-dimensional 
printing, and considerations of legal, ethical, and moral implica-
tions in AI-enabled green buildings. Wu et al. [90] extended this 
line of inquiry by shifting the focus from AI applications in 
buildings to AI as the central driver of green building technology 
innovation (GBTI). Through bibliometric and dynamic topic 
modeling analyses, they map the knowledge structure, thematic 
evolution, and emerging research paradigms of AI-driven GBTI. 
Hua et al. [91] examined the role of AI in forecasting and managing 
building carbon emissions, highlighting how AI-driven models 
enhance accuracy by up to 20% compared to traditional methods. 
Their study demonstrates that AI-based real-time monitoring and 
adaptive management strategies can reduce carbon emissions by 
up to 15%, improve energy efficiency by 25%, and lower operational 
costs by 10%.
Integrating elements of smart building technology but pri-

marily oriented toward green building sustainability, Adewale 
et al. [93] presented a systematic review of AI applications across 
the sustainable building lifecycle. They focused on how AI can 
enhance energy efficiency, support predictive maintenance, and 
improve design simulation processes. The review underscores the 
use of advanced ML and DT technologies to enable data-driven 
decision-making and real-time performance optimization, while 
also identifying key barriers to implementation, including high 
costs, data security concerns, and technical complexity.
Mousavi et al. [80] reviewed AI applications for net-zero and 

positive energy buildings (NZEBs), examining how data-driven 
prediction and optimization models can enhance energy effi-
ciency and optimize renewable energy generation. Their study 
highlights the importance of integrating AI into energy manage-
ment systems to achieve sustainability targets. Meanwhile, Bibri 
et al. [2] proposed a DT-based framework for assessing and opti-
mizing ZEB performance within sustainable smart cities. The study 
identifies key trends in the integration of DTs and ZEBs, empha-
sizing the increasing influence of AI, IoT, and cyber-physical sys-
tems (CPS). It also highlights specific research patterns that 
illustrate their synergistic interaction and their role in driving this 
convergence. Moreover, it demonstrates how UDTs enhance ZEBs'
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energy management and performance by improving energy effi-
ciency, facilitating the integration of renewable energy, and 
reducing carbon emissions through real-time monitoring, 
advanced data analytics, predictive maintenance, and operational 
optimization.
HVAC systems represent one of the most energy-intensive as-

pects of buildings, and AI-driven strategies have been widely 
studied to enhance their efficiency. Sha et al. [92] presented a 
detailed review of computational intelligence techniques for 
optimizing HVAC system design, outlining how AI-driven models 
can improve energy efficiency while maintaining indoor comfort. 
Merabet et al. [86] further explored AI-based thermal comfort 
control, demonstrating that AI-assisted building control systems 
can balance energy savings with occupant comfort through real-
time adaptive mechanisms. Similarly, Yussuf and Asfour [88] 
reviewed AI applications across various stages of the building 
lifecycle. They highlight predictive control, energy benchmarking, 
and fault detection as critical components of AI-driven HVAC 
optimization. While these studies contribute to AI's role in energy-
efficient climate control, they primarily address individual HVAC 
improvements without considering AI's broader role in sustain-
able building design, operation, and user-centric optimization.
AI applications in building performance and safety manage-

ment have also been explored. De Wilde [84] examined AI's inte-
gration with building performance simulation, discussing how AI-
enhanced models can improve predictive accuracy and optimiza-
tion capabilities in building operations. However, they focus pri-
marily on simulation methodologies without addressing AI's role 
in sustainability-driven performance optimization. Zeng and 
Huang [50] investigated AI's application in fire safety design, 
demonstrating how AI-driven risk assessment models can 
enhance early fire detection and emergency response.
Although prior studies have provided extensive and diverse 

reviews of AI applications in smart and sustainable buildings, they 
often adopt a domain-specific approach by examining AI models 
and techniques in isolated contexts such as energy management, 
HVAC optimization, or DT simulations. Existing reviews on AI-
driven energy efficiency primarily focus on technical improve-
ments without fully addressing sustainability principles, while 
studies on AI for net-zero buildings and green construction often 
lack insights into AI's role in automation and lifecycle optimiza-
tion. Furthermore, although DT applications have been explored in 
energy monitoring and carbon management, their potential in 
supporting holistic AI-driven sustainability frameworks remains 
underdeveloped.
This comprehensive systematic review addresses these gaps by 

providing a holistic perspective on the role of AI and AI-driven DT 
in achieving environmental objectives in smart and sustainable 
buildings. Unlike previous studies, this review adopts a cross-
system approach, integrating AI and AI-driven DT applications 
across various building functions, typologies, and lifecycle stages 
to examine their collective environmental impact. Through this 
synthesis, the study aims to establish a structured framework for 
future research and practical implementations of both AI and AI-
driven DT in environmentally sustainable smart built 
environments.

3. Research methodology

This study adopts a mixed-method research design that in-
tegrates a systematic literature review with bibliometric analysis 
to investigate how AI and AI-driven DT technologies contribute to 
environmental goals across SGZEBs. The systematic review serves 
as the central methodological framework, enabling an in-depth 
and structured examination of peer-reviewed studies that focus 
on the intersection between AI and DT technologies and sustain-
ability objectives in the built environment. It addresses all five 
research questions guiding the study. Complementarily, the bib-
liometric analysis provides a quantitative lens to assess research 
trends, emerging patterns, and knowledge gaps in the interdisci-
plinary field as identified in this study, which helps situate it 
within the evolving scholarly landscape. It provides a macro-level 
overview of the research landscape and dynamics by identifying 
intellectual trends, thematic concentrations, and co-authorship 
networks, thereby enhancing the foundation of the study.
The systematic review facilitates a structured and qualitative 

synthesis of theoretical, empirical, and experimental findings by 
specifically identifying how advanced technologies—such as AI, 
ML, CV, NLP, GenAI, AIoT, and DTs—are being leveraged to enhance 
different aspects and objectives of environmental resource man-
agement across three major building typologies. Simultaneously, 
the bibliometric analysis, conducted using VOSviewer, maps the 
research field by analyzing keyword co-occurrences, citation net-
works, and thematic clusters to reveal the structure and evolution 
of the research field from 2020 to 2025. This dual-method 
approach offers both trend-level breadth and thematic depth, 
essential for a nuanced understanding of how AI and DT support 
environmental efforts across diverse architectural, technical, and 
operational contexts of buildings. It captures the trajectory of 
recent research while distilling insights relevant to the systematic 
integration of AI in environmentally sustainable smart building 
practices. It also ensures that both qualitative and quantitative 
dimensions of the literature are addressed, allowing for a 
comprehensive synthesis that encapsulates the multifaceted ways 
in which AI and DT capabilities are being harnessed to improve the 
environmental performance of building systems.

3.1. Research design

The study was designed as a multi-phase, iterative process 
structured around the standard stages of a systematic literature 
review (Fig. 1). At its core, the goal is to map how AI and AI-driven 
DT technologies contribute to environmental sustainability 
through key indicators across SGZEBs. Accordingly, the research 
systematically examined applied solutions to energy efficiency, 
renewable integration, carbon footprint reduction, waste mini-
mization, water efficiency, indoor environmental quality, and 
thermal comfort across these building typologies. This thematic 
mapping served as the analytical groundwork for identifying 
cross-cutting insights and guiding the development of the inte-
grated framework.
The research design employs a thematic approach, which is 

particularly suitable for interdisciplinary inquiries that span 
environmental science, architectural design, engineering,

Fig. 1. A multi-phase structured process of the systematic literature review.
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sustainability, and technology. It aligns with the study's objective 
of developing a comprehensive understanding of AI's role in 
optimizing environmental processes and practices within the built 
environment. Each study was reviewed not only in terms of its 
technological focus but also for its contribution to one or more of 
the sustainability indicators across the three building typologies. 
This structured yet flexible categorization informed the develop-
ment of comparative tables that map the intersection of AI, AI-
driven applications, and sustainability objectives. In addition, the 
research design allowed for the identification of recurring themes, 
potential synergies, and underexplored areas. This, in turn, sup-
ported the development of an integrated framework that high-
lights key convergences in AI-enabled sustainable building 
practices.

3.2. PRISMA and literature search strategy

The preferred reporting items for systematic reviews and meta-
analyses (PRISMA) framework (Fig. 2) was adopted to ensure 
transparency and rigor in the literature search and selection pro-
cess. The PRISMA flow diagram guided the documentation of the 
review process, from the initial identification of records through 
the final inclusion of eligible studies. This process included the 
systematic removal of duplicates, assessment of relevance based 
on titles and abstracts, full-text review, and quality appraisal. 
The literature search was conducted across two major aca-

demic databases—Scopus and Web of Science—chosen for their 
breadth of interdisciplinary coverage and inclusion of authorita-
tive sources of evidence. These databases were selected to ensure 
comprehensive retrieval of scholarly works pertinent to the 
multifaceted topic addressed in this study. To enhance specificity 
and relevance, search queries were formulated using tightly 
coupled keyword combinations, applied across the title, abstract, 
and keyword fields, to target both the technological dimensions of 
AI and the environmental objectives specific to the three building 
types. The curated keywords and their combinations guiding the

literature search were systematically organized into thematic 
categories. These categories were designed to capture the breadth 
and depth of existing knowledge while aligning with the study's 
scope. The selection of keyword combinations reflected the 
multidimensional nature of this research and ensured a thorough 
exploration of related literature across various fields. Boolean 
operators were strategically used to refine the search scope and 
construct complex search strings that captured the intersection-
ality of various domains. Accordingly, among the query structures 
employed were:

(“Artificial Intelligence” OR “AI” OR “Machine Learning” OR 
“Deep Learning”) AND (“Smart Buildings” OR “Intelligent 
Buildings”)
(“Artificial Intelligence” OR “AI” OR “Machine Learning” OR 
“Deep Learning”) AND (“Green Buildings” OR “Sustainable 
Buildings”)
(“Artificial Intelligence” OR “AI” OR “Machine Learning” OR 
“Deep Learning”) AND (“Zero Energy Buildings” OR “Net Zero 
Energy Buildings” OR “Nearly Zero Energy Buildings” OR “Pos-
itive Energy Buildings”)
(“Artificial Intelligence” OR “AI” OR “Artificial Intelligence of 
Things” OR “AIoT”) AND (“Digital Twins” OR “DT”) AND (“Smart 
Buildings” OR “Green Buildings” OR “Zero-Energy Buildings”) 
(“Smart Buildings” OR “Green Buildings” OR “Zero-Energy 
Buildings”) AND (“Environmental Indicators” OR “Performance 
Indicators” OR “Sustainability Indicators”)
(“Artificial Intelligence” OR “AI” OR “Artificial Intelligence of 
Things” OR “AIoT”) AND (“Environmental Sustainability” OR 
“Sustainable Development”) AND (“Smart Cities” OR “Sustain-
able Smart Cities” OR “Built Environment”)
(“Artificial Intelligence” OR “AI”) AND (“Energy Efficiency” OR 
“Thermal Comfort” OR “Performance” OR “Architectural 
Design”) AND (“Buildings” OR “Building Environment”)

These queries were iteratively refined to exclude irrelevant 
results while maximizing the inclusion of studies that address the 
convergence of AI and AI-driven DT technologies and environ-
mental integrity in building systems. The review timeframe was 
set between 2020 and 2025 to capture the most recent and im-
pactful developments in AI-driven environmental applications in 
the building sector. This period, especially 2022–2025, reflects a 
surge in AI research in the AEC sector, especially in the wake of 
global climate action and technological advances in AI, AIoT, and 
DTs. This strategy yielded a broad but thematically focused set of 
records, ensuring that the final sample reflects the diversity of AI 
and AI-driven DT applications across SGZEB typologies.

3.3. Inclusion and exclusion criteria

The inclusion and exclusion criteria were developed to ensure 
the relevance, quality, and coherence of selected studies. Only 
studies published in English between 2020 and 2025 were included, 
focusing on peer-reviewed journal articles, conference proceedings, 
scholarly book chapters, and policy documents. Eligible studies 
explicitly primarily addressed AI, ML, or DL and related DT appli-
cations in one or more of the three building typologies, with a direct 
connection to at least two environmental indicators.
Studies were excluded if they did not meet the time frame, 

lacked a focus on AI, AI-driven DT, or environmental sustainability; 
addressed buildings only peripherally; did not directly address AI 
or AI-driven DT applications in smart, green, or zero-energy 
buildings; or were non-peer-reviewed sources such as editorials, 
white papers, and grey literature. Studies that dealt solely with 
economic modeling, structural engineering unrelated to

Fig. 2. The PRISMA flowchart for literature search and selection.
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environmental performance, or speculative conceptual essays 
without empirical grounding were also excluded. This filtering 
process helped refine the dataset to include only high-quality, 
thematically relevant contributions that informed the study's 
research questions and comparative analysis.

3.4. Data extraction and quality appraisal

Following the selection process, a structured data extraction 
protocol was implemented to capture consistent and essential 
information across the included studies. Each study was reviewed 
for key metadata, including authorship, publication year, meth-
odological approach, AI techniques applied, AI-driven DT solution, 
building typology, and environmental indicators addressed. 
Detailed notes were taken on objectives, experimental or 
modeling techniques, theoretical or conceptual emphases, out-
comes or findings, and limitations or challenges. This process 
ensured consistency and accuracy while enabling cross-
comparison among studies. A parallel quality appraisal was con-
ducted to assess the methodological rigor and relevance of each 
study in relation to the research questions and transparency in 
reporting. Only those studies that demonstrated a clear applica-
tion of AI and AI-driven DT in one or more environmental in-
dicators were retained for further analysis. Studies with 
ambiguous methodologies, limited scope, or unclear relevance 
were excluded from the final outcome to maintain the focus of the 
review.

3.5. Data analysis

The data analysis was organized thematically, guided by the 
core environmental indicators and conceptual categories identi-
fied during the research design phase. Accordingly, each study was 
categorized based on its alignment with building typologies and 
one or more of these indicators. Studies were grouped under each 
building type and evaluated for convergence and divergence in AI 
models and applications. To systematically map these associations, 
a set of comparative tables was developed, each corresponding to 
SGZEBs. These tables function as a comparative matrix, enabling 
structured analysis across the three building typologies. The ma-
trix serves not only as an analytical tool but also as a foundation for 
the subsequent framework development by visually organizing AI 
applications in relation to environmental indicators. 
Cross-cutting themes such as DT integration and AI in AEC, and 

GenAI in architectural design were also examined. Bibliometric 
results were used to validate emerging themes, visualize research 
clusters, and support the identification of dominant and under-
explored areas. Thematic overlaps were documented and explored 
in the discussion section, while gaps in the literature were flagged 
as areas for future research.

3.6. Synthesis of findings and framework development

The synthesis stage involved integrating insights from both the 
thematic and bibliometric analyses into a coherent narrative to 
build a comprehensive understanding of the topic on focus. This 
process entailed systematically comparing AI applications across 
different building typologies, identifying commonalities, distinc-
tions, and emerging trends in relation to key environmental in-
dicators. Through this comparative synthesis, patterns of AI 
convergence, such as shared applications in energy efficiency, 
predictive analytics, and automation, were highlighted, alongside 
areas of divergence where AI's role is more specialized for certain 
building types. In addition, underexplored intersections between 
AI techniques and sustainability objectives were identified,

revealing gaps and opportunities for future research.
These synthesized insights informed the development of a 

novel integrated framework that visually and conceptually repre-
sents the alignment of AI technologies with environmental in-
dicators across building typologies. The framework captures cross-
cutting applications while also mapping distinct roles AI plays in 
each building type, serving as a tool for identifying pathways to-
wards comprehensive integration of AI in the sustainable built 
environment. The study moves beyond fragmented un-
derstandings of AI applications in buildings to offer a holistic, 
actionable view by synthesizing findings across technological, 
environmental, and typological dimensions. The framework con-
tributes to academic discourse and practical applications, sup-
porting informed decision-making in building design, policy 
development, and urban planning.

4. A bibliometric analysis of smart, green, and zero-energy 
buildings: mapping artificial Intelligence's role in 
environmental sustainability in the built environment

To situate this study within the evolving scholarly landscape, 
the bibliometric analysis provides a quantitative lens through 
which to assess research trends, emerging patterns, and knowl-
edge gaps across the interdisciplinary domain intersecting build-
ing typologies, advanced technologies, and environmental 
solutions. It was employed to map and visualize the landscape of 
integrating AI, ML, DL, CV, NLP, and Generative AI in advancing 
SGZEBs as part of broader environmental strategies. The objective 
was to uncover the thematic structure, dominant clusters, and 
emerging trends in this rapidly burgeoning field, thereby 
providing context and direction for the integrated tabulated 
analysis, qualitative synthesis, and framework development that 
follow.
The bibliometric analysis was conducted using VOSviewer 

version 1.6.17, a specialized tool for visualizing bibliometric net-
works. A comprehensive dataset was compiled in March 2025, 
targeting peer-reviewed articles published between 2020 and 
2025, a timeframe selected to capture recent advancements and 
emerging research directions. The dataset spans multiple disci-
plines, including engineering, environmental science, energy, 
computer science, architectural design, construction, and building 
technology. A total of 678 documents were retrieved from three 
major sources: Scopus (88), Web of Science (47), and ScienceDirect 
(543). The bibliometric dataset was systematically retrieved from 

Scopus and WoS, which served as the core indexing databases for 
bibliometric analysis. ScienceDirect, by contrast, was used pri-
marily as a full-text repository for screening and contextual 
reading, rather than as an indexing source. The higher number of 
publications visible on ScienceDirect reflects Elsevier's hosting of a 
wide range of journals, not all of which are indexed in Scopus or 
Web of Science. The search strategy adopted was designed to be 
both targeted and comprehensive, combining key terms related to 
AI subdomains, building typologies, and environmental indicators. 
Metadata, including titles, abstracts, author keywords, and citation 
data, were extracted for analysis.
VOSviewer was used to conduct a term co-occurrence analysis, 

identifying frequently used terms and key themes that dominate 
the literature on AI in sustainable smart buildings. Fig. 3 displays a 
visual map of these co-occurring terms, where the size of each 
node represents term frequency, and the proximity between nodes 
indicates the strength of their co-occurrence. Different clusters are 
distinguished by color, reflecting thematic groupings within the 
research landscape.
The analysis identified 15 thematic clusters and 249 frequently 

occurring terms, each revealing a different facet of how AI is being
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applied to enhance the environmentally sustainable built 
environment.
Cluster 1 (36 items) is focused on artificial neural networks 

(ANNs), generative adversarial networks (GANs), automation, 
smart buildings, solar energy, indoor air quality, energy efficiency, 
and thermal comfort. This cluster highlights the integration of AI-
driven energy management tools in smart buildings, particularly 
those leveraging predictive modeling and neural learning to 
enhance operational efficiency and occupant comfort.
Cluster 2 (29 items) reflects growing research on AI, Generative 

AI, diffusion models, large language models (LLMs), and AIoT ap-
plications targeting climate change mitigation, carbon removal, 
and SDGs. It shows how advanced generative architectures are 
being deployed to model, simulate, and optimize environmental 
performance in urban systems.
Cluster 3 (23 items) addresses themes such as sustainability, 

construction 4.0, energy system modeling, life cycle assessment 
(LCA), and digitalization, with a strong presence of terms related to 
green buildings and the built environment. This cluster highlights 
the application of AI and ML in monitoring resource consumption 
and enhancing energy performance through data-driven design 
strategies.
Cluster 4 (21 items) includes keywords such as carbon foot-

print, BIM, deep reinforcement learning, cybersecurity, and

optimization. It focuses on DL approaches in managing energy 
demand and enhancing energy security, especially through inte-
gration with smart grids and CPS.
Cluster 5 (21 items) covers ZEBs, climate change, energy 

modeling, urban sustainability, waste management, and emissions 
reduction. This cluster represents the convergence of AI-enabled 
modeling tools and sustainability goals in designing buildings 
that meet net-zero or near-zero energy targets.
To further interpret these findings, each thematic cluster 

identified in the bibliometric analysis can be directly linked to 
specific advanced technologies. Cluster 1's focus on ANNs, GANs, 
and automation highlights the role of ML, DL, and AI-driven opti-
mization in predictive building management. Cluster 2's emphasis 
on GenAI, LLMs, and AIoT reflects the integration of cutting-edge AI 
architectures with IoT systems to address climate change mitiga-
tion and SDG-related objectives. Cluster 3's themes of sustain-
ability, LCA, and digitalization align closely with AI- and ML-
enabled decision support for green building lifecycle perfor-
mance. Cluster 4's inclusion of BIM, deep reinforcement learning, 
and cybersecurity demonstrates the role of DL and DT frameworks 
in optimizing energy demand while ensuring system resilience. 
Finally, Cluster 5's focus on ZEBs, emissions reduction, and urban 
sustainability illustrates how AI-powered simulation and 
modeling tools are being leveraged for net-zero and positive-

Fig. 3. Result of the term co-occurrence analysis.
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energy building strategies. This linkage between thematic clusters 
and enabling technologies provides a clearer map of how AI, ML, 
CV, NLP, Generative AI, AIoT, and DTs are advancing the environ-
mental performance of different building typologies.
Fig. 4 illustrates the interrelationships among the 15 identified 

clusters, revealing how different strands of research are inter-
connected. The relative size of each cluster indicates the weight of 
occurrence, serving as a proxy for the dominance of each research 
theme in the current literature. Clusters 1 and 2 dominate the 
landscape, showing a strong emphasis on AI strategies for energy 
optimization, climate adaptation, and smart building automation. 
Clusters 3 and 4 underscore AI's contributions to lifecycle perfor-
mance, carbon reduction, and security in green building contexts. 
Cluster 5 presents evidence of a focused yet still developing body 
of work on ZEBs, highlighting both the promise and gaps in this 
area. Overall, this clustering indicates the growing but uneven 
integration of AI across the three building typologies, with smart 
buildings receiving the most attention, followed by green build-
ings, and lastly ZEBs, which remain comparatively underexplored. 
Between 2020 and early 2025, the scholarly output on AI, 

Generative AI, ML, DL, CV, and NLP in the context of advancing 
smart, green, and zero-energy buildings as environmental solu-
tions has grown significantly (Fig. 5). While publications were 
relatively sparse in 2020—with only 1 article indexed in Web of 
Science, 8 in Scopus, and 14 in ScienceDirect—the following years 
witnessed a steady rise. In 2021, the numbers climbed to 4, 11, and 
43, respectively, reflecting growing academic engagement with AI 
applications in sustainable smart building practices. This upward 
trend continued into 2022, which saw 8 publications in Web of 
Science, 18 in Scopus, and 79 in ScienceDirect, suggesting the field 
was gaining traction across engineering, energy, and environ-
mental science disciplines.
A sharper increase was evident in 2023, with 12 publications 

indexed in Web of Science, 26 in Scopus, and 114 in ScienceDirect. 
This marked a point at which AI's environmental potential in the 
built environment began to draw more focused attention. The

most notable surge, however, occurred in 2024. That year, publi-
cations peaked at 19 in both Web of Science and Scopus, and an 
impressive 199 in ScienceDirect, highlighting a significant expan-
sion of interdisciplinary research. This dramatic growth reflects an 
intensifying interest in AI's capacity to optimize energy systems, 
support predictive building operations, enable net-zero strategies, 
and contribute to broader sustainability goals within smart city 
frameworks.
While data for 2025 only covers the first quarter (January– 

March), the early figures—3 publications in Web of Science, 6 in 
Scopus, and 94 in ScienceDirect—indicate that the momentum has 
not slowed. If this trajectory continues, 2025 is likely to match or 
even surpass the previous year's record, reinforcing the notion that 
this domain is not only maturing but rapidly expanding.
These trends signal two important developments. First, there is 

an increasing scholarly focus on AI's critical role in addressing 
climate-related and environmental challenges through sustain-
able smart building systems. Second, the presence of emerging 
technologies such as Generative AI, advanced neural networks,

Fig. 4. The relationship between different clusters and the weight of occurrence.

Fig. 5. Number of publications from 2020 to 2025 across three databases (Web of 
Science, Scopus, and ScienceDirect).
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and NLP points to a diversification of AI tools being employed—not 
just for monitoring and control, but also for generative design, 
emissions forecasting, and integrated sustainability planning. 
Together, these shifts highlight the growing complexity and 
promise of AI-powered solutions in shaping the future of envi-
ronmentally sustainable buildings.
Overall, the publication trend (Fig. 5) confirms the emergence of 

a robust and rapidly evolving research domain, where AI-powered 
technologies are increasingly positioned as key enablers of sus-
tainable transformation in architecture, engineering, construction, 
and the built environment. This trend is substantiated by studies in 
the AEC sector, including Zhang et al. [37], Momade et al. [38], 
Rafsanjani and Nabizadeh [39], Saka et al. [40], and Mor et al. [41], 
which document the application of AI in sustainable building 
design, operation, and management. The steady rise in scholarly 
output reflects growing recognition of AI's potential to advance 
environmental performance across the three building typologies. 
This trend is evidenced by numerous representative studies on 
smart buildings (e.g., Ref. [42,46–50,52,53]), green buildings (e.g., 
Ref. [9,51,55,59,61,54,62,94,68,95,96]), as well as ZEBs, NZEBs, 
nZEBs, and PEBs (e.g., Ref. [70,71,73,76,78–80]). At the same time, 
the uneven distribution of research across building types and sus-
tainability indicators highlights a fragmented landscape—under 
scoring the need for integrative frameworks that can bridge disci-
plinary silos and support holistic, AI-driven environmental 
strategies.
In summary, the bibliometric analysis reveals an increasingly 

dynamic and interdisciplinary research landscape focused on the 
intersection of AI technologies and the environmental perfor-
mance of the built environment. Through the identification of 
thematic clusters, co-occurring terms, and publication trends, the 
analysis highlights both the growing momentum and existing gaps 
in the field. Smart buildings dominate current research, particu-
larly in relation to AI-driven energy optimization, automation, and 
climate mitigation and adaptation, while green buildings and ZEBs 
remain comparatively underexplored. The rapid rise in scholarly 
output—especially from 2023 onward—demonstrates expanding 
interest in the application of AI, including emerging tools such as 
Generative AI and NLP, to address sustainability challenges. 
However, the fragmentation across domains and the limited 
integration of AI across building typologies and sustainability in-
dicators suggest the need for a more cohesive, integrated 
approach. These findings provide a critical foundation for the 
tabulated analysis, qualitative synthesis, and integrated frame-
work that follow, offering direction for future research and 
practice.

5. Tabulated analysis and thematic synthesis

This section presents the outcomes of the systematic review 

conducted to address the five research questions guiding this 
study. The results are presented through a tabular and typological 
analysis, as well as a thematic synthesis of key evidence. Table 1 
presents a comprehensive thematic mapping of AI applications 
across various building typologies, technologies, and domains, 
thereby supporting RQ1 through RQ4. Tables 2–4 map AI's role in 
advancing environmental indicators in smart (RQ1), green (RQ2), 
and zero-energy building typologies (RQ3), respectively. It should 
be noted that the studies included in Table 3 are presented as 
illustrative subsets, selected to demonstrate how AI applications 
intersect with sustainability indicators in this typology; all studies 
are subsequently analyzed and synthesized thematically in greater 
depth in the subsequent subsection. This also applies to Table 1, 
where AI subdomains in this typology are highlighted for illus-
trative purposes. Together, these results form the foundation for

developing the framework in response to RQ4, and further 
contribute to answering RQ5 by synthesizing insights across 
building environments towards broader environmentally SDGs in 
smart cities.
In complement to the tabular and thematic mapping presented 

in the first part of the results, the synthesis deepens the analysis by 
categorizing the studies into four major areas of advancement. 
Each area corresponds to one or more aspects of the research 
questions and collectively highlights how AI and DT technologies 
are operationalized across SGZEB typologies. This structured syn-
thesis identifies the core innovations within each category and 
uncovers cross-cutting patterns, emerging trends, and evolving 
practices that position AI and DTs as key drivers of environmental 
sustainability across building domains and scales. This section 
provides a comprehensive and integrated view of the state-of-the-
art landscape by bridging the detailed mapping of applications 
with broader thematic insights.

5.1. Comprehensive analysis of artificial intelligence applications in 
building systems and environmental sustainability indicators

This subsection presents a detailed analysis of the first part of 
this section, starting with Table 1, which includes Subsections 5.1.1 
and 5.1.2. It summarizes nine thematic areas and explores their 
interconnections in the broader context of AI applications across 
building typologies, domains, and technologies. Table 1 highlights 
how various AI subdomains are applied and interrelated, offering 
insights into their collective impact on smart building design, 
energy efficiency, thermal comfort, building performance, green 
buildings, ZEBs, DTs, generative architectural design, and key as-
pects of AI applications in the AEC industry. Subsection 5.1.3 fo-
cuses on established environmental indicators across SGZEBs, 
highlighting how AI and DT technologies enhance their imple-
mentation and performance.
In Subsection 5.1.4, which involves Tables 2–4, the focus shifts 

to how AI contributes to the environmental indicators related to 
the three building typologies. These tables systematically map the 
integration of AI in addressing specific environmental metrics 
across SGZEBs. The organization of findings provides a holistic 
understanding of the role of AI in sustainable smart building 
practices, providing insights into how environmental indicators 
shape the design and performance of these building typologies. 
Through this tabulated and thematic analysis, the comparative 
component becomes evident, allowing for the identification of 
patterns, trends, and contrasts across the three typologies. This 
comparison highlights the differing ways AI contributes to envi-
ronmental goals and points to areas that may require further 
exploration. The dual approach examines how AI-driven in-
novations align with sustainable practices and uncovers synergies 
between technology, environment, and architectural design. 
Overall, these tables form a comprehensive perspective on how AI 
is transforming the built environment and enhancing the envi-
ronmental performance of SGZEBs.

5.1.1. Tabulated thematic analysis of artificial intelligence models 
in building typologies, domains, and technologies
Table 1 presents a systematic mapping of 109 peer-reviewed 

studies that apply AI in the context of buildings. Each row in-
dicates whether a particular AI model or subdomain is applied in 
the given study, allowing for a quantitative and thematic overview 

of how AI is being implemented across different areas of building 
research. Table 1 provides a detailed overview of how AI is being 
integrated into various building typologies, domains, and tech-
nologies, reflected in nine key themes: (1) AI in smart buildings, 
(2) AI for energy efficiency, (3) AI for thermal comfort, (4) AI for
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Table 1
Mapping AI subfields and subdomains across building research areas.

No. Article title AI AIoT ML DL CV NLP GAI Reference

Artificial intelligence in smart buildings
1 Survey of artificial intelligence of things for smart buildings: A closer outlook ✓ ✓ ✕ ✕ ✕ ✕ ✕ [42]
2 Carbon peak management strategies for achieving net-zero emissions in smart buildings: Advances and modeling in

digital twin.
✓ ✕ ✓ ✕ ✕ ✕ ✕ [43]

3 Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and 
applications

✓ ✕ ✓ ✓ ✕ ✕ ✕ [46]

4 Smart buildings and intelligent transportations with artificial intelligence and digitalization technology ✓ ✕ ✕ ✕ ✕ ✕ ✕ [47]
5 Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost

optimization
✓ ✕ ✓ ✓ ✕ ✕ ✕ [44]

6 Machine learning and predictive control-based energy management system for smart buildings ✕ ✓ ✓ ✕ ✕ ✕ ✕ [45]
7 Deep learning in healthcare: Opportunities, threats, and challenges in a green smart environment solution for smart

buildings and green cities—towards combating COVID-19
✕ ✕ ✕ ✓ ✕ ✕ ✕ [51]

8 Towards automated occupant profile creation in smart buildings: A machine learning-enabled approach for user persona 
generation

✓ ✕ ✓ ✕ ✕ ✕ ✕ [48]

9 Machine learning-based predictive model for thermal comfort and energy optimization in smart buildings ✓ ✕ ✓ ✓ ✕ ✕ ✕ [49]
10 An overview of machine learning applications for smart buildings. ✓ ✕ ✓ ✕ ✕ ✕ ✕ [53]
11 Application of an AI-based optimal control framework in smart buildings using borehole thermal energy storage

combined with wastewater heat recovery
✓ ✕ ✕ ✕ ✕ ✕ ✕ [52]

12 Smart building fire safety design driven by artificial intelligence ✓ ✕ ✕ ✕ ✕ ✕ ✕ [50]
13 Energy-efficient heating control for smart buildings with deep reinforcement learning ✕ ✕ ✕ ✓ ✕ ✕ ✕ [97]
14 Artificial intelligence evolution in smart buildings for energy efficiency ✓ ✕ ✓ ✓ ✕ ✕ ✕ [98]
Artificial intelligence for energy efficiency in buildings
15 Optimizing high-rise buildings for self-sufficiency in energy consumption and food production using artificial 

intelligence: Case of europoint complex in rotterdam
✓ ✕ ✕ ✓ ✕ ✕ ✕ [99]

16 An artificial intelligence-based method to efficiently bring CFD to building simulation ✓ ✕ ✕ ✕ ✕ ✕ ✕ [100]
17 Overview of computational intelligence for building energy system design ✓ ✕ ✕ ✕ ✕ ✕ ✕ [92]
18 Approximate model predictive building control via machine learning ✕ ✕ ✓ ✓ ✕ ✕ ✕ [101]
19 Heat loss coefficient estimation applied to existing buildings through machine learning models. ✕ ✕ ✓ ✕ ✕ ✕ ✕ [102]
20 Application of machine learning to estimate building energy use intensities ✕ ✕ ✓ ✕ ✕ ✕ ✕ [103]
21 The future role of artificial intelligence (AI) design's integration into architectural and interior design education is to

improve efficiency, sustainability, and creativity.
✓ ✕ ✕ ✕ ✕ ✕ ✕ [104]

22 Artificial intelligence for calculating and predicting building carbon emissions: a review. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [91]
23 An integrated artificial intelligence-driven approach to multi-criteria optimization of building energy efficiency and

occupants' comfort: A case study
✓ ✕ ✕ ✕ ✕ ✕ ✕ [31]

24 Applications of artificial intelligence for energy efficiency throughout the building lifecycle: An overview. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [88]
25 Intelligent management of industrial building energy saving based on artificial intelligence ✓ ✕ ✕ ✕ ✕ ✕ ✕ [105]
26 Building energy management and forecasting using artificial intelligence: Advance technique. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [106]
27 Early energy performance analysis of smart buildings by consolidated artificial neural network paradigms ✓ ✕ ✕ ✓ ✕ ✕ ✕ [107]
28 AI-powered deep learning for sustainable industry 4.0 and internet of things: enhancing energy management in smart

buildings
✓ ✓ ✕ ✓ ✕ ✕ ✕ [108]

29 A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings ✓ ✕ ✕ ✕ ✕ ✕ ✕ [109]
30 Integrated applications of building information modeling and artificial intelligence techniques in the aec/fm industry. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [37]
31 Optimal control of renewable energy in buildings using the machine learning method. ✕ ✕ ✓ ✕ ✕ ✕ ✕ [36]
32 Artificial intelligence for calculating and predicting building carbon emissions: A review ✓ ✕ ✓ ✓ ✓ ✕ ✕ [91]
Artificial intelligence for thermal comfort in buildings
33 Using an ensemble machine learning methodology-bagging to predict occupants' thermal comfort in buildings ✕ ✕ ✓ ✕ ✕ ✕ ✕ [110]
34 Artificial intelligence tools and inverse methods for estimating the thermal diffusivity of building materials ✓ ✕ ✕ ✕ ✕ ✕ ✕ [111]
35 Energy and thermal modelling of an office building to develop an artificial neural networks model. ✓ ✕ ✕ ✕ ✕ ✓ ✕ [112]
36 Field studies of the artificial intelligence model for defining indoor thermal comfort to acknowledge the adaptive aspect. ✓ ✕ ✕ ✕ ✕ ✓ ✕ [113]
37 Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence ✓ ✕ ✕ ✕ ✕ ✓ ✕ [114]
38 Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial

intelligence-assisted techniques
✓ ✕ ✕ ✕ ✕ ✕ ✕ [86]

39 Comprehensive integration of artificial intelligence in optimizing hvac system operations: a review and future outlook. ✓ ✕ ✕ ✓ ✕ ✕ ✕ [115]
40 Nonlinearity in thermal comfort-based control systems: A systematic review. ✓ ✕ ✕ ✓ ✕ ✕ ✕ [116]
41 Towards various occupants with different thermal comfort requirements: A deep reinforcement learning approach

combined with a dynamic pmv model for hvac control in buildings.
✕ ✕ ✕ ✓ ✕ ✕ ✕ [117]

42 Optimizing building heat load prediction using advanced control strategies and artificial intelligence for hvac system. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [118]
43 Enhancing IAQ, thermal comfort, and energy efficiency through an adaptive multi-objective particle swarm optimizer-

grey wolf optimization algorithm for smart environmental control.
✓ ✕ ✕ ✕ ✕ ✓ ✕ [119]

44 AI based temperature reduction effect model of fog cooling for human thermal comfort: climate adaptation technology. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [120]
45 Artificial intelligence (AI)-based occupant-centric heating ventilation and air conditioning (HVAC) control system for

multi-zone commercial buildings
✓ ✕ ✕ ✕ ✕ ✕ ✕ [121]

Artificial intelligence for building performance
46 Building performance simulation in the brave new world of artificial intelligence and digital twins: a systematic review. ✓ ✓ ✕ ✕ ✕ ✕ ✕ [84]
47 Applications of artificial intelligence enabled systems in buildings for optimized sustainability performance ✓ ✕ ✕ ✕ ✕ ✕ ✕ [122]
48 Optimizing building energy performance predictions: a comparative study of artificial intelligence models ✓ ✕ ✕ ✕ ✕ ✕ ✕ [123]
49 The artificial intelligence reformation of sustainable building design approach: a systematic review on building design

optimization methods using surrogate models
✓ ✕ ✓ ✕ ✕ ✕ ✕ [124]

50 Application of artificial intelligence technique in optimization and prediction of the stability of the walls against wind
loads in building design

✓ ✕ ✓ ✓ ✕ ✕ ✕ [125]

Artificial intelligence in green buildings 
51 Artificial intelligence in green building ✓ ✕ ✕ ✕ ✕ ✕ ✕ [55]

(continued on next page)
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Table 1 (continued )

No. Article title AI AIoT ML DL CV NLP GAI Reference

52 Constructing a smart framework for supplying the biogas energy in green buildings using an integration of response 
surface methodology, artificial intelligence and petri net modelling

✓ ✕ ✓ ✕ ✕ ✕ ✕ [59]

53 Research on sustainability evaluation of green building engineering based on artificial intelligence and energy 
consumption

✓ ✕ ✕ ✕ ✕ ✕ ✕ [61]

54 Review of artificial intelligence techniques in green/smart buildings ✓ ✕ ✕ ✕ ✕ ✕ ✕ [89]
55 Bim-supported automatic energy performance analysis for green building design using explainable machine learning and 

multi-objective optimization
✕ ✕ ✓ ✕ ✕ ✕ ✕ [35]

56 Thermal conductivity improvement in a green building with nano insulations using machine learning methods ✕ ✕ ✓ ✕ ✕ ✕ ✕ [67]
57 A machine learning-based two-stage integrated framework for cost reasonableness prediction of green building projects ✕ ✕ ✓ ✕ ✕ ✕ ✕ [62]
58 Application of hybrid machine learning algorithm in multi-objective optimization of green building energy efficiency ✕ ✕ ✓ ✕ ✕ ✕ ✕ [60]
59 Evaluation of waste management and energy saving for sustainable green building through analytic hierarchy process and 

artificial neural network model
✓ ✕ ✕ ✕ ✕ ✕ ✕ [68]

Artificial intelligence in zero, net zero, and nearly zero energy buildings
60 A comprehensive review on technologies for achieving zero-energy buildings ✓ ✕ ✕ ✕ ✕ ✕ ✕ [81]
61 Net zero energy cost building system design based on artificial intelligence ✓ ✕ ✕ ✕ ✕ ✕ ✕ [33]
62 Prospective research trend analysis on zero-energy building (ZEB): An artificial intelligence approach ✓ ✕ ✕ ✕ ✕ ✓ ✕ [79]
63 Data-driven prediction and optimization toward net-zero and positive-energy buildings: a systematic review. ✓ ✕ ✓ ✕ ✕ ✕ ✕ [80]
64 Energy management in zero-energy building using neural network predictive control. ✓ ✕ ✕ ✕ ✕ ✓ ✕ [72]
65 Leveraging digital twins for zero-energy building ratings in sustainable smart cities: a comprehensive review and novel 

framework
✓ ✕ ✕ ✕ ✕ ✕ ✕ [2]

66 Optimizing NZEB performance: A review of design strategies and case studies. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [76]
67 ExplainerX: An integrated and explainable AI framework for nearly zero-energy buildings. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [78]
68 Design and accomplishment of ai control strategy with api in nearly zero energy building smart grid. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [77]
69 A hybrid optimization approach for autonomy enhancement of nearly-zero-energy buildings based on battery

performance and artificial neural networks
✓ ✕ ✕ ✕ ✕ ✓ ✕ [74]

70 Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine
learning algorithm

✕ ✕ ✓ ✕ ✕ ✕ ✕ [75]

71 Artificial intelligence method for the forecast and separation of total and HVAC loads with application to energy
management of smart and NZE homes.

✓ ✕ ✕ ✕ ✕ ✕ ✕ [70]

72 Nearly zero-energy building load forecasts through the competition of four machine learning techniques ✕ ✕ ✓ ✕ ✕ ✕ ✕ [71]
73 An optimal surrogate-model-based approach to support comfortable and nearly zero energy buildings design. ✓ ✕ ✕ ✕ ✕ ✓ ✕ [73]
Artificial intelligence-driven digital twins in buildings
74 Machine learning and artificial intelligence for digital twin to accelerate sustainability in positive energy districts. ✕ ✕ ✓ ✕ ✕ ✕ ✕ [34]
75 Cyber-physical systems improving building energy management: Digital twin and artificial intelligence ✓ ✕ ✓ ✕ ✕ ✕ ✕ [25]
76 Artificial intelligence and a digital twin are effecting building energy management. ✓ ✓ ✓ ✕ ✕ ✕ ✕ [82]
77 AI -powered digital twins and internet of things for smart cities and sustainable building environment ✓ ✕ ✕ ✕ ✕ ✕ ✕ [5]
78 Prediction of an efficient energy-consumption model for existing residential buildings in lebanon using an artificial neural 

network as a digital twin in the era of climate change.
✓ ✕ ✕ ✕ ✕ ✓ ✕ [29]

79 Digital twin technology for thermal comfort and energy efficiency in buildings: A state-of-the-art and future directions. ✓ ✕ ✕ ✓ ✕ ✓ ✕ [26]
80 A digital twin for energy consumption prediction and thermal comfort monitoring in residential buildings ✓ ✓ ✕ ✕ ✕ ✕ ✕ [28]
81 Improving building energy footprint and asset performance using digital twin technology. ✕ ✓ ✕ ✕ ✕ ✕ ✕ [83]
82 Digital twin with machine learning for predictive monitoring of CO 2 equivalent from existing buildings. ✓ ✓ ✓ ✕ ✕ ✕ ✕ [27]
83 Digital twins in built environments: An investigation of the characteristics, applications, and challenges ✓ ✓ ✕ ✕ ✕ ✕ ✕ [85]
Artificial intelligence and generative artificial intelligence for architectural design
84 A generative architectural and urban design method through artificial neural networks. ✓ ✕ ✓ ✕ ✕ ✕ ✕ [126]
85 Artificial intelligence applied to conceptual design. A review of its use in architecture. ✓ ✕ ✓ ✓ ✕ ✕ ✕ [127]
86 Generative design of outdoor green spaces based on generative adversarial networks ✓ ✕ ✓ ✓ ✕ ✕ ✕ [128]
87 Learning to generate urban design images from the conditional latent diffusion model. ✓ ✕ ✕ ✓ ✓ ✕ ✕ [129]
88 Artificial intelligence applications in earthquake resistant architectural design: determination of irregular structural

systems with deep learning and image AI method
✓ ✕ ✕ ✕ ✕ ✕ ✕ [130]

89 The role of artificial intelligence in architectural design: conversations with designers and researchers. ✓ ✕ ✓ ✕ ✕ ✕ ✕ [131]
90 Visualized co-simulation of adaptive human behavior and dynamic building performance: An agent-based model (ABM) 

and artificial intelligence (AI) approach for smart architectural design
✓ ✕ ✓ ✕ ✕ ✕ ✕ [132]

91 AI-assisted design: Utilizing artificial intelligence as a generative form-finding tool in architectural design studio teaching ✓ ✕ ✕ ✕ ✕ ✕ ✓ [133]
92 Integrating multimodal generative ai and blockchain for enhancing generative design in the early phase of architectural 

design process
✓ ✕ ✕ ✕ ✕ ✕ ✓ [134]

93 Generative artificial intelligence and building design: Early photorealistic render visualization of façades using local 
identity-trained models

✓ ✕ ✕ ✕ ✕ ✕ ✓ [135]

94 Experiments on generative AI-powered parametric modeling and bim for architectural design. ✓ ✕ ✕ ✕ ✕ ✕ ✓ [136]
95 Generative AI for architectural design: A literature review. ✓ ✕ ✕ ✕ ✕ ✕ ✓ [137]
96 Sketch-to-architecture: Generative AI-aided architectural design ✓ ✕ ✕ ✕ ✕ ✕ ✓ [138]
97 Generative AI design for building structures. ✓ ✕ ✕ ✕ ✕ ✕ ✓ [139]
98 Design process with generative AI and thinking methods: Divergence of ideas using the fishbone diagram method ✓ ✕ ✕ ✕ ✕ ✕ ✓ [140]
99 Bibliometric analysis of generative design, algorithmic design, and parametric design in architecture ✓ ✕ ✕ ✕ ✕ ✕ ✕ [141]
100 Can artificial intelligence mark the next architectural revolution? Design exploration in the realm of generative

algorithms and search engines.
✓ ✕ ✕ ✕ ✕ ✕ ✓ [142]

101 Prototyping with generative AI. ✓ ✕ ✕ ✕ ✕ ✕ ✓ [143]
102 Generative AI and the history of architecture ✓ ✕ ✕ ✕ ✕ ✕ ✓ [144]
103 Generative vs. non-generative AI: Analyzing the effects of AI on the architectural design process. ✓ ✕ ✓ ✕ ✕ ✕ ✓ [145]
104 Rethinking computer-aided architectural design (CAAD)—From generative algorithms and architectural intelligence to

environmental design and ambient intelligence
✓ ✕ ✓ ✕ ✕ ✕ ✓ [146]

105 Building layout generation using site-embedded GAN model ✕ ✕ ✕ ✕ ✕ ✕ ✓ [147]
106 3D building fabrication with geometry and texture coordination via hybrid GAN ✕ ✕ ✕ ✕ ✕ ✕ ✓ [148]
107 Architectural layout generation using a graph-constrained conditional generative adversarial network (GAN) ✕ ✕ ✕ ✕ ✕ ✕ ✓ [149]
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building performance, (5) AI in green buildings, (6) AI in ZEBs, (7) 
AI and DTs in buildings, (8) AI and generative AI in architectural 
design, and (9) AI in the AEC industry. It functions as a meta-
review tool, supporting both trend analysis and gap identifica-
tion by highlighting which AI technologies are most prevalent and 
which areas remain underexplored or require integration.
Across these themes, it is clear that AI is transforming the built 

environment in several important ways. In the realm of smart

buildings, AI is increasingly linked with IoT to optimize building 
management systems, enabling real-time monitoring, predictive 
control, and improved decision-making. A major focus lies 
in energy optimization, where ML- and DL-driven models enhance 
efficiency, reduce consumption, and integrate renewables. 
Another strong thread is occupant-centered applications, which 
enhance comfort, safety, and well-being. Beyond energy and 
comfort, AI is also advancing safety and risk management.

Table 1 (continued )

No. Article title AI AIoT ML DL CV NLP GAI Reference

108 GAN as a generative architectural plan layout tool: A case study for training DCGAN with Palladian plans and evaluation of 
DCGAN outputs

✕ ✕ ✕ ✕ ✕ ✕ ✓ [150]

109 Generation of geometric interpolations of building types with deep variational autoencoders ✕ ✕ ✕ ✕ ✕ ✕ ✓ [151]
110 FloorDiffusion: Diffusion model-based conditional floorplan image generation method using parameter-efficient fine-

tuning and image inpainting
✕ ✕ ✕ ✕ ✕ ✕ ✓ [152]

111 Research on predicting building façade deterioration in winter cities using diffusion model ✕ ✕ ✕ ✕ ✕ ✕ ✓ [153]
112 Using generative AI Midjourney to enhance divergent and convergent thinking in an architect's creative design process ✕ ✕ ✕ ✕ ✕ ✕ ✓ [154]
113 Text semantics to controllable design: A residential layout generation method based on stable diffusion model ✕ ✕ ✕ ✕ ✕ ✕ ✓ [155]
114 Generating accessible multi-occupancy floor plans with fine-grained control using a diffusion model ✕ ✕ ✕ ✕ ✕ ✕ ✓ [156]
115 Exploring the potential of artificial intelligence as a tool for architectural design: A perception study using Gaudí’s works ✕ ✕ ✕ ✕ ✕ ✕ ✓ [157]
116 Exploration of the intelligent-auxiliary design of architectural space using artificial intelligence model ✓ ✕ ✕ ✓ ✕ ✕ ✕ [158]
117 A machine learning model driven by geometry, material, and structural performance data in the architectural design

process
✓ ✕ ✓ ✕ ✕ ✕ ✕ [159]

Artificial intelligence in the architecture, engineering, and construction industry
118 Artificial intelligence in construction engineering and management ✓ ✕ ✕ ✓ ✕ ✕ ✕ [160]
119 Systematic review of application of artificial intelligence tools in architectural, engineering and construction. ✓ ✕ ✕ ✕ ✕ ✓ ✕ [38]
120 Towards human-centered artificial intelligence (AI) in architecture, engineering, and construction (AEC) industry. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [39]
121 Conversational artificial intelligence in the AEC industry: A review of present status, challenges and opportunities ✓ ✕ ✕ ✕ ✕ ✓ ✕ [40]
122 Application of artificial intelligence in sustainable construction. ✓ ✕ ✕ ✕ ✕ ✕ ✕ [41]

Table 2
Contributions of artificial intelligence to environmental sustainability indicators in smart buildings.

No. Energy efficiency 
and demand 
reduction

Renewable energy 
integration and 
optimization

Carbon footprint and 
emissions 
monitoring

Water efficiency and
resource
management

Indoor environmental 
quality and thermal 
comfort

Predictive maintenance and 
building lifecycle 
optimization

Reference

1 ✓ ✕ ✕ ✕ ✕ ✕ [42]
2 ✓ ✓ ✕ ✕ ✕ ✕ [43]
3 ✓ ✕ ✕ ✓ ✕ ✓ [46]
4 ✓ ✓ ✓ ✕ ✕ ✕ [47]
5 ✓ ✓ ✕ ✕ ✕ ✕ [44]
6 ✓ ✓ ✕ ✕ ✕ ✓ [45]
7 ✓ ✓ ✕ ✕ ✕ ✕ [51]
8 ✓ ✕ ✕ ✕ ✓ ✕ [48]
9 ✓ ✕ ✕ ✕ ✓ ✓ [49]
10 ✓ ✓ ✓ ✕ ✕ ✕ [53]
11 ✓ ✓ ✓ ✕ ✕ ✕ [52]
12 ✕ ✕ ✕ ✕ ✕ ✓ [50]
13 ✓ ✕ ✕ ✕ ✕ ✕ [97]
14 ✓ ✓ ✓ ✕ ✕ ✕ [98]

Table 3
Contributions of artificial intelligence to environmental sustainability indicators in green buildings.

No. Energy performance 
and passive design 
optimization

Renewable energy 
integration and net-
zero goals

Carbon footprint 
reduction and climate 
adaptation

Sustainable water 
and resource 
management

Indoor 
environmental 
quality and well-
being

Waste reduction, circular 
economy, and sustainable 
materials

Reference

1 ✓ ✕ ✓ ✕ ✓ ✓ [55]
2 ✓ ✕ ✕ ✕ ✕ ✓ [59]
3 ✓ ✓ ✕ ✓ ✕ ✓ [61]
4 ✓ ✕ ✓ ✓ ✕ ✕ [89]
5 ✓ ✕ ✓ ✕ ✕ ✕ [35]
6 ✓ ✕ ✕ ✕ ✕ ✓ [67]
7 ✓ ✕ ✕ ✕ ✕ ✓ [62]
8 ✓ ✕ ✓ ✕ ✕ ✓ [60]
9 ✓ ✓ ✕ ✕ ✕ ✓ [68]
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When it comes to energy efficiency, AI's role is primarily driven 
by ML and DL techniques, which enable the development of data-
driven models for predicting energy usage patterns and optimizing 
building performance. These algorithms are instrumental in 
detecting inefficiencies, forecasting demand, and automating the 
operation of HVAC systems and lighting. ML and DL facilitate 
intelligent control systems that dynamically adapt to user 
behavior and environmental conditions, resulting in reduced en-
ergy consumption, cost savings, and enhanced sustainability 
across various building types.
Thermal comfort is another key area where AI, including DL and 

NLP, enhances occupant well-being while supporting energy 
optimization. DL models are used to analyze complex environ-
mental data and predict indoor comfort conditions with high 
precision. At the same time, NLP techniques enable systems to 
interpret user feedback and natural language inputs about thermal 
preferences. These AI techniques allow smart HVAC systems to 
dynamically adjust temperature, humidity, and airflow conditions 
in real-time, ensuring personalized comfort while maintaining 
energy efficiency.
In connection with building performance, AI aids in predicting 

how buildings will function over their lifespan, both in terms of 
energy use and structural integrity. AI tools simulate various 
operational scenarios, allowing for the optimization of building 
design and the identification of potential performance issues 
before they arise. This predictive capability is key to improving the 
operational efficiency of buildings both after construction and 
during the design phase. Technologies, such as ML, DT, CPS, and 
IoT, are increasingly interconnected with building performance 
simulation.
AI is also playing a significant role in advancing green buildings. 

AI, including ML, contributes to reducing the environmental 
impact of buildings by optimizing energy use and resource man-
agement. This includes the integration of renewable energy sour-
ces, efficient waste management systems, and sustainable 
material choices. Through data analysis, AI helps make green 
buildings more efficient, cost-effective, and aligned with sustain-
ability goals.
The push for ZEBs, NZEBs, and nZEBs is another area where AI is 

making a major impact. AI is used to balance energy consumption 
with energy generation, enabling buildings to produce as much 
energy as they consume. AI-driven strategies support the inte-
gration of renewable energy sources and the optimization of en-
ergy storage and distribution systems. ML techniques are widely 
applied for load forecasting and system optimization, while NLP 
has emerged as a tool for interpreting user feedback or docu-
mentation to fine-tune energy strategies. These applications are

critical to achieving net-zero energy targets and advancing global 
sustainability efforts.
The concept of DT is transforming how buildings are managed 

and optimized. DTs, as digital replicas of physical buildings powered 
by AI, enable real-time monitoring, simulation, and optimization of 
building performance. These virtual models identify issues before 
they arise, leading to more efficient building operations and better 
decision-making. ML plays a crucial role in predicting energy con-
sumption patterns and enhancing system efficiency. The integra-
tion of the AIoT allows for seamless communication between 
devices, contributing to smarter building operations and data 
collection. In addition, NLP is used to analyze building-related 
documents or feedback, providing valuable insights for more effi-
cient resource management and better decision-making. These 
technologies lead to more proactive building operations and sig-
nificant improvements in sustainability.
Furthermore, AI is significantly advancing architectural design 

beyond the capabilities of traditional methods. Through ML and 
DL, architects can analyze complex datasets, optimize spatial 
layouts, and enhance building performance predictions at early 
design stages. While Generative AI is enabling the automated 
exploration of innovative, functional, and aesthetic design solu-
tions, broader AI techniques support design decision-making by 
processing spatial, environmental, and user data. This integration 
of AI, spanning from predictive analytics to creative generation, is 
opening up new possibilities for both efficiency and creativity in 
the architectural design process.
Lastly, AI is making a significant impact across the AEC industry. 

From enhancing project management and construction processes 
to improving material selection and safety, AI technologies are 
streamlining operations and reducing inefficiencies. NLP, as noted 
in two studies, is being applied to interpret construction docu-
ments, extract actionable insights, and improve communication 
across stakeholders. More broadly, AI tools are automating routine 
tasks, predicting delays, optimizing workflows, and enhancing on-
site safety through predictive hazard detection and risk mitigation 
strategies. These applications are transforming the AEC industry 
by driving smarter, more data-informed decision-making.
Worth noting, among the various AI models and subdomains 

examined across the 122 studies, CV appears to be the least 
commonly utilized, with only a few instances identified across the 
thematic landscape. This limited representation can be attributed 
to several interconnected factors. First, many CV applications 
depend on large volumes of visual data, such as images, video 
streams, or sensor-based spatial inputs, which are not always 
readily available or feasible to collect in typical building environ-
ments, particularly in existing or retrofitted structures. Moreover,

Table 4
Contributions of artificial intelligence to environmental sustainability in zero, net-zero, and nearly-zero energy buildings.

No. Energy efficiency 
and demand 
reduction

Renewable energy 
generation and storage 
optimization

Carbon footprint 
reduction and net-zero 
carbon strategies

Water efficiency 
and resource 
management

Smart indoor 
environmental quality 
and thermal comfort

Optimized predictive 
maintenance and lifecycle 
management

Reference

1 ✓ ✓ ✓ ✕ ✓ ✓ [81]
2 ✓ ✓ ✕ ✕ ✕ ✕ [33]
3 ✓ ✓ ✓ ✓ ✕ ✕ [79]
4 ✓ ✓ ✓ ✕ ✓ ✓ [80]
5 ✓ ✓ ✕ ✕ ✕ ✓ [72]
6 ✓ ✓ ✓ ✕ ✓ ✓ [76]
7 ✓ ✕ ✕ ✕ ✕ ✕ [78]
8 ✓ ✕ ✕ ✕ ✕ ✕ [77]
9 ✓ ✓ ✕ ✕ ✕ ✓ [74]
10 ✓ ✓ ✓ ✕ ✓ ✓ [75]
11 ✓ ✕ ✕ ✕ ✕ ✓ [70]
12 ✓ ✕ ✕ ✕ ✕ ✓ [71]
13 ✓ ✓ ✕ ✕ ✓ ✓ [73]
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the integration of visual monitoring technologies into occupied 
spaces often raises significant privacy and ethical concerns, espe-
cially when monitoring occupants or user behavior in real time. 
These concerns have likely constrained the broader deployment of 
CV tools in real-world smart and sustainable building contexts. 
In addition, the thematic focus of most studies tends to revolve 

around areas such as energy efficiency, predictive maintenance, 
thermal comfort, or renewable integration—domains where ML 
and DL techniques, often based on numerical, time-series, or cat-
egorical data, are more directly applicable. In contrast, CV methods 
are typically associated with more specialized use cases, such as 
construction monitoring, visual defect detection, or occupancy 
estimation, which may not align as directly with the core envi-
ronmental indicators that dominate the reviewed literature. 
Moreover, the technical complexity and resource requirements of 
deploying CV systems also present barriers. Implementing such 
systems often demands specialized hardware (e.g., cameras, light 
detection and ranging [LiDAR]), robust computational infrastruc-
ture, and advanced image processing capabilities, elements that 
may be beyond the scope of many research initiatives. As a result, 
while CV holds clear potential in specific aspects of the built 
environment, its practical integration into AI-driven sustainability 
frameworks remains limited and context-dependent.
In conclusion, across these nine themes, AI is driving a trans-

formation in the built environment. From enhancing energy effi-
ciency and occupant comfort to enabling smarter, more 
sustainable design and construction practices, AI is at the heart of 
the future of SGZEB technologies. These developments highlight 
AI's ability to make buildings more intelligent, efficient, and 
environmentally friendly, paving the way for a more sustainable 
and innovative built environment.

5.1.2. Thematic convergence of AI applications in the built 
environment
The previous subsection addresses the individual themes that 

define the role of AI in building typologies, domains, and tech-
nologies, analyzing their unique contributions. However, the real 
power of AI in this context lies not just in isolated applications but 
in the way these elements are integrated to enhance overall 
building outcomes. This subsection delves into the synergies be-
tween these AI-driven innovations, highlighting how their in-
terconnections create smarter, more efficient, and sustainable 
building environments. Understanding these relationships offers 
valuable insight into how AI can transform the built environment 
as an integrated whole, thereby driving progress across multiple 
dimensions of design, energy efficiency, comfort, and 
performance.
The relationship between AI in smart buildings and energy 

efficiency is particularly synergistic. Smart buildings rely on AI to 
collect and analyze data from building systems, such as HVAC, 
lighting, space usage, and security, optimizing them in real-time 
for both performance and efficiency. ML algorithms are used to 
predict energy consumption based on environmental data and 
occupancy patterns. The feedback from energy-efficient strategies 
in smart buildings enhances the AI's learning capabilities, which 
allows for continuous optimization over time. This feedback loop 
ensures that energy management becomes more accurate, 
reducing overall consumption while maintaining comfort levels. 
AI's role in thermal comfort is closely tied to energy efficiency. 

AI can dynamically adjust heating or cooling systems to maintain 
comfort while optimizing energy usage by utilizing real-time data 
from sensors measuring temperature, humidity, air quality, and 
occupancy. As AI systems become more precise in understanding 
human comfort preferences and environmental conditions, they 
can better balance energy savings with occupant satisfaction. For

instance, AI can optimize HVAC systems to lower energy con-
sumption while keeping spaces at comfortable temperatures, thus 
addressing both thermal comfort and energy efficiency 
simultaneously.
AI for building performance and green buildings are inter-

connected through the optimization of building systems and the 
reduction of environmental impact. AI is used to simulate and 
predict a building's performance across various operational sce-
narios, such as energy use, structural integrity, and resource con-
sumption, helping to identify areas for improvement. These 
predictions, combined with AI's ability to model green building 
systems, allow for the fine-tuning of energy systems, water usage, 
waste management, and materials in ways that maximize sus-
tainability. As buildings become more performance-driven and 
energy-efficient, the potential for achieving green building stan-
dards such as leadership in energy and environmental design 
(LEED) or building research establishment environmental assess-
ment method (BREEAM) increases, which demonstrates how AI 
drives sustainable architectural design.
NZEB concept directly benefits from AI's ability to optimize 

energy efficiency and renewable energy integration and optimi-
zation. Buildings can be designed to achieve a state where they 
produce as much energy as they consume by using AI algorithms 
to balance energy inputs (from renewable sources) with internal 
consumption. AI's predictive capabilities and real-time data anal-
ysis assist in forecasting energy generation patterns, managing 
energy storage, and integrating systems that align building per-
formance with environmental goals. The shift towards NZEB is 
closely tied to AI's ability to optimize energy flows and system 

efficiencies, while also contributing to these broader goals by 
reducing reliance on nonrenewable energy sources.
AI-powered DTs play an important role in enhancing building 

performance. These virtual replicas of physical buildings allow for 
real-time monitoring, simulation, and optimization. The integra-
tion of AI into DTs enables the creation of highly accurate models 
that simulate how buildings will behave over time under different 
conditions. AI can predict maintenance needs, optimize systems, 
and improve building lifespan by integrating performance data 
into these virtual models. In this sense, AI enhances building 
performance through simulations and predictive maintenance and 
helps make adjustments that are both cost-effective and 
sustainable.
The connection between AI in architectural design and smart 

buildings is rooted in the potential of AI to inform and optimize 
design decisions before construction even begins. AI algorithms 
can be used to simulate building designs, considering various 
factors such as energy use, occupant behavior, and environmental 
impact. These AI-driven designs can then be integrated with smart 
building systems to ensure that the building operates efficiently 
from the moment it is completed. Furthermore, AI-generated de-
signs can make buildings more adaptable to future needs, inte-
grating features such as smart sensors and automated systems that 
enhance overall building intelligence.
The integration of AI into the AEC industry and smart buildings 

is mutually reinforcing. In construction, AI technologies are used 
for project planning, scheduling, resource management, and 
quality control. These technologies ensure that smart building 
features are implemented effectively and with precision. For 
example, AI tools are used to optimize the construction process, 
detect potential design flaws, and improve collaboration between 
stakeholders, which in turn results in more efficient smart build-
ing designs. Moreover, the data collected during the construction 
phase can be fed into building management systems to allow AI to 
continuously monitor and optimize performance.
AI's integration into the AEC industry influences both thermal
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comfort and green buildings by driving more sustainable and 
efficient building designs. ML models can optimize energy flows, 
design passive solar systems, and incorporate natural ventilation 
strategies in ways that enhance both comfort and sustainability. 
For instance, an AI-based model might suggest the most energy-
efficient placement of windows to maximize natural lighting and 
reduce heating or cooling costs, thus ensuring that the building 
remains comfortable and energy-efficient. This approach reduces 
the reliance on mechanical systems and minimizes environmental 
impact, which aligns well with green building principles.
Taken as a whole, these themes form a network where each 

contributes to and enhances the others. AI's ability to optimize 
energy systems, predict building performance, and improve sus-
tainability is a key thread that runs through all of these areas. With 
new advances in AI, the relationship between themes such as 
energy efficiency, thermal comfort, and building performance 
becomes increasingly integrated, allowing for a more holistic 
approach to building design, operation, and sustainability. In this 
context, AI does not just serve isolated functions; rather, it enables 
a more interconnected, dynamic, and responsive built environ-
ment where performance, comfort, and sustainability are contin-
uously optimized through data-driven insights.
By bringing together these diverse elements, AI can establish a 

comprehensive framework that transforms the built environment 
into a more intelligent, adaptable, and future-ready system. This 
interconnectedness demonstrates how AI's subdomains, including 
those in relation to data analytics and predictive modeling, play 
critical roles across various building functions, enabling advanced 
technologies in each area to complement and enhance one another 
seamlessly.

5.1.3. Environmental indicators enhanced by artificial intelligence 
and digital twins across smart, green, and zero-energy buildings
To explore the intersection of AI, particularly ML and DL, and 

DTs with environmentally sustainable built environments in the 
subsequent subsections, this study utilizes well-established envi-
ronmental indicators that are recognized across academic and 
industry research. These indicators, which are used to assess the 
environmental performance of buildings, form the foundation for 
evaluating the impacts of AI and DT technologies on energy effi-
ciency, carbon emissions reduction, resource management, and 
overall sustainability in SGZEBs. The application of these in-
dicators is crucial for understanding how advanced technologies 
can enhance environmental outcomes in these buildings, making 
them a critical lens through which the contributions of AI and DTs 
are assessed.
This study situates these indicators within a broader context, 

ensuring that the reviewed literature validates them and high-
lights the advancements that AI and DT technologies bring to the 
field. The following synthesis presents key studies that report on 
how these indicators have been operationalized and improved 
across SGZEB typologies.
Smart buildings represent a dynamic typology where digital 

intelligence is tightly integrated into the design, operation, and 
performance of the built environment. Several studies focus on 
defining and measuring the concept of smartness in buildings. 
Dakheel et al. [161] explore the concept of smart buildings, high-
lighting their main features, functions, and technologies, while 
also developing a set of nine groups of representative performance 
indicators. Their results emphasize the need for quantified 
guidelines to enhance energy performance and technological 
innovation in smart buildings. Similarly, Ghansah et al. [162] 
investigate indicators for measuring the smartness of buildings in 
the construction industry. Using survey data from 227 re-
spondents, they find that awareness of smart building

technologies (SBTs) is moderately high in the Ghanaian construc-
tion industry and develop a blueprint guidance model to support 
policymakers and improve building performance. Alanne [163] 
introduces the learning ability index (LAI) to quantify the learning 
capacity of buildings. Applying the index to three case studies, the 
author demonstrates that LAI provides a flexible and illustrative 
measure of building intelligence, monitoring data-driven pro-
cesses, and supporting strategies for higher levels of smartness. 
Other studies examine environmental impacts and sustain-

ability performance. Lagarde et al. [164] assess the environmental 
impact of integrating connected devices in residential buildings 
using life cycle assessment with uncertainty analysis. Their results 
show that while connected devices improve environmental per-
formance compared to the original building, full refurbishment 
remains the most effective strategy across almost all indicators. 
They also emphasize the importance of measurement campaigns 
to more accurately quantify energy gains. Koller et al. [165] explore 
the environmental dimensions of smart buildings through a 
literature review, building analysis, and expert interviews. The 
authors demonstrate that standardized definitions, enhanced data 
availability, and stakeholder collaboration are essential for 
achieving measurable ecological benefits. They provide case 
studies illustrating the practical impacts on building sustainability. 
A separate group of studies addresses smart building readiness 

and indoor environmental quality. Delavar et al. [166] examine the 
smart readiness indicator (SRI), aiming to evaluate buildings’ 
readiness to support energy-efficient and adaptive functionalities. 
Their findings reveal rapid growth in SRI research, primarily 
focused on energy efficiency, and show that the SRI can be applied 
beyond individual buildings to neighborhoods and districts. They 
identify six understudied research areas necessary for advancing 
the evolution of smart buildings, including the applicability of SRI 
across various contexts and its integration with other standards. 
Aldakheel et al. [167] focus on AI techniques for evaluating indoor 
environmental quality in smart buildings. The authors demon-
strate that smart real-time monitoring and intelligent ventilation 
strategies optimize occupant comfort and energy efficiency, 
highlighting the role of ML and DL in selecting appropriate in-
dicators and measurement technologies for smart indoor 
environments.
Regarding green buildings, several studies focus on developing, 

assessing, and prioritizing indicators to measure the sustainability 
performance of green buildings across environmental, social, and 
economic dimensions. Abdel-Basset et al. [168] aim to establish a 
framework for evaluating sustainable green building indicators in 
developing countries under uncertain conditions. Using a multi-
criteria decision-making (MCDM) method combined with the 
Delphi method and analytical hierarchy process (AHP), the authors 
assess and prioritize the dimensions and indicators of green 
building design. Their results show that water efficiency is the 
most significant dimension (weight = 0.330), while energy effi-
ciency is the least significant (weight = 0.100) for green buildings 
in developing countries. The study concludes with practical 
administrative implications for applying sustainable development 
strategies in green buildings, emphasizing the need for adaptation 
to local characteristics and resource availability.
Focusing on ecological indicators for green building construc-

tion, Liu and Lin [169] quantify regional differences in ecological 
performance. Using a slack-based data envelopment analysis 
approach and a panel dataset from 1995 to 2012, the authors 
reveal that roughly half of China's provinces have the potential to 
improve ecological performance by more than 60%, with devel-
oped areas outperforming developing areas. In addition, they 
identify the 11th five-year plan as a turning point, where national 
green building policies significantly enhance ecological
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performance, highlighting the strong influence of policy and 
planning on sustainable building practices.
Marotta et al. [170] examine whether green buildings can serve 

as an indicator of broader sustainable development. Using data 
from Eurostat and green building directories across 27 European 
Union countries (2010–2019), the authors apply linear regression 
analysis and confirm the environmental Kuznets curve hypothesis: 
economic growth in developed countries is associated with envi-
ronmental improvements. The study demonstrates that the vari-
ance in green building implementation correlates strongly with 
both gross domestic product per capita (p = 0.0004, R 2 = 0.8475) 
and greenhouse gas emissions (p = 0.0002, R 2 = 0.8825), sup-
porting the idea that green buildings are an effective measure of 
sustainable development and emphasizing the importance of 
policies such as tax incentives to encourage their adoption.
Li et al. [171] develop key performance indicators (KPIs) for 

operational monitoring of green buildings, seeking a practical, 
efficient alternative to comprehensive evaluation standards that 
are time- and labor-intensive. The authors establish a library of 27 
KPIs encompassing outdoor and indoor environmental quality, 
HVAC systems, renewable energy, total resource consumption, and 
occupant behavior. Using the Delphi method and the specific, 
measurable, achievable, relevant, and time-bound (SMART) prin-
ciple, the KPIs are validated through two Chinese case studies, 
demonstrating that the framework enables long-term monitoring 
while being more practical and systematic than conventional ap-
proaches, thereby reducing evaluation time and costs. 
Braulio-Gonzalo et al. [172] focus on how green building rating 

systems (GBRS) address sustainability and life cycle frameworks in 
residential buildings. Analyzing 387 indicators across eight GBRS, 
they classify them by sustainability dimension, information 
module, and construction stage. Their results indicate that the 
environmental dimension is most emphasized, while social and 
economic dimensions require more attention. Furthermore, most 
indicators focus on the product and construction stages (A1–A5) 
rather than the early design or operational stages, suggesting that 
a more holistic, lifecycle-spanning approach is necessary. Building 
on this, the study by Sartori et al. [173] focuses on developing a 
schematic environmental impact assessment (EIA) framework for 
building design, integrating LCA and GBRS. The authors compare 
LCA and GBRS methodologies, analyze the inclusion of LCA pa-
rameters in GBRS, and review LCA software compatible with GBRS 
requirements. The findings suggest that the most suitable EIA 
approach varies according to the stage of the design life cycle. 
Combining LCA's quantitative analysis with GBRS's qualitative 
criteria enhances transparency, supports better-informed design 
decisions, and improves environmental performance assessment, 
especially when linked to graphical outputs and three-
dimensional modeling.
ZEBs, NZEBs, nZEBs, and PEBs represent the forefront of sus-

tainable design, emphasizing energy self-sufficiency, carbon 
neutrality, and long-term environmental resilience. Research on 
these building typologies emphasizes the need for robust perfor-
mance indicators and holistic assessments to guide design, con-
struction, and operation. Key studies have explored various 
approaches to evaluate energy efficiency, renewable energy use, 
and environmental sustainability. Indicators such as self-
consumption, self-production, loss-of-load probability, and 
coverage rate are proposed to measure a building's energy per-
formance, although their practical application can be challenging 
[174]. Complementary metrics, including the overall renewable 
energy fraction (OREF), extend conventional indicators by ac-
counting for both on-site and off-site renewable energy, empha-
sizing independence from fossil fuels and highlighting the benefits 
of self-consumption over exported energy [175]. Early selection of

performance thresholds is recommended to guide design de-
cisions, with seven key thresholds identified to balance trade-offs 
and overcome societal and technical barriers in NZEB development 
[176].
Environmental aspects in nZEB design have also been investi-

gated. Sensitivity analyses indicate that maximizing renewable 
energy generation, particularly through photovoltaic systems, 
often reduces life-cycle environmental impacts more effectively 
than increasing insulation, especially in Mediterranean and con-
tinental climates [177]. However, life cycle assessments indicate 
that the carbon footprint of renewable energy technologies, such 
as photovoltaic (PV) panels, depends on the energy mix of the 
country where they are produced, which can influence overall 
greenhouse gas emissions [178]. Together, these studies suggest 
that achieving NZEB/nZEB goals requires a multi-criteria approach, 
combining energy performance indicators with life-cycle envi-
ronmental analyses. Using both types of assessments ensures that 
designs not only meet net-zero energy targets but also minimize 
broader environmental impacts.
Furthermore aiming to facilitate the transition from PEBs to 

positive energy communities (PECs), the study by Cai and Gou 
[179] introduces a set of KPIs to evaluate site planning and energy 
autonomy potential. Through geographic analyses and simulations 
based on data from 81 PEBs, the study evaluates factors such as 
energy surplus, spatial coverage, and shared energy dynamics 
under different photovoltaic (PV) installation scenarios and spatial 
ranges. The results indicate that establishing PECs from existing 
PEBs is feasible, with optimal community boundaries typically 
falling between 150 and 250 m. The proposed KPIs offer practical 
guidance for site selection, community planning, and policy-
making, supporting the creation of sustainable and energy-
positive urban developments.
Overall, these studies provide robust validation for the envi-

ronmental indicators used in this review, demonstrating their 
relevance and applicability across various building typologies. 
They reveal how the role of AI and DT technologies is not only 
compatible with established sustainability metrics but also en-
hances their implementation, accuracy, and real-world impact. 
The reviewed literature showcases an evolving paradigm in which 
intelligent systems drive measurable environmental improve-
ments by integrating these technologies with domain-specific 
indicators—laying the groundwork for more adaptive, efficient, 
and ecologically integrated built environments.

5.1.4. Tabulated thematic mapping and cross-typology
comparative analysis of environmental indicators and artificial 
intelligence in smart, green, and zero-energy buildings
This subsection presents a detailed thematic and comparative 

analysis of environmental indicators driven by AI across three 
distinct building typologies: SGZEBs. The analysis begins with 
Tables 2–4, which systematically map peer-reviewed studies on 
AI integration within these typologies and synthesizes their in-
sights according to these key tailored indicators. These tables 
provide a visual representation of how AI contributes to sustain-
ability across building typologies. The comparative approach 
adopted identifies patterns and trends across these typologies, 
contrasting the role of AI in supporting different indicators. The 
analysis highlights knowledge gaps, such as underrepresented 
indicators in specific typologies, and synthesizes key insights into 
the broader role of AI in advancing environmental goals in the built 
environment.
Table 2 systematically maps 14 peer-reviewed studies on the 

integration of AI in smart buildings, specifically evaluating their 
contribution to the identified indicators. It is organized by citation 
and the categorical presence of these indicators. Each row reflects

S.E. Bibri and J. Huang Environmental Science and Ecotechnology 28 (2025) 100628

17



whether a given study addresses specific sustainability di-
mensions, providing a thematic overview of how AI applications 
align with environmental goals in the built environment. Table 2 
facilitates a visual analysis of prevalent research foci, revealing 
areas that require further investigation in AI-enabled smart 
building design and operation.
AI applications in smart buildings overwhelmingly concentrate 

on energy efficiency and demand reduction (Table 2), which ap-
pears consistently across nearly all studies. Predictive 
maintenance and renewable energy integration also emerge as 
recurring themes, whereas water efficiency and carbon footprint 
monitoring remain largely underexplored. This distribution sug-
gests that research on AI in smart buildings is still primarily ori-
ented towards operational optimization, with sustainability 
dimensions such as resource management and emissions reduc-
tion representing notable gaps for future investigation.
Table 3 systematically maps nine peer-reviewed studies as an 

illustrative subset on the integration of AI in the context of green 
buildings. Similarly organized by citation and categorical presence, 
it highlights how AI supports sustainability goals in this typology. 
It provides a thematic overview of prevalent research trends and 
highlights underexplored areas in AI-enabled green building 
design and operation.
Research on AI in green buildings most frequently emphasizes 

energy performance and passive design optimization (Table 3), 
which is a consistent focus across all reviewed studies. Waste 
reduction and circular strategies also recur, often in conjunction 
with more specific applications. In contrast, areas such as renew-
able energy integration, carbon footprint reduction, and particu-
larly sustainable water management are far less explored. This 
imbalance indicates that while AI is being applied to optimize 
building performance and material efficiency, its potential to drive 
climate resilience, net-zero transitions, and holistic resource 
management in green buildings remains underdeveloped.
Table 4 systematically maps 13 peer-reviewed studies on the 

integration of AI within zero-energy, net-zero-energy, and nearly 
zero-energy buildings. Likewise, it uses the same categorical 
mapping approach to identify which sustainability indicators are 
addressed. The table provides a comparative overview of AI's role 
in advancing energy neutrality and sustainability, while also 
highlighting indicators that remain relatively underrepresented. 
Table 4 presents AI applications in zero, net-zero, and nearly-

zero energy buildings, which most prominently address energy 
efficiency, renewable energy generation and storage optimization,

and predictive maintenance, reflecting a strong operational and 
systems-integration focus. A number of studies also link AI with 
carbon reduction and net-zero carbon strategies, underscoring its 
central role in achieving climate targets. By contrast, water effi-
ciency and, to a lesser extent, indoor environmental quality remain 
underexplored, suggesting that resource management and 
occupant-centered outcomes are secondary priorities in this 
domain. Overall, the research landscape reveals that AI is being 
leveraged primarily to ensure energy neutrality and long-term 

building performance, while opportunities for a more holistic 
sustainability approach are not yet fully realized.
The indicators featured in the three comparative tables repre-

sent a shared framework of environmental concerns—energy, 
water, carbon, indoor environmental quality, and lifecycle opti-
mization—that are broadly relevant across all three typologies. 
However, their implementation is tailored to the core objectives of 
each building typology. For example, while energy efficiency is a 
common goal, smart buildings emphasize real-time demand 
response, green buildings focus on passive performance, and ZEBs 
prioritize achieving net-zero status through energy balancing. 
These shared indicators offer a consistent lens through which 

AI contributions to environmental goals can be assessed, while still 
acknowledging the specific design logic and functional priorities of 
each typology. In smart buildings, AI is primarily applied to real-
time system optimization and environmental quality control. In 
green buildings, AI supports passive design enhancement, climate 
resilience, and long-term material planning. In zero-energy ty-
pologies, AI enables seamless integration of on-site renewables 
with energy demand, supporting energy-positive or carbon-
neutral operation. Although the same thematic indicators are 
used to structure the comparison across typologies, their imple-
mentation and significance vary depending on each building type's 
sustainability strategy. This shared framework enables structured 
cross-typology analysis while honoring each typology's distinct 
trajectory.
The synthesis of the three typology-specific tables reveals both 

convergence and divergence in how AI supports environmental 
performance (Table 5). Smart buildings prioritize automated 
control and operational efficiency. Green buildings focus on life-
cycle intelligence, natural system optimization, and resource 
circularity. ZEBs emphasize energy neutrality through AI-
optimized energy generation and storage.
Merging the strengths of the three typologies offers the most 

comprehensive path forward. These findings suggest that no single

Table 5
Comparative analysis of artificial intelligence-driven sustainability indicators across smart, green and zero-energy buildings.

Sustainability
indicators

Smart buildings Green buildings Zero-energy buildings

Energy efficiency and
demand reduction

AI automates HVAC, lighting, and energy use 
through real-time data and adaptive controls.

AI optimizes passive design strategies, 
including natural ventilation, shading, and 
insulation.

AI balances energy demand using predictive 
modeling and smart grids.

Renewable energy
integration and 
storage optimization 

AI integrates renewables with smart grids, 
optimizes battery storage, and enables 
demand response.

AI forecasts renewable energy availability and 
enhances hybrid energy system integration.

AI ensures on-site renewables meet energy 
needs, manages energy storage, and interacts 
with the grid.

Carbon footprint
reduction and net-
zero strategies

AI tracks emissions, optimizes electrification, 
and suggests carbon reduction pathways.

AI selects low-carbon materials, models 
building lifecycle emissions, and supports 
carbon-neutral design.

AI-driven carbon accounting ensures net-zero 
operations and offsets unavoidable emissions.

Water efficiency and
resource management 

AI detects leaks, optimizes irrigation, and 
predicts water demand.

AI improves rainwater harvesting, greywater 
recycling, and sustainable plumbing design. 

AI integrates water-energy nexus for efficiency 
and monitors real-time consumption.

Indoor environmental
quality and thermal 
comfort

AI-based HVAC, air quality monitoring, and 
adaptive lighting optimize occupant well-
being.

AI enhances passive thermal comfort strategies 
and daylighting optimization.

AI balances thermal comfort with energy 
neutrality while ensuring air quality.

Predictive maintenance
and lifecycle 
optimization

AI-powered DTs and fault detection reduce 
energy and resource waste.

AI predicts material degradation, lifecycle 
impacts, and resource reuse.

AI ensures long-term building performance 
while maintaining zero-energy targets.
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AI-driven approach is universally adequate. Instead, the most 
promising pathway lies in hybrid models that 
integrate automation, passive strategies, and net-zero frame-
works. This hybridization forms the foundation for a unified, 
typology-aware, cross-domain AI sustainability framework, one 
that supports intelligent, resilient, and environmentally optimized 
building design. AI can unlock a built environment that is adaptive, 
high-performing, and holistically sustainable by merging the 
strengths of SGZEB approaches.

5.2. Thematic synthesis of advancements and applications in 
smart, green, and zero-energy buildings: artificial intelligence and 
digital twins for environmentally sustainable smart built 
environment

This subsection analyzes and synthesizes the selected studies 
to provide a deeper, thematic understanding of how AI, ML, DL, 
and DT technologies are enhancing the environmental outcomes 
of SGZEBs. It moves beyond the tabular comparative analysis by 
offering an integrated examination of key trends, innovations, and 
implementation areas. Specifically, it explores how AI and DTs 
enable smart buildings to achieve greater efficiency, performance, 
thermal comfort, and intelligent control; how green buildings 
leverage AI for enhanced energy efficiency, sustainable design, and 
waste management; how AI supports the optimization, manage-
ment, and realization of zero-energy, net-zero-energy, and nearly-
zero-energy buildings; and finally, how AI-driven DTs are applied 
across building systems to support the development of sustainable 
smart built environments. This thematic synthesis offers a more 
comprehensive account of the transformative role of AI and DTs, 
connecting technological advancements and applications to 
broader environmental objectives.

5.2.1. Smart buildings: leveraging artificial intelligence and 
machine learning for enhanced efficiency, performance, thermal 
comfort, and control
In recent years, AI has emerged as a key driver in the evolution 

of smart buildings. As cities around the world strive to enhance 
sustainability, energy efficiency, and occupant well-being, AI-
powered smart buildings are at the forefront of this trans-
formation, enabling more intelligent, adaptive, and environmen-
tally conscious urban spaces. The reviewed studies provide a 
comprehensive overview of how AI and ML are transforming the 
environmental aspects of smart buildings. Covering diverse ap-
plications, they illustrate a multifaceted approach that supports 
the development of more efficient, adaptive, and user-centered 
smart building environments.
Sleem and Elhenawy [42] provide a comprehensive overview of 

the emerging field of AIoT and its applications in smart buildings. 
AIoT, which merges AI algorithms with data generated by IoT, 
enables real-time monitoring, automation, and intelligent 
decision-making. The study highlights the potential of AIoT to 
enhance smart building operations by reducing energy consump-
tion and operational costs, improving occupant comfort and pro-
ductivity, and strengthening safety and security systems. It also 
outlines key challenges in implementing AIoT in smart buildings, 
including issues of data privacy, security, interoperability, and the 
demand for specialized technical expertise. Overall, it positions 
AIoT as a transformative enabler in the development of smarter 
and more efficient building systems. The study lays the foundation 
for subsequent research by highlighting how real-time data from 

IoT devices can optimize various building systems, setting the 
stage for AI-driven solutions to enhance building performance 
across multiple domains.
In an integrative approach, Pan and Zhou [47] examine how AI

and digitalization technologies are transforming smart buildings 
and intelligent transportation systems. Their study emphasizes the 
role of integrated digital solutions in advancing carbon neutrality 
through renewable energy integration, energy efficiency, and 
smart mobility. The discussion highlights smart buildings as key 
components within e-mobility and energy-sharing frameworks, 
illustrating the growing convergence of digital infrastructure 
across built and transport environments. AI and digitalization are 
further portrayed as crucial enablers of sustainability and grid 
independence in urban systems. This perspective aligns with 
Wang et al. [43], who discuss the use of DTs for energy optimiza-
tion, and emphasizes the interconnected nature of smart cities, 
where building and transportation systems must be optimized 
together.
In this line of thinking, Sen et al. [45] explore the critical role of 

smart buildings within the broader context of smart city devel-
opment. Emphasizing the importance of sustainable urban infra-
structure, the authors provide an overview of how smart buildings 
integrate renewable energy sources, such as solar photovoltaics, 
mini wind turbines, and biomass, with energy storage and smart 
grid technologies. The focus is placed on the development of 
predictive control-based energy management systems that 
leverage ML for enhanced performance. A particular emphasis is 
given to the application of ML techniques for forecasting variable 
parameters related to both energy generation and consumption. 
These forecasts are then used to optimize energy management 
through predictive control, aiming to balance efficiency, occupant 
comfort, and sustainability. The study positions smart buildings as 
fundamental to the realization of smart cities and highlights the 
importance of integrating ML and control systems to improve 
operational efficiency and reduce energy consumption. This aligns 
with the findings of Gupta et al. [97] on RL for heating control and 
extends the discussion on predictive models by linking real-time 
data inputs with long-term energy optimization. It also relates to 
several studies that focus on improving the adaptability and effi-
ciency of building systems.
Exploring strategies for achieving carbon peak and net-zero 

emissions in smart buildings, Wang et al. [43] integrate AI and 
DT technologies into renewable energy management. The authors 
introduce a modified differential evolution (DE) algorithm com-
bined with RF regression to forecast renewable energy generation 
and optimize power distribution in a smart building microgrid. 
They aim to balance economic efficiency with environmental 
resilience, reducing both operational costs and emissions by 
formulating a nonlinear multi-objective optimization model. The 
study demonstrates the flexibility of the proposed AI approach 
under different power exchange scenarios and compares its per-
formance against particle swarm optimization (PSO) using real-
time data. A key innovation is the incorporation of DT—virtual 
models of physical microgrid systems—to simulate and optimize 
the behavior of renewable energy sources such as solar and wind. 
This integration enhances predictive capabilities and operational 
control, positioning DTs as a powerful tool in transitioning towards 
low-carbon, energy-efficient smart building ecosystems. The 
study's outcome aligns with the findings on ML's role in opti-
mizing photovoltaic energy consumption [180] and thermal stor-
age solutions [52]. These approaches support the transition to net-
zero emissions and contribute to reducing the environmental 
footprint of smart buildings.
Farzaneh et al. [98] examine how AI is transforming smart 

buildings to achieve higher energy efficiency. The authors high-
light the integration of sensors, big data, and AI technologies in 
building management systems (BMS) and demand response pro-
grams (DRPs) to improve energy control, automation, and system 

reliability. They categorize AI applications across energy use
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prediction, occupant comfort, building design, and maintenance. 
The findings align with Alanne and Sierla [53], who emphasize 
comprehensive adaptability in smart buildings through autono-
mous AI agents and DTs. They also complement Anik et al. [48], 
who demonstrate the use of ML to automate occupant profiling, 
further enhancing the efficiency and user-centeredness of AI-
driven building management systems.
In their investigation of how ML can be leveraged to improve PV 

self-consumption and optimize life cycle costs in smart buildings, 
Amini Toosi et al. [180] address the challenge of modeling energy 
storage systems (ESS), which is often complex and time-
consuming. In this context, the authors evaluate 24 ML models 
as surrogate tools for analyzing PV performance. Among them, 
Gaussian process regression, neural networks, support vector 
machines (SVM), and Ensemble Trees emerged as top performers 
for accurate and efficient predictions. They further explore how 

short-term thermal energy storage (TES), when paired with elec-
tric heat pumps, can greatly improve PV self-consumption. A key 
outcome shows that optimizing TES size using ML-based life cycle 
cost analysis can yield up to 7.1% savings over a 30-year building 
lifespan. This study identifies effective ML models for PV predic-
tion and demonstrates their potential in enabling smarter, cost-
effective, and energy-efficient building systems. This study com-
plements Wang et al.'s focus on renewable energy integration and 
aligns with the ongoing discussions about optimizing renewable 
energy systems [52] to reduce reliance on traditional power grids. 
It also feeds into the broader dialogue on AI's role in managing 
energy systems more efficiently.
Anik et al. [48] introduce an ML-based approach to automate 

occupant profiles that personalize building management systems, 
an essential step towards human-centered design and energy ef-
ficiency. The study directly contributes to enhancing building 
management systems and energy optimization efforts, particularly 
in terms of personalized control over heating, lighting, and 
ventilation. Using the Residential Energy Consumption Dataset, six 
ML algorithms (e.g., RF, SVM, AdaBoost) were tested to classify and 
predict 16 occupant characteristics, including thermal comfort, 
age, and cooling preferences. The models achieved over 90% ac-
curacy for certain features such as age group and cooling equip-
ment usage. The study demonstrates that ML can effectively 
streamline persona smart creation, supporting smarter, more 
personalized building design. This focus on occupant modeling 
provides a foundation for Boutahri and Tilioua [49], who extend 
ML-driven personalization into real-time occupancy prediction 
and thermal comfort optimization, thus bridging static user 
profiling with dynamic energy management in smart buildings. 
The integration of occupant data into energy management 

systems is discussed further by Boutahri and Tilioua [49], where an 
ML-based predictive model optimizes thermal comfort based on 
real-time occupancy data and energy efficiency in smart buildings. 
Using data from sensor-equipped Raspberry Pi devices, the study 
evaluates four ML algorithms—SVM, ANN, RF, and extreme 
gradient boosting (XGBoost)—to forecast thermal comfort (via 
predicted mean vote [PMV]) and optimize HVAC energy con-
sumption. Among the tested models, RF and XGBoost demonstrate 
the highest accuracy (up to 96.7%), notably outperforming SVM. 
The findings highlight the strong potential of ML algorithms, 
particularly ensemble methods, to improve both user comfort and 
energy efficiency in intelligent building systems. This study further 
develops the ideas from Anik et al. [48] by incorporating real-time 
data from occupants to dynamically adjust building systems for 
optimal energy use and predict thermal comfort needs. It also 
connects with Sen et al. [45] on predictive control, reinforcing the 
importance of using AI to anticipate building needs and enhance 
energy efficiency.

Alshamrani et al. [52] propose an AI-enhanced optimal control 
framework designed to improve energy efficiency and sustain-
ability in smart residential buildings. The framework integrates 
borehole thermal energy storage (BTES) with wastewater heat 
recovery, heat pumps, and a smart ventilation system. Using 
TRNSYS and MATLAB, the authors develop and simulate an intel-
ligent energy system that reclaims heat from wastewater and 
radiator return water and preconditions ventilation air, enhancing 
energy reuse and reducing carbon emissions. At the core of the 
system is an AI-assisted control strategy, specifically an ANN, 
which optimizes energy storage and usage in real time. This smart 
integration achieves significant improvements over conventional 
ventilation systems, showing a reduction in energy costs by 
$41.5 MWh − 1 , a total cost saving of over $10,000, and a CO 2 
emissions reduction of 1.7 kg MWh − 1 . This study also reveals that 
performance can be further optimized through strategies like 
adjusting mass flow rates and borehole depth, contributing to both 
environmental and economic benefits. This work ties into the 
broader sustainability goals outlined by Wang et al. [43] and Amini 
Toosi et al. [44], where energy systems are optimized for carbon 
neutrality. It also links AI with practical energy management so-
lutions in real-world applications.
Gupta et al. [97] propose a deep reinforcement learning (DRL)- 

based heating controller to enhance thermal comfort and reduce 
energy consumption in smart buildings. Using real-world tem-
perature data in simulation experiments, the DRL controller 
demonstrates a 15–30% improvement in thermal comfort and a 
5–12% reduction in energy costs compared to conventional ther-
mostat systems. The study also compares centralized and decen-
tralized DRL-based control in multi-building scenarios, finding 
that decentralized control performs better as the number of 
buildings and their temperature preferences vary. It highlights the 
potential of DRL for more adaptive and energy-efficient building 
management systems. The study relates to the predictive control 
models discussed by Sen et al. [45] and Maurya et al. [51], which 
emphasize the importance of data-driven solutions for optimizing 
heating systems and energy use in buildings.
Baduge et al. [46] investigate how AI, ML, and DL are being 

applied across the full lifecycle of buildings within the framework 
of Construction 4.0. The study focuses on the use of these tech-
nologies in diverse areas, including architectural and structural 
design, material optimization, offsite manufacturing, construction 
management, safety monitoring, smart operations, and building 
maintenance. A notable strength of the study is its holistic 
approach, examining how AI and smart vision systems support 
buildings from initial concept to end-of-life, with an emphasis on 
life cycle analysis and the circular economy. The study positions AI 
as a transformative force in creating more intelligent, sustainable, 
and efficient buildings throughout their lifecycle. This work aligns 
with earlier works on AI in building management systems by 
showcasing its application in optimizing materials, structural 
design, and lifecycle analysis. It links well with studies on smart 
operations and the need for continuous AI-based monitoring and 
learning (e.g., Ref. [45,52]).
Alanne and Sierla [53] examine the integration of ML and AI in 

smart buildings, emphasizing the role of these technologies in 
improving energy efficiency, adaptability, and resilience in the face 
of unpredictable operational changes, especially those related to 
climate change. The authors take a comprehensive approach, with 
a focus on autonomous AI agents that can make independent de-
cisions for energy management across a building's life cycle. They 
highlight the use of DTs as training environments to enhance the 
learning processes in building. The study concludes that the 
greatest potential for improving energy efficiency lies in incorpo-
rating AI-driven adaptability solutions within HVAC control
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systems and electricity market participation. This study supports 
the idea that AI can autonomously optimize energy systems in real 
time, an approach that complements predictive control models 
and reinforcement learning discussed earlier (e.g., Ref. [45,49,97]), 
which focus on improving energy management through AI. 
Maurya et al. [51] discuss the role of DL in fostering sustainable, 

green smart buildings and cities. The authors present renewable 
energy as a key alternative to coal, focusing on smart buildings as 
part of the future of clean energy solutions. The study links AI 
applications to the broader theme of reducing carbon footprints 
and supporting green cities, aligning with research that examines 
AI's role in energy optimization, renewable energy integration, and 
achieving carbon neutrality [43,180]. It emphasizes how AI can 
help reduce energy consumption and promote sustainability in 
smart buildings.
Zeng and Huang [50] introduce an AI-driven approach to 

building fire safety design through the Intelligent Fire Engineering 
Tool (IFET), which leverages large datasets from high-fidelity fire 
simulations. The AI system captures spatiotemporal patterns of 
fire development, enabling fast and accurate prediction of detector 
and sprinkler response times under dynamic conditions. It facili-
tates performance-based fire safety evaluations for complex 
architectural spaces and can identify critical design thresholds in 
seconds. The tool aims to support more adaptive, responsive, and 
efficient fire safety design in smart buildings, with potential for 
continuous learning and future expansion to broader fire sce-
narios. This work complements other studies focused on opti-
mizing energy and comfort (e.g., Ref. [49,97]).
Overall, the reviewed studies demonstrate the innovative po-

tential of AI and ML in improving the environmental outcomes of 
smart buildings. They showcase how these technologies are 
applied to optimize energy consumption, integrate renewable 
energy sources, enhance occupant comfort, and improve safety. 
Each study builds on, relates to, or expands upon the other ones, 
progressively broadening the scope of AI applications and deep-
ening our understanding of how AI addresses the complex chal-
lenges of sustainability in smart buildings. Together, the studies 
form a cohesive narrative that highlights both the practical ap-
plications and conceptual advancements of AI in building tech-
nologies. They contribute to the development of smarter, more 
adaptive, and more sustainable built environments by connecting 
and building upon each other's findings.

5.2.2. Green buildings
AI is rapidly emerging as a transformative force in advancing 

green building design, performance, and overall project manage-
ment. As the AEC industry continues to prioritize sustainability 
and environmental responsibility, AI-powered solutions are 
revolutionizing the design, construction, and operation of green 
buildings. AI applications in green buildings offer vast potential for 
improving environmental outcomes. Its integration into building 
systems enables innovative design processes, smarter energy ef-
ficiency solutions, waste reduction strategies, and carbon emission 
monitoring—critical components for achieving carbon neutrality. 
In addition, AI is increasingly applied in cost estimation, risk 
assessment, and overall project evaluation, supporting more 
informed decision-making, optimized resource allocation, and 
reduced operational and financial uncertainties. The reviewed 
studies provide a comprehensive overview of how AI and ML are 
reshaping green buildings, highlighting key advancements and 
applications across various domains.

5.2.2.1. Artificial intelligence applications in green building design: 
performance, prediction, optimization, and sustainability. 
Recent research highlights the diverse ways AI is being integrated

into green building design, ranging from predictive modeling and 
compliance support to optimization frameworks and critical re-
flections on the role of creativity. The reviewed studies demon-
strate AI's role not only in improving efficiency and sustainability 
but also in reshaping professional practice and decision-making in 
the architecture and construction sectors.
Bura and Bharati [94] investigate the application of AI in green 

building design, emphasizing its potential to streamline compli-
ance with sustainability rating systems. The authors highlight how 

AI facilitates faster and more reliable decision-making in areas 
such as energy efficiency, water management, ventilation, and 
daylighting. The study demonstrates that AI tools can support ar-
chitects, engineers, and designers in optimizing building perfor-
mance by enhancing the likelihood of achieving green building 
certification. It concludes that AI provides a broad scope of ap-
plications and significant advantages in improving productivity, 
communication, and sustainability outcomes in the green building 
sector. This study relates to Sari et al. [181], as both explore AI 
methods for enhancing the efficiency and predictive capabilities of 
green building design.
Omar and Al-Boridi [96] examine how AI can improve green 

building construction for environmental sustainability, focusing 
on reducing carbon emissions and energy consumption. Their 
work employs predictive analytics and ML algorithms, including 
SVM and GAs, to optimize construction decisions, concrete mix 
strength, and energy use. The findings show that AI models can 
achieve prediction accuracies above 95%, with genetic algorithms 
(GA) models predicting CO 2 emissions with an R 2 of 0.95. In 
addition, k-fold cross-validation confirmed the robustness of these 
models, demonstrating that AI can significantly lower operational 
costs, improve efficiency, and reduce greenhouse gas emissions 
during construction. These findings extend the practical applica-
tions discussed by Bura and Bharati [94] by providing concrete 
examples of AI in operational green building processes.
In examining the broader implications of AI adoption in sus-

tainable building design, Jain and Babu [95] focus on its impact on 
architectural practice and human creativity. The study identifies 
potential risks, including reduced innovation, diminished personal 
expression, and the simplification of professional roles, resulting 
from reliance on AI-generated solutions. Despite these challenges, 
the authors argue that AI can serve as a valuable tool for aug-
menting human decision-making, provided it is applied judi-
ciously. Their findings advocate for a human-centered approach in 
AI-assisted design, ensuring that technology enhances, rather than 
undermines, the cognitive and artistic contributions of architects. 
This critical perspective highlights an often-overlooked dimension 
in research on AI in green buildings, encouraging other studies to 
consider not only technical performance and efficiency but also 
the preservation of creativity, professional judgment, and the 
cultural and intellectual richness of architectural practice.
Sari et al. [181] focus on developing ML models to predict green 

building design performance, aiming to accelerate the design 
process while maintaining sustainability standards. The study 
evaluates criteria such as energy efficiency, indoor environmental 
quality, water efficiency, and site planning. Among the tested 
models, the combination of ANNs with an IF-ELSE algorithm pro-
duces the most accurate predictions, achieving a mean square 
error of 1.3. These results suggest that ML-based predictive models 
can effectively support designers in creating optimized green 
buildings more efficiently, thereby reducing the time and 
complexity traditionally associated with integrating sustainable 
design. This study relates to Bura and Bharati [94] because both 
emphasize AI/ML for design efficiency, but it focuses specifically 
on predictive modeling rather than broad design compliance or 
sustainability assessment.
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Shen and Pan [35] propose a framework that combines BIM 

with XML and multi-objective optimization to predict and opti-
mize energy performance in green building design. The framework 
integrates DesignBuilder simulation, Bayesian Optimization-
LightGBM (BO-LGBM), and SHAP (Shapley additive explanation) 
to provide accurate predictions of energy performance. It also uses 
the AGE-MOEA algorithm for multi-objective optimization, mini-
mizing energy consumption, CO 2 emissions, and indoor thermal 
discomfort. The results showed that the BO-LGBM model achieves 
a prediction accuracy with an R 2 value greater than 93.4% and a 
mean absolute percentage error smaller than 2.13%. The optimi-
zation process yields a 13.43% improvement in energy perfor-
mance, and considering uncertainty further enhances the results 
by approximately 4%. This approach enhances transparency and 
efficiency in green building design by providing interpretable 
predictions and optimizing key building performance factors. This 
study complements both Sari et al. [181] and Bura and Bharati [94], 
as all three emphasize AI/ML support for design efficiency, though 
Shen and Pan [35] advance the discussion by combining predictive 
modeling with interpretable optimization tools for greater trans-
parency and multi-objective performance improvement.
Liu et al. [58] propose a BIM-enabled hybrid ML framework to 

address the challenge of balancing multiple objectives in green 
building design. The approach achieves optimized design param-
eters that simultaneously reduce life cycle carbon emissions, lower 
costs, and enhance thermal comfort by integrating BIM-
DesignBuilder simulations with RF prediction, Grey Wolf Optimi-
zation, and NSGA-II, The case study shows reductions of 16.6% in 
carbon emissions, 2% in economic cost, and an 18.3% improvement 
in comfort, highlighting the framework's value in supporting 
reliable multi-objective optimization for sustainable building 
design. This study complements Shen and Pan [35], as both employ 
BIM with AI-driven optimization to enhance energy performance, 
while Liu et al. [58] extend the scope by explicitly integrating cost 
and comfort trade-offs into the optimization process.
The study by Mahmood et al. [56] investigated how to optimize 

green building design by applying ML and DL techniques to the 
ASHARE-884 dataset, with preprocessing methods such as Z-Score 
normalization and label encoding to improve model performance. 
A range of algorithms are tested, including ML models like RF, DT, 
and EGB, and DL models such as GNN, LSTM, and RNN, with 
evaluation based on metrics like accuracy, precision, recall, and F1-
score. The findings show that GNN and LSTM outperform con-
ventional DL techniques, offering greater efficiency and accuracy 
in enhancing environmental practices. Accelerating the design 
process and enhancing decision-making, these models help reduce 
environmental impacts, optimize resources, and improve occu-
pant comfort, underscoring AI's crucial role in shaping more sus-
tainable green building design practices. This work complements 
Liu et al. [58] by further demonstrating how advanced AI models 
can optimize resource use and occupant comfort, extending opti-
mization strategies beyond energy and cost to encompass more 
holistic sustainability goals.
On the whole, these works indicate that AI applications in green 

buildings are evolving from predictive tools to comprehensive 
decision-support and optimization systems, addressing energy, 
cost, comfort, and sustainability in increasingly integrated ways, 
while also raising essential questions about creativity and human-
centered design. The convergence of technical precision, opera-
tional efficiency, multi-objective optimization, and critical reflec-
tion underscores AI's transformative yet complex role in advancing 
sustainable architectural design.

5.2.2.2. Leveraging artificial intelligence for advancing energy effi-
ciency, waste management, thermal comfort, and sustainability.

Recent research highlights how predictive modeling, ML, and 
multi-objective optimization frameworks can improve operational 
performance, reduce energy use and carbon emissions, and sup-
port sustainable decision-making across building design, mate-
rials, and occupant management.
Xiang et al. [61] propose an AI-based energy management 

model (AI-EMM) designed to optimize energy consumption in 
green buildings. The AI-EMM utilizes infrared communication 
systems and smart user identification subsystems to adapt energy 
use based on the internal and external environments, aiming to 
enhance user comfort, safety, and energy efficiency. The model 
incorporates long short-term memory (LSTM) techniques to pre-
dict energy needs, thereby enhancing the efficiency of HVAC sys-
tems. The study's experimental results demonstrate a high 
performance ratio of 94.3%, a 15.7% reduction in energy con-
sumption, a prediction accuracy of 97.1%, and an energy manage-
ment level of 95.7%. These findings demonstrate that AI can play a 
crucial role in enhancing energy management in green buildings, 
aligning with environmental objectives. This study complements 
Mahmood et al. [56] by demonstrating predictive energy man-
agement using AI, where both studies emphasize accurate fore-
casting to improve HVAC efficiency and reduce energy 
consumption.
Shahsavar et al. [59] introduce a smart framework for supplying 

biogas energy in green buildings by integrating response surface 
methodology (RSM), AI, and Petri net modeling. The study focuses 
on addressing energy supply and waste management in green 
buildings, particularly in relation to SDGs. The framework employs 
various AI techniques, including random tree, RF, ANN, and 
adaptive-network-based fuzzy inference system (ANFIS), to pre-
dict accumulated biogas production (ABP). Among these, ANFIS 
achieves the highest accuracy, with a correlation coefficient of 
0.99. The study also integrates a dynamic control system using 
Petri Net modeling to optimize the biogas production process. This 
novel approach emphasizes the synergy between energy supply, 
waste management, and sustainability in green buildings. This 
work aligns with Lu et al. [68] in addressing sustainable waste 
management and energy efficiency, and both studies extend the 
discussion on AI's role from optimizing waste strategy to pre-
dicting and dynamically controlling energy recovery processes. It 
also connects to Feng et al. [57], as integrating renewable energy 
sources complements AI-driven energy efficiency strategies.
Lu et al. [68] propose a framework for evaluating waste man-

agement and energy-saving strategies in green buildings, inte-
grating the analytic hierarchy process (AHP) with ANN. The study 
focuses on construction and demolition waste, aiming to reduce 
waste sent to landfills and lower the use of energy and resources. 
Their approach evaluates various waste management strategies, 
including incineration, composting, and landfilling, taking into 
account environmental, social, and economic factors. The study 
finds that composting performs best when environmental aspects 
are prioritized, while incineration and landfilling are more favor-
able when considering social and economic criteria. This study 
builds on Shahsavar et al. [59] by exploring decision-making 
strategies in waste management, complementing their focus on 
dynamic biogas production. It also links to Xiang et al. [61] in 
emphasizing AI-supported optimization to improve overall 
building efficiency and sustainability outcomes.
Ghalandari et al. [67] propose the use of ML models to optimize 

the thermal conductivity and energy efficiency of green buildings 
through the application of nano-insulation. The authors focus on 
the impact of different insulation thicknesses and configurations 
on energy consumption, utilizing ML methods such as SVM, 
Gaussian process regression, and decision trees. Their results 
demonstrate that the decision tree model offers the best
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performance for predicting thermal conductivity with an accuracy 
above 99%. It reveals that buildings with Nano insulation save up to 
40% more energy compared to conventional insulation materials. 
Moreover, the energy savings per unit area and the reduction in 
CO 2 emissions range between 290 and 293 kg m − 3 , depending on 
various factors such as weather conditions and insulation speci-
fications. This study complements Xiang et al. [61] and Mahmood 
et al. [56,182], as all emphasize AI/ML-driven improvements in 
energy efficiency, and it also connects to Zhu et al. [60] by 
demonstrating how optimization of materials and design param-
eters can feed into multi-objective building performance 
frameworks.
Addressing the problem of energy inefficiency caused by gaps 

in occupant behavior and energy management, Mahmood et al. 
[56] introduce an ML approach based on active learning for pre-
dictive modeling in green buildings. Their work develops models 
capable of predicting heating and cooling demands with high ac-
curacy, using a wide range of regressors including RF, DT, GB, 
XGBoost, CatBoost, LGBM, KNN, and LR. The proposed CBR-AL 
model achieves exceptional predictive performance, with R 2 

values of 0.9975 for cooling and 0.9883 for heating. Beyond its 
technical accuracy, the model demonstrates significant potential 
for reducing energy consumption, improving operational effi-
ciency, lowering carbon footprints, and generating cost savings. 
This predictive framework sets a benchmark for next-generation 
energy management systems in green buildings. This study ex-
tends Xiang et al. [61] by demonstrating broader predictive ca-
pabilities for both cooling and heating, and it complements Feng 
et al. [57] by offering a technical foundation for achieving pro-
jected reductions in energy use and emissions through AI.
Zhu et al. [60] present a multi-objective optimization frame-

work for green building design that integrates BIM-DB, Bayesian-
RF (Bayesian-RF), and non-dominated sorting genetic algorithm III 
(NSGA-III). This framework aims to optimize energy efficiency, 
reduce emissions, enhance cost-effectiveness, and improve ther-
mal comfort by accurately predicting building performance across 
these factors. The study shows that BIM-DB efficiently generates 
building data through simulation and orthogonal tests. The 
Bayesian-RF method significantly improves prediction accuracy, 
achieving a mean squared error (MSE) below 0.08 and an R 2 above 
0.85 for all three prediction objectives. Furthermore, the Bayesian-
RF-NSGA-III optimization algorithm reduces energy consumption 
by 7.68%, carbon emissions by 6.48%, and cost by 1.77%, while also 
improving overall thermal comfort. These results demonstrate the 
framework's effectiveness in reducing resource consumption and 
enhancing comfort while optimizing multiple objectives in green 
building design. This framework complements Ghalandari et al. 
[67] by integrating material and design optimization into a pre-
dictive and multi-objective platform, and it aligns with Xiang et al. 
[61] and Mahmood et al. [56] by using AI for predictive energy 
efficiency and comfort optimization.
Feng et al. [57] investigate how AI can enhance energy man-

agement in green buildings by enabling precise forecasting, 
advanced environmental analysis, and the integration of renew-
able energy. The results reveal that AI applications can reduce 
energy consumption by about 8% and CO 2 emissions by 19% in 
typical mid-size office buildings by 2050 compared to conven-
tional approaches. Moreover, when combined with energy effi-
ciency policies and low-emission energy production, reductions of 
up to 40% in energy use and 90% in CO 2 emissions are projected. 
The study offers a systematic framework for quantifying AI's en-
ergy and carbon-saving potential across building types and cli-
mates, providing evidence of its long-term value in achieving 
sustainability goals. This study is complementary to Xiang et al. 
[61], Mahmood et al. [56], and Shahsavar et al. [59], as all explore

AI for energy efficiency, predictive modeling, and integration with 
renewable or recovered energy to achieve broader sustainability 
goals.
In summary, these studies reveal that AI applications in green 

buildings are evolving from isolated predictive tools to integrated 
optimization systems that simultaneously enhance energy effi-
ciency, manage waste, improve thermal comfort, and reduce 
environmental impact. AI enables more sustainable, efficient, and 
adaptable building practices by linking predictive accuracy with 
multi-objective decision-making, while also reinforcing the 
importance of balancing technological performance with occupant 
needs and environmental goals.

5.2.2.3. Artificial intelligence-driven cost estimation and risk man-
agement: enhancing financial accuracy, risk mitigation, and sus-
tainable decision-making. Recent advances in AI are 
revolutionizing the planning, execution, and management of green 
building projects. AI applications in this domain enhance the ac-
curacy of cost estimation and provide robust tools for risk 
assessment, supporting more informed decision-making and 
sustainable resource allocation throughout the construction 
lifecycle.
Exploring cost estimation and control in sustainable construc-

tion, Zhang [65] introduces the AI-driven comprehensive cost 
dynamics model (AICD-CDM) to address the complexity of green 
building projects. The framework integrates multiple ML tech-
niques, including linear regression (LR), ANN, RF, XGBoost, light 
gradient boosting (LGBoost), and natural gradient boosting 
(NGBoost), to provide both point predictions and probabilistic 
forecasts for cost management. Findings demonstrate that the 
model effectively captures nonlinear relationships among diverse 
cost-influencing factors, offering enhanced accuracy, adaptability, 
and computational efficiency. The study demonstrates that the 
AICD-CDM framework can significantly enhance resource alloca-
tion and cost optimization, providing decision-makers with a 
powerful tool for sustainable project management. This study 
complements Alshboul et al. [63], who also explore ML approaches 
for green building cost prediction, by introducing a broader multi-
algorithmic framework with probabilistic forecasting capabilities. 
In addressing safety considerations, Xu [64] examines fire risk 

assessment in green intelligent buildings using AI. Leveraging IoT 
data and expert input, a deep neural network model is developed 
to predict and assess fire risks. The model is continuously trained 
and refined, enabling more precise risk predictions for individual 
building units. Results highlight the potential of AI to integrate 
real-time data and expert knowledge, providing robust early-
warning systems and supporting proactive fire risk management 
in smart green buildings. This work relates to Zhu et al. [66], as 
both studies utilize AI for risk assessment in green buildings. 
Specifically, Xu [64] emphasizes fire safety, while Zhu et al. [66] 
develop a broader, multi-risk predictive framework.
Focusing on risk management, Zhu et al. [66] propose a hybrid 

ML approach combining the fuzzy analytic hierarchy process 
(FAHP), multilayer perceptron neural networks (MLPNNs), and 
PSO to quantify and predict risks in green building projects. 
Through structured input from 30 experts, ten risk categories are 
prioritized, with economic, market, and functional risks identified 
as the most critical. The model forecasts the impact of the top five 
risks on project cost, time, quality, and scope, achieving RMSE 
values between 0.06 and 0.09 and R 2 values up to 0.95. These re-
sults indicate the framework's strong predictive capability and its 
utility for actionable, data-driven risk management in sustainable 
construction. This study expands on concepts similar to Xu [64] by 
applying AI for multi-risk prediction beyond fire safety, and it 
provides a methodological complement to Zhang [65] by
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quantifying risk impacts that can inform cost and project man-
agement decisions.
Addressing cost prediction from a machine learning perspec-

tive, Alshboul et al. [63] develop models for forecasting con-
struction costs in green buildings, which present unique 
challenges due to new technologies and limited stakeholder 
experience. Using XGBOOST, deep neural networks (DNN), and RF, 
the study evaluates model performance across soft and hard cost 
attributes. XGBOOST achieved the highest accuracy of 0.96, fol-
lowed by DNN at 0.91 and RF at 0.87. The findings demonstrate 
that AI-based models can provide reliable benchmarks for con-
struction costs, supporting informed decision-making and 
enhancing automation in green building project management. 
This study complements Zhang [65], which also addresses AI-
based cost estimation, but Zhang extends the approach with a 
multi-algorithmic framework and probabilistic forecasting for 
enhanced uncertainty management.
Wu et al. [62] propose a two-stage integrated ML framework for 

predicting cost reasonableness in green building projects (GBPs). 
Their approach uses principal component analysis (PCA) inte-
grated with an SVM algorithm for cost prediction and least squares 
SVM (LSSVM) for determining the cost deviation range. The re-
sults, based on 126 project samples, demonstrate that the PCA-
SVM model outperforms traditional models, such as SVM and 
multiple regression analysis, with significantly lower prediction 
errors. Only 17% of the projects deviated beyond the reasonable 
cost range. This framework addresses dimensionality challenges 
and ensures accurate, project-specific cost predictions, supporting 
sustainable investment in green buildings. This study comple-
ments Zhang [65] and Alshboul et al. [63], as all three focus on AI-
driven cost estimation. Wu et al. [62] advance the discussion by 
refining prediction accuracy and tackling dimensionality chal-
lenges that others only partially address.
In summary, these studies demonstrate that AI can significantly 

enhance both the financial and operational management of green 
buildings. Decision-makers are better equipped to predict costs, 
manage uncertainties, and mitigate project risks by integrating ML 
techniques, probabilistic forecasting, and hybrid risk assessment 
frameworks, thereby advancing the sustainability and efficiency of 
green building development.

5.2.3. Harnessing artificial intelligence for zero-energy, net-zero-
energy, nearly-zero-energy, and positive energy building 
optimization, real-time control, and transparency
The global surge in energy demand, particularly from the 

building sector, has intensified the urgency to rethink how build-
ing structures are designed, operated, and integrated into broader 
energy ecosystems. In response, ZEBs, nZEBs, and NZEBs have 
emerged as key solutions for advancing environmental goals. 
These building paradigms aim to drastically reduce carbon emis-
sions by balancing or minimizing energy consumption through a 
blend of energy-efficient designs, renewable energy sources, and 
advanced management systems. Central to accelerating the reali-
zation of these sustainable buildings is the integration of AI, which 
offers new pathways for optimizing energy performance, fore-
casting consumption patterns, managing renewable energy flows, 
and enhancing occupant comfort, all with a level of precision and 
adaptability previously unattainable. Recent research reflects a 
growing convergence between AI techniques, such as ML, DL, 
optimization algorithms, and predictive control systems, and the 
objectives of ZEBs, nZEBs, and NZEBs constructions.

5.2.3.1. Zero-energy, nearly-zero, and positive energy buildings. 
The pursuit of zero-energy, nearly-zero, and positive-energy 
Buildings has intensified in recent years, with AI emerging as a

transformative enabler for energy efficiency, renewable integra-
tion, and intelligent building management. Wang et al. [81] review 

the latest advancements in ZEBs, focusing on the growing role of AI 
to improve energy efficiency. The study highlights three main 
technological areas: energy-efficient measures (EEMs), renewable 
energy technologies (RETs), and building energy management 
systems (BEMS). It emphasizes how EEMs reduce energy demand 
by enhancing building design, using phase change materials, 
optimizing HVAC systems, and influencing occupant behavior. It 
also highlights how renewable sources, such as solar, wind, 
biomass, and geothermal energy, can be integrated through 
distributed energy systems. Lastly, it underscores the role of BEMS 
in managing energy use, detecting faults, and optimizing perfor-
mance, all while leveraging AI to further improve system effi-
ciency. This work provides a foundation for subsequent studies by 
demonstrating how AI-driven technologies can integrate energy 
management and renewable energy, a perspective that is further 
developed and applied in the works of Yao et al. [183], Megahed 
et al. [72], and Rocha et al. [33]. The focus on the role of AI and 
BEMS builds upon previous research by introducing a technology-
driven dimension to renewable energy integration in ZEBs. 
Examining the evolving trajectory of ZEB research, Jin and Bae 

[79] apply AI and NLP to analyze public research and development 
grant data. The study provides a detailed analysis of trends within 
ZEB research, focusing on the entire energy continuum, which 
encompasses energy supply, demand, distribution, and realization 
within architectural frameworks. It highlights emerging areas of 
interest, theoretical gaps, and provides practical recommendations 
for practitioners and policymakers. It presents both academic in-
sights and practical guidance for the implementation of sustain-
able strategies in the development of ZEBs. Their use of AI and NLP 
offers a novel perspective on understanding ZEB research trends, 
contributing to the academic foundation by providing a data-
driven exploration of energy supply, demand, and distribution. 
This study provides a contextual foundation that complements the 
application-oriented research of Megahed et al. [72] and Rocha 
et al. [33], reinforcing the growing role of AI in energy manage-
ment and guiding future technological interventions in ZEBs.
A novel energy management technique for ZEBs using neural 

network predictive control (NNPC) is proposed by Megahed et al. 
[72]. This technique combines two methodologies: neural net-
works and model predictive control, to optimize energy usage in 
ZEBs. The key features of NNPC include its real-time operation, 
ability to connect to the Internet, simple controls, and disturbance 
reduction. Notably, the system is designed to learn from human 
behavior, making it more adaptive and efficient. Furthermore, the 
study introduces a forecasting technique using an ANN to predict 
renewable energy sources, specifically wind and photovoltaic, to 
maximize energy utilization without relying on the electrical grid. 
This study was conducted on a building with a hybrid system and 
energy storage units, using data from wind and solar measure-
ments over seven months, focusing on a high-energy consumption 
day. It connects to several key studies in the ZEB field, particularly 
in the areas of energy management and renewable energy inte-
gration. It builds on and complements the work by Wang et al. [81] 
regarding the integration of renewable energy sources in ZEBs. 
Rocha et al. [33] introduce a solution to energy planning in 

buildings by introducing the concept of nZEcB, buildings with zero 
or nearly zero annual energy costs. The study employs a range of AI 
techniques, including bidirectional LSTM, ordinary least squares 
linear regression, K-means, Pearson's correlation, decision tree, 
and binary gravitational search algorithm, to design an optimal 
distributed generation system. This system incorporates renew-
able energy sources such as wind and photovoltaic, along with a 
battery bank and an automated capacitor bank for power factor
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compensation. A case study on a real public building showed that 
the distributed generation system produced 2.805 GWh annually, 
which met 160.5% of the building's electrical demand and nearly 
eliminated energy costs. Despite an excess production of energy, 
which could not be fully exported due to lower feed-in tariffs, the 
system proved to be cost-effective with a payback period of 6.79 
years. This study extends the work of Megahed et al. [72] by 
applying AI techniques to optimize distributed generation systems 
in ZEBs, offering a more comprehensive, AI-driven solution. It 
advances the understanding of energy management in ZEBs, 
particularly by incorporating renewable energy sources with AI-
based optimization techniques. It also supports the findings of 
Wang et al. [81], who identified AI and BEMS as key components 
for enhancing energy efficiency and integrating renewable energy 
in ZEBs. Furthermore, it corroborates the insights from Jin and Bae 
[79], reinforcing the growing role of AI in energy management in 
ZEBs.
Focusing on data-driven approaches for achieving net-zero and 

positive-energy buildings (PEBs), Mousavi et al. [80] explore how 

ML, AI, and building modeling simulations can predict energy 
production and optimize building systems to achieve PEB goals. 
The authors highlight key factors, including occupant comfort, 
building efficiency, economic benefits, and clean energy provision, 
as critical to achieving PEB targets. They categorize data-driven 
techniques used in PEBs, including renewable energy supply pre-
diction, optimizing building envelope design, and improving 
comfort control with IoT. They outline a framework for applying 
these techniques, focusing on reducing energy demand, enhancing 
energy efficiency, and enabling effective energy management in 
various building types. Their approach to optimizing renewable 
energy supply and demand, as well as reducing energy con-
sumption through building envelope design, aligns with the ob-
jectives explored by Rocha et al. [33] regarding the use of AI for 
optimizing energy management in buildings. In addition, this 
study reinforces the importance of ML and AI for achieving effi-
cient and effective PEB and net-zero building outcomes, com-
plementing Jin and Bae [79], who highlight the growing role of AI 
in shaping ZEB research trends and future directions.
These advances demonstrate how AI-driven approaches are 

shifting buildings towards adaptive, self-sufficient systems that 
meet energy targets and strengthen the foundations for sustain-
able and resilient built environments. Importantly, they highlight 
the transition from isolated energy-efficient measures to inte-
grated, data-driven frameworks that align with broader climate 
goals and the future of smart urban ecosystems.

5.2.3.2. Net-zero-energy buildings. NZEBs are increasingly 
leveraging AI and data-driven strategies to optimize energy per-
formance, integrate renewable energy sources, and enhance 
occupant comfort and building autonomy. Focusing on their 
development and optimization, Ibrahim et al. [76] explore design 
strategies, technological innovations, and their impact on energy 
efficiency. The authors highlight the role of AI in enhancing NZEB 
performance, particularly in predictive energy analytics, intelli-
gent HVAC systems, and real-time energy management. They also 
address significant barriers to NZEB implementation, such as high 
costs, regulatory limitations, and inadequate stakeholder partici-
pation. They suggest region-specific solutions, such as integrating 
renewable energy systems and optimizing building envelopes, to 
overcome the challenges of diverse climates and varying regula-
tory frameworks. The study advocates for enhanced cooperation 
and tailored approaches to promote the adoption of NZEB, offering 
valuable insights for researchers, policymakers, and industry 
stakeholders seeking to promote sustainable building practices. 
This study builds upon the work of Wang et al. [81] and Rocha et al.

[33] by expanding the role of AI in optimizing energy performance 
in NZEBs. The focus on renewable energy integration and opti-
mizing building envelopes in regional contexts complements the 
work of Megahed et al. [72] and Mousavi et al. [80], who also 
investigate strategies for integrating renewable energy sources 
and improving energy performance through data-driven 
approaches.
An ExplainerX is proposed by Kermiche et al. [78] as an inte-

grated XAI framework designed to improve the prediction of en-
ergy usage in NZEBs. This framework addresses common 
shortcomings in current AI solutions, such as the lack of trans-
parency in data and results, issues with model drift, and the use of 
disparate tools during model development. ExplainerX stream-
lines the prediction process by providing transparency at each 
stage, ensuring both performance and interpretability. The 
framework incorporates components of the CRISP-DM methodol-
ogy, providing detailed explanations of decision-making pro-
cesses. A case study using real datasets from the European Union 
Improvement Project demonstrates the practical application of 
ExplainerX, showcasing its potential to enhance energy manage-
ment in NZEBs. This study builds upon the work of Wang et al. [81] 
and Megahed et al. [72] by addressing the transparency and 
interpretability issues commonly associated with AI models in the 
context of ZEBs. Their focus on XAI solutions complements and 
enhances these studies by adding a layer of transparency that 
improves trust in the AI-driven energy management systems. This 
study contributes to the growing body of work on AI applications 
in NZEBs by providing a clear methodology for developing trans-
parent and XAI models that can enhance both operational per-
formance and stakeholder confidence.
Yu et al. [77] focus on the design and implementation of an AI-

based control strategy for NZEBs within a smart microgrid 
framework. The authors propose integrating a supervisory control 
and data acquisition (SCADA) system for online monitoring of 
energy consumption and environmental parameters. The control 
strategy aims to optimize power management and heat recovery 
efficiency. The study demonstrates the practical application of this 
strategy in several NZEBs, showcasing its ability to manage energy 
more effectively within the context of a smart microgrid. This 
study extends previous research by integrating AI with SCADA 
systems for dynamic monitoring, providing a more comprehensive 
solution for managing energy within NZEBs. The practical imple-
mentation in real-world projects enhances the applicability of AI 
solutions discussed by Wang et al. [81], who emphasize the inte-
gration of energy management systems in ZEBs.
A hybrid optimization strategy aimed at enhancing the auton-

omy of NZEBs by minimizing grid energy dependency is presented 
by Georgiou et al. [74]. Their approach combines linear program-
ming (LP) for real-time optimization of battery dispatch, ANNs for 
forecasting energy demand and PV generation, and genetic algo-
rithms (GA) to refine the dispatch process. Moreover, the system 

advisor model (SAM) from the national renewable energy labo-
ratory (NREL) was integrated to better capture battery behavior. 
Applied to a real building case study, the method successfully 
reduced annual grid energy usage by 53% and achieved 60% 
renewable energy coverage, showing that this integrated method 
significantly advances NZEB autonomy. This study contributes a 
comprehensive, real-time, hybrid solution for improving energy 
self-sufficiency in NZEBs.
Wu et al. [75] develop an intelligent optimization framework 

aimed at enhancing the performance of NZEBs. The framework 
integrates BIM with DesignBuilder and a hybrid ML approach 
combining RF and NSGA-III. The model optimizes multiple objec-
tives (e.g., energy efficiency, comfort, environmental impact, and 
cost) through NSGA-III by simulating building design scenarios
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and predicting their performance with RF A case study of a 
building validates the method, demonstrating significant energy 
savings (21.25%) and high model accuracy (R 2 values between 0.91 
and 0.93). This integrated approach offers a powerful tool for the 
multi-objective design optimization of NZEBs.This study extends 
the work of Georgiou et al. [74] by introducing a hybrid ML and 
optimization framework that targets multiple performance goals 
simultaneously, not just energy management. The use of RF and GA 
also aligns with the predictive and optimization techniques dis-
cussed in Mousavi et al. [80] and Ibrahim et al. [76].
Qin et al. [71] aim to enhance energy efficiency in NZEBs by 

improving the accuracy of heating and cooling load predictions, 
which are crucial for optimal control of HVAC systems. The authors 
apply four ML methods—multivariate polynomial regression, SVR, 
multilayer perceptron, and XGBoost—to build datasets. The study 
highlights the significance of feature selection in enhancing model 
accuracy and simplifying input complexity. Real-world factors 
such as occupancy changes and weather uncertainties are also 
considered. Results indicate that proper feature selection signifi-
cantly enhances model performance, while deployment chal-
lenges, such as thermal inertia effects, must be addressed to 
achieve consistent prediction accuracy. This study advances the 
predictive modeling strand found in Georgiou et al. [74] by con-
ducting a direct comparative analysis of multiple ML models 
tailored for NZEB load forecasting. Its detailed attention to feature 
selection and real-world deployment challenges resonates with 
the transparent AI modeling concerns raised by Kermiche et al. 
[78]. In addition, its focus on HVAC load forecasting aligns with the 
smart grid and energy management applications presented in Yu 
et al. [77], while diverging in its emphasis on predictive rather than 
control strategies.
Chegari et al. [73] develop a multi-objective optimization 

approach for NZEBs that balances minimizing energy consump-
tion, maximizing thermal comfort, and enhancing energy self-
sufficiency. Their method uses a surrogate model based on ANNs 
and optimizes it through multi-objective particle swarm optimi-
zation (MOPSO). Applied to residential buildings across different 
climate zones, their approach significantly improves building 
performance metrics, achieving average reductions of 75% in en-
ergy consumption, 50% in thermal comfort, and 85% in self-
sufficiency. The study highlights the practicality and adaptability 
of their surrogate-model-based optimization framework for ar-
chitects, engineers, and designers aiming to create energy-
resilient and comfortable NZEBs. This study expands on the opti-
mization strategies explored by Georgiou et al. [74] and Wu et al. 
[75], particularly by integrating surrogate modeling to streamline 
the optimization process for NZEBs. Their use of ANNs and MOPSO 
aligns with broader AI-driven optimization trends seen in Mousavi 
et al. [80], but Chegari et al. [73] specifically differentiate them-
selves by focusing on balancing energy, comfort, and self-
sufficiency simultaneously rather than prioritizing a single 
objective. Furthermore, their emphasis on practical, climate-
adapted solutions echoes the regional adaptability concerns 
raised by Ibrahim et al. [76].
Alden et al. [70] introduce a novel deep learning-based method 

for separating HVAC energy consumption from total residential 
loads, aiming to enhance home energy management systems 
(HEMS) in smart and NZE homes. The authors develop LSTM 

encoder-decoder models that utilize future weather data instead 
of standard weather forecasts to accurately predict both HVAC and 
PV energy usage. Utilizing the extensive SHINES dataset, the pro-
posed method achieves low prediction errors well within recog-
nized academic and ASHRAE standards. In addition to improving 
energy monitoring, their approach also demonstrates the ability of 
smart homes to act as dispatchable loads or energy generators

within a virtual energy operation framework. This study enhances 
the forecasting capabilities essential for smart NZE home man-
agement, closely paralleling the goals outlined by Qin et al. [71], 
who also emphasized accurate HVAC load predictions using 
diverse ML models. Their integration of LSTM networks aligns with 
the AI-driven predictive frameworks presented in Kermiche et al. 
[78] and Wu et al. [75]. However, Alden et al. [70] focus on real-
time energy separation and management, extending these prior 
works by offering actionable solutions for existing residential in-
frastructures without specialized HVAC submetering.
Overall, the reviewed studies in the two subsections demon-

strate the growing sophistication and diversity of AI and ML ap-
plications in the pursuit of ZEBs, nZEBs, NZEBs, and PEBs. From 

predictive load forecasting and energy optimization to explainable 
frameworks and smart control strategies, these works expand, 
diversify, and deepen the understanding of the field as to how 

intelligent systems can transform building performance. While 
each study offers distinct methodological advancements and fo-
cuses on different aspects, such as transparency, optimization, or 
real-time control, they all converge on the critical goal of 
enhancing energy efficiency, autonomy, and occupant comfort. 
These insights underscore the importance of integrated, data-
driven solutions in overcoming current technical and practical 
barriers, thereby establishing a robust foundation for future 
research and real-world deployment in sustainable building 
development, which advances environmental goals.

5.2.4. Artificial intelligence-powered digital twins in building 
systems: applications for advancing smart, green, and zero-energy 
building environments
The integration of AI and DT technologies within building 

systems is reshaping the landscape of sustainable smart built en-
vironments. These technologies enable the optimization of build-
ing operations through real-time data analysis, predictive 
modeling, and intelligent decision-making, which are essential for 
advancing environmental goals. They play a key role in enhancing 
energy efficiency, resource management, and performance opti-
mization in buildings, making them more sustainable and intelli-
gent by reducing energy consumption, improving comfort, and 
meeting environmental targets. The reviewed studies explore the 
key contributions and implications of AI and DT applications 
across diverse building typologies, highlighting their potential to 
drive sustainability and foster adaptive built environments. 
Deena et al. [82] and Agostinelli et al. [25] both explore AI-

driven DT applications in energy management, specifically in 
residential buildings. Agostinelli et al. [25] investigate DT ap-
proaches for residential districts, analyzing energy efficiency in-
terventions and how DTs help assess energy production from 

renewable sources to meet nZEB criteria. Similarly, Deena et al. 
[82] focus on neighborhoods, showcasing how AI, combined with 
IoT and DT technologies, can optimize energy consumption in 
buildings, with a particular emphasis on achieving NZEB stan-
dards. They model various energy-efficient scenarios to ensure 
optimal comfort levels while minimizing energy consumption. 
Shen et al. [34] take a step further, focusing on how DT can opti-
mize PEDs, which integrate energy systems across entire neigh-
borhoods or districts. The authors highlight the role of DTs in 
coordinating multiple systems (e.g., energy, transportation) and 
improving urban sustainability. This study aligns with Arowoiya 
et al.’s work [26] by demonstrating how DT can be scaled up from 

individual buildings to entire districts, thereby driving sustainable 
urban development. It emphasizes the role of AI and big data in 
optimizing PEDs, with applications in real-time analysis and sus-
tainability goals.
De Wilde [84] presents a comprehensive review of building
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performance simulation in the context of AI and DTs. This study 
critiques and synthesizes emerging trends in building simulation, 
identifying conceptual overlaps and distinctions between DT 
technology and traditional simulation methods. This work bridges 
the gap between simulation and real-world applications of AI in 
building performance, particularly in the context of energy and 
sustainability. It complements the more specific case studies 
mentioned earlier, such as those by Deena et al. [82] and Agosti-
nelli et al. [25], by providing a theoretical foundation for inte-
grating AI and DTs into building performance modeling. The study 
underscores the role of these technologies in enhancing building 
energy management and sustainability at both the building and 
district levels.
Seen from a different perspective, El-Gohary et al. [29] extend 

the application of DTs into energy consumption prediction in 
residential buildings, specifically under the influence of climate 
change. The authors employ an ANN in the DT model to predict 
energy use, highlighting the role of AI in understanding energy 
patterns across different materials and designs. This is particularly 
important in the context of green building design, where mini-
mizing energy consumption is crucial to reducing environmental 
impact. This study expands the scope of earlier works by focusing 
on predictive modeling, enabling engineers and architects to select 
materials that optimize energy use. In a recent systematic review, 
Semeraro et al. [184] address the role of DT technology in 
advancing smart and green buildings, focusing on its potential to 
enhance sustainability, energy efficiency, performance moni-
toring, and occupant well-being. The study shows that DT appli-
cations in green and smart buildings are primarily supported by 
BIM, AI, and IoT, which enable real-time data integration, auto-
mation, and system optimization. DTs are being applied across 
various areas, including energy management, predictive mainte-
nance, occupant-centered control, and environmental monitoring. 
The findings also reveal that while DTs hold strong promise for 
achieving net-zero energy performance and waste reduction goals, 
most current studies remain conceptual or simulation-based, with 
limited large-scale empirical validation. This study aligns with De 
Wilde [84], who highlights the conceptual gaps between DTs and 
traditional simulation methods, and complements El-Gohary et al. 
[29], who demonstrate the predictive potential of AI-powered DTs 
in addressing energy consumption under climate change 
scenarios.
Arsiwala et al. [27] explore the application of DT and ML to 

monitor CO 2 emissions in existing buildings. Their study empha-
sizes the importance of monitoring carbon emissions and opti-
mizing the operational energy performance of buildings to meet 
net-zero goals. It adds a new dimension to the discussion by 
highlighting the use of AI not only for energy optimization but also 
for reducing the environmental footprint of buildings. It comple-
ments the findings of the study by Alnaser et al. [5], who focus on 
the use of AI-powered DTs in smart cities, by introducing a prac-
tical application for carbon footprint management in existing 
building stock, reinforcing the broader goal of carbon neutrality 
and sustainability in the built environment. Alnaser et al. [5] 
discuss how DTs are being used in construction, facility manage-
ment, and energy optimization for ZEBs, further supporting the 
shift towards more resilient and sustainable urban ecosystems. 
Their study ties together the findings from previous studies by 
focusing on the intersection of DTs, AI, and IoT, emphasizing the 
need for smart city frameworks to achieve urban sustainability. 
Dinmohammadi and Shafiee [28] expand on the application of 

AI and DT by addressing thermal comfort and energy consumption 
in residential buildings under varying indoor and outdoor condi-
tions. Their study extends beyond energy prediction by incorpo-
rating real-time data from sensors and IoT devices to optimize

both thermal comfort and energy consumption. This contributes to 
the sustainability discussion by emphasizing the occupant expe-
rience in energy-efficient building designs, while also using DTs 
for monitoring and predicting building performance. Likewise, 
Arowoiya et al. [26] focus on thermal comfort and energy effi-
ciency, performing a comprehensive review of DT technology in 
buildings. The authors identify the need for more research on 
human-centered approaches, such as occupant perceptions of 
comfort, and advocate for more refined algorithms to improve 
predictive accuracy. Their work complements the findings of 
Dinmohammadi and Shafiee [28] by emphasizing the importance 
of occupant well-being in smart building designs, particularly in 
the context of thermal comfort and energy management.
Jafari et al. [83] propose a novel DT architecture integrated with 

asset management and building simulation technology to opti-
mize building performance and energy usage. Their approach 
aligns with the broader theme of integrating real-time data and AI 
algorithms to improve the operational control of buildings, similar 
to the DT and AI-driven systems explored in earlier studies. The 
study focuses on asset performance and maintenance strategies 
for both new and existing buildings, contributing to the under-
standing of how DT technologies can enable predictive mainte-
nance, energy efficiency, and cost savings in buildings. This work 
also complements the study by Alnaser et al. [5], who advocate for 
smart city applications of DTs, by focusing specifically on how the 
latter can be used in asset management and building operations. 
AI-driven DTs play an important role in enhancing the envi-

ronmental goals of SGZEBs. In the context of smart buildings, they 
offer real-time monitoring and optimization capabilities, enabling 
adaptive energy management and operational efficiency. Smart 
buildings can automate responses to environmental variables, 
enhance occupant comfort, and optimize resource usage, inte-
grating AI with DTs, aligning with the core principles of smart 
building design. For green buildings, these technologies enable 
precise environmental monitoring, allowing for more efficient use 
of renewable resources and a reduced environmental footprint. 
They provide data-driven insights that help in achieving sustain-
ability benchmarks, such as lower carbon emissions and improved 
energy usage. In ZEBs, AI-powered DTs help track energy pro-
duction and consumption to ensure that energy produced from 

renewable sources meets or exceeds the building's consumption. 
This integration enables continuous optimization, allowing 
buildings to remain self-sufficient while contributing to broader 
environmental sustainability efforts. DTs push these building ty-
pologies towards more adaptive, efficient, and resilient futures by 
supporting data-driven, dynamic decision-making.

5.3. Artificial intelligence-digital twin integration for 
environmentally sustainable smart built environments and cities

This subsection presents a unified framework that integrates AI 
and DT technologies to advance environmental goals in smart 
buildings. It also explores the broader implications of this frame-
work for sustainable urban development and environmentally 
sustainable smart cities.

5.3.1. A framework for environmentally sustainable smart built and 
urban environments as enabled by artificial intelligence-digital 
twin integration across smart, green, and zero-energy buildings 
The proposed framework (Fig. 6) is developed based on insights 

gained from the analysis and synthesis of recent interdisciplinary 
literature presented in the two parts of the results section. It is 
grounded in the application and integration of AI and DTs as 
foundational technologies to advance the development of envi-
ronmentally sustainable smart built environments. Both AI and
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DTs serve as critical enablers in terms of enhancing the intelli-
gence, adaptability, and operational efficiency of built assets 
within urban ecosystems.
At the foundation of the framework lies AI, which provides the 

essential computational capacity for perceiving, learning, 
reasoning, and decision-making. Building on this base, the next 
layer comprises AI subdomains, such as ML, DL, and NLP, that 
supply the methodological tools and algorithmic models for 
extracting patterns, generating predictions, performing classifi-
cations, and enabling intelligent interactions from the diverse 
datasets collected through sensors, IoT devices, and BMS. In the 
subsequent layer, DTs establish dynamic, real-time virtual repre-
sentations of physical buildings and infrastructure, continuously 
synchronized with real-world conditions. Operating in unison, AI 
and DTs drive predictive analytics, real-time monitoring, anomaly 
detection, scenario simulation, adaptive optimization, and stra-
tegic planning, thereby forming the intelligence backbone of the 
framework.
These technologies are deployed across three key building ty-

pologies: smart buildings, where AI and DTs enable intelligent 
control over energy consumption, HVAC systems, lighting, occu-
pant comfort, and security; green buildings, where sustainability-
oriented performance metrics, such as water conservation, indoor 
air quality, material circularity, and waste minimization, are 
continuously monitored, analyzed, and improved; and ZEBs, 
where AI and DT simulations balance renewable energy generation 
and energy consumption, dynamically adjusting operations to 
maintain a net-zero or positive energy balance. The principles 
underlying each typology reinforce one another (↔): the data-
driven, adaptive control of smart buildings supports the sustain-
ability objectives of green buildings; the resource efficiency and 
circularity principles of green buildings inform the energy self-
sufficiency and balancing strategies in ZEBs; and the renewable 
energy integration and dynamic optimization of ZEBs feed back to 
enhance operational intelligence and occupant-centered strate-
gies in smart buildings. Together, these interactions create a 
continuous loop of principle-based improvement that strengthens 
both performance and sustainability across building systems. 
Through these applications, AI and DTs directly influence and 

improve critical environmental indicators, including energy effi-
ciency and demand reduction, renewable energy integration and 
storage optimization, carbon footprint reduction and net-zero 
strategies, water efficiency and resource management, indoor 
environmental quality and thermal comfort, as well as predictive

maintenance and lifecycle optimization. These technologies 
enable buildings to meet and adaptively exceed established envi-
ronmental benchmarks and certification standards (e.g., see 
Ref. [69] for a systematic review) by facilitating continuous 
monitoring, predictive interventions, and evidence-based deci-
sion-making.
The framework operates through a dynamic feedback loop, 

wherein AI learns from continuously updated DT data, simulations 
inform future planning and operational strategies, and real-world 
building performance feeds back into refining AI models. This self-
improving cycle ensures that buildings and urban spaces are not 
static achievements but living systems that evolve in response to 
environmental conditions and shifts. Overall, the framework pro-
vides a transformative pathway towards achieving broader envi-
ronmental goals in urban environments, promoting climate action, 
and fostering sustainable development by leveraging the synergies 
among AI, DTs, and SGZEB practices.
The ultimate contribution of this integrated system is the 

realization of environmentally sustainable smart built environ-
ments characterized by interconnected, adaptive, and self-
optimizing assets that operate within a larger urban ecosystem 

committed to sustainability, resilience, and human well-being. 
Buildings are no longer isolated entities but active nodes within 
a responsive, data-driven network that collectively advances 
resource efficiency, climate resilience, and the quality of life.
This framework does not operate in isolation but is integral to 

the broader vision of environmentally sustainable smart cities. AI 
and DT technologies enable cities to be both technologically 
advanced and ecologically responsible by integrating intelligent, 
self-adaptive buildings into a cohesive urban ecosystem. They 
enable a systemic transition from fragmented sustainability efforts 
towards fully integrated, city-wide environmental management 
strategies. SGZEBs thus act as foundational components of a larger, 
interconnected urban fabric, one that actively enables carbon 
neutrality, promotes circular resource flows, supports climate 
resilience, enhances biodiversity, and contributes meaningfully to 
global environmental and climate goals. Through continuous 
innovation, data-driven adaptability, and human-centered design, 
the framework envisions smart cities as living systems that can 
thrive in harmony with both people and the planet. Inter-
connected, adaptive building systems actively contribute to ho-
listic urban sustainability objectives. By ensuring that built 
environments dynamically interact with and support broader ur-
ban flows, such as energy grids, mobility systems, material usage, 
and water networks, AI and DT technologies enable the emergence 
of regenerative urban ecosystems. Thus, the proposed framework 
offers not only a micro-level roadmap for sustainable building 
performance but also a macro-level strategy for reshaping cities as 
integrated, intelligent, and environmentally restorative entities.

5.3.2. Connecting the framework to environmental sustainability, 
sustainable development, and sustainable smart cities
The proposed framework, centered on the integration of AI and 

DTs across SGZEBs, directly advances the broader goals of envi-
ronmental sustainability, sustainable development, and the crea-
tion of smart cities. Recent scholarly contributions reinforce and 
contextualize the framework's relevance in these domains.
Bibri [9] explores how AI and AIoT technologies drive the 

development of smarter eco-cities by embedding circular econ-
omy principles, metabolic circularity, and tripartite sustainability 
into urban systems. These technologies are shown to enable 
resource optimization, waste minimization, and reduced envi-
ronmental impacts, fostering resource-efficient urban environ-
ments. These principles are central to the framework's building-
level and city-scale environmental integration. Building on this,

Fig. 6. A framework for environmentally sustainable smart built and urban envi-
ronments, as enabled by artificial intelligence-digital twin integration across smart, 
green, and zero-energy buildings.
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Bibri [8] investigate the role of both AI and AIoT in advancing the 
environmental performance of emerging smarter eco-cities. The 
study highlights how AI and AIoT solutions can optimize resource 
use, enhance infrastructure efficiency, monitor environmental 
parameters, reduce carbon footprints, and foster climate resil-
ience. This study aligns with the framework's dynamic environ-
mental monitoring and operational optimization of SGZEBs by 
enabling real-time emission reductions and enhancing urban 
resilience. Bibri et al. [1] extend this perspective by emphasizing 
the synergistic interplay of AI, AIoT, and UDTs in data-driven 
environmental planning in sustainable smart cities. They demon-
strate how the integration of these technologies reshapes sus-
tainable urban development by enabling adaptive planning, 
enhanced environmental monitoring, and dynamic decision-
making. This underscores the transformative role of AI- and 
AIoT-driven DT in aligning smart city functions and domains with 
environmental goals, directly supporting the core foundation of 
the proposed framework.
In a more focused study, Alnaser et al. [5] provide further evi-

dence for the role of AI-powered DT in sustainable buildings and 
smart cities. They highlight how the integration of AI, IoT, and DTs 
enables energy optimization, enhances building resilience, and 
supports sustainability in urban environments. These insights 
contribute directly to the framework's emphasis on energy effi-
ciency and resource management across different spatial scales. 
Kumar et al. [185] add to this perspective by illustrating how AI-
driven DT can simulate and optimize resource use and energy 
consumption in real time, among others. This strengthens the 
framework's operational foundation for urban efficiency and 
climate-responsive infrastructure.
In addition, Matei and Cocoş atu [12] complement these find-

ings by examining the role of sensor-based DT systems and their 
integration with AIoT, intelligent decision-making algorithms, and 
cloud networks in environmentally sustainable urban manage-
ment. Their study highlights how data-driven urban computing 
frameworks facilitate real-time environmental monitoring, pre-
dictive analytics, and decentralized control, which are essential to 
the framework's AI-DT integration layer. While also acknowl-
edging participatory dimensions, it primarily highlights how 

interconnected sensor networks and digital ecosystems support 
environmentally informed governance, aligning with the frame-
work's emphasis on adaptive and ecologically responsive smart 
city operations. Supporting these insights, Thamik et al. [18] 
further discuss AIoT's role in advancing environmental protection, 
renewable energy systems, and smart community development, 
thus aligning with the framework's focus on interconnected, 
adaptive urban environments. Expanding on this, Mishra et al. [17] 
demonstrate how AIoT technologies enhance energy efficiency, 
promote renewable energy transitions, and support circular 
economy models. This complements the established role of IoT and 
big data analytics in advancing environmental solutions for sus-
tainable smart cities, including buildings, particularly in 
enhancing energy efficiency and reducing carbon emissions [186]. 
IoT and big data analytics are complementary and integrated, with 
IoT generating data and analytics extracting actionable insights in 
a continuous loop that supports real-time, predictive, and adaptive 
decision-making. They provide a holistic, system-level under-
standing of sustainable urban development paradigms, making 
complex city systems measurable, knowable, and tractable in 
terms of their operations and management, thereby enhancing 
resilience, efficiency, and livability [187,188]. Applying this same 
data-driven, integrative approach to building-scale, AI-driven DT 
frameworks enables coordinated optimization of building perfor-
mance, energy management, and environmental outcomes across 
different scales in smart cities (see, e.g., Ref. [5]).

From a broader perspective, Shaamala et al. [189] emphasize 
AI's capacity to enhance green infrastructure, with applications in 
air quality monitoring, biodiversity preservation, urban heat island 
mitigation, and energy-efficient design. Their proposed environ-
mental planning framework complements the optimization stra-
tegies embedded within the AI-DT dynamic feedback loops of the 
framework. Extending these applications, Nti et al. [190] examine 
AI's role in sustainable resource management, specifically water 
conservation, energy optimization, and transportation efficiency. 
Their focus on AI-based decision support systems strengthens the 
framework's predictive, adaptive management capabilities. 
Further, Yadav and Singh [191] stress the need for advanced AI 
decision-making tools for climate change mitigation and disaster 
resilience—challenges that the framework's continuous learning 
and predictive analytics aim to address.
Chaudhary [192] highlights AI's broad applications across clean 

energy and pollution control, emphasizing its critical role in 
achieving the SDGs. This perspective aligns with the framework's 
integrated and continuously adaptive approach, which addresses 
environmental objectives of sustainable development across 
multiple spatial scales. Kumari and Pandey [193] also focus on AI's 
potential in pollution control and clean energy, as well as natural 
resource management, within the SDGs framework. Thamik et al. 
[18] and Mishra et al. [17], as discussed earlier, contribute further 
to the role of AIoT in fulfilling SDGs through urban sustainability 
innovations, including buildings and smart grids. Together, these 
studies provide empirical and conceptual support for the frame-
work, demonstrating how AI and AIoT can operationalize sus-
tainable development objectives across urban systems and 
building scales.
Several other recent studies highlight the innovative role of AI 

in advancing sustainable energy systems and reinforcing key ob-
jectives of the framework. Wan et al. [194] demonstrate AI's 
application in improving the environmental sustainability of 
large-scale solar energy systems. Their findings align with the 
framework's emphasis on renewable energy integration within 
zero-energy and green building typologies. Anbarasu et al. [195] 
similarly examine AI's significant impact on bioenergy systems, 
feedstock management, and energy optimization, supporting the 
framework's vision for clean, efficient, and low-impact energy 
systems across the built environment. Rasheed et al. [196] 
examine how AI can balance industrial development with envi-
ronmental responsibility, particularly by enhancing energy effi-
ciency and promoting renewable energy. These two studies 
reinforce the framework's integrated approach, demonstrating 
how AI applications can advance sustainable energy management 
and environmental performance across multiple sectors of the 
built environment.
On the whole, these diverse yet interconnected studies affirm 

the relevance and potential of the proposed framework. The 
framework provides a strategic pathway for realizing environ-
mentally sustainable smart cities by operationalizing AI- and AI-
driven DT optimization across both building and urban scales. It 
enhances micro-level building performance and facilitates broader 
systemic transformations towards resource efficiency, climate 
resilience, circularity, and urban ecological restoration, ultimately 
advancing the global agenda for environmentally sustainable ur-
ban development.

6. Discussion

The increasing urgency to mitigate climate change impacts, 
promote environmental sustainability, and enhance urban resil-
ience has positioned the building sector at the forefront of global 
sustainability efforts. In this context, this study systematically
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examined how AI and AI-driven DT technologies are advancing 
environmental goals across SGZEBs. By analyzing and synthesizing 
diverse research streams, it offers an integrated understanding of 
the transformative role of these technologies in optimizing 
building performance, enhancing resource efficiency, and sup-
porting broader SDGs. This discussion elaborates on the key 
findings, interprets their significance, compares them with previ-
ous research, as well as outlines their implications for research, 
practice, and policymaking. It also reflects on the challenges and 
limitations identified and proposes directions for future research 
in this rapidly evolving field.

6.1. Summary of the key findings and their interpretation

This study revealed key patterns, trends, and areas of techno-
logical convergence, providing insights into how AI-driven stra-
tegies are shaping more adaptive, efficient, and low-impact 
building systems. The findings also highlight the interconnected 
role of AI and DTs in operationalizing broader environmental goals 
at the building and urban scales. A detailed discussion of the 
findings and their interpretation follows.
As for RQ1, the study found that AI and ML play a critical role in 

enhancing the environmental performance of smart buildings. AI 
technologies support optimized energy management through 
adaptive control strategies that respond dynamically to environ-
mental conditions and occupant behaviors, leading to more effi-
cient and self-regulating building operations. AI also facilitates the 
integration of renewable energy by improving supply-demand 
forecasting and optimizing storage systems, thus promoting 
cleaner energy use. Furthermore, AI enables occupant-centered 
design by personalizing environmental controls to balance com-
fort with sustainability goals. Lastly, predictive system control 
powered by AI allows smart buildings to anticipate operational 
needs and proactively maintain efficiency, highlighting AI's ca-
pacity to future-proof building performance in dynamic settings. 
This collected evidence suggests that AI fundamentally transforms 
smart buildings from reactive infrastructures into proactive, self-
optimizing systems capable of contributing to achieving environ-
mental goals. AI empowers smart buildings to continuously align 
with sustainability objectives in dynamic and complex environ-
ments. This positions AI as both a support tool and a core driver of 
systemic change towards low-carbon, energy-efficient, and resil-
ient built environments.
Regarding RQ2, the study highlighted that AI is increasingly 

integrated into green building practices, spanning diverse do-
mains. Concerning Subsection 5.2.2.1, recent studies show that AI 
applications in green building design span predictive modeling, 
compliance support, optimization frameworks, and critical re-
flections on creativity. AI can streamline sustainability compliance, 
improve certification outcomes, reduce emissions, and lower 
operational costs through predictive analytics and optimization. 
ML models accelerate the design process and enhance perfor-
mance prediction, while BIM-integrated frameworks achieve 
multi-objective optimization across energy use, cost, carbon 
emissions, and thermal comfort. Advanced DL models outperform 

conventional approaches in improving environmental perfor-
mance and occupant comfort. At the same time, AI adoption may 
reduce creativity and professional agency, highlighting the need 
for careful, human-centered implementation. These findings 
indicate that AI in green buildings is evolving from isolated pre-
dictive tools into integrated decision-support and optimization 
systems capable of balancing multiple sustainability goals. How-
ever, technological efficiency must be paired with human crea-
tivity, judgment, and professional integrity. The future of AI in 
sustainable architecture likely lies in hybrid approaches that

combine advanced optimization with human-centered design, 
ensuring both environmental performance and cultural richness in 
the built environment.
In connection with Subsection 5.2.2.2, recent research dem-

onstrates that AI significantly enhances energy efficiency, waste 
management, thermal comfort, and sustainability in green build-
ings. AI-based energy management models improve the efficiency 
of heating, cooling, and HVAC systems while reducing overall en-
ergy consumption and maintaining high predictive accuracy. Pre-
dictive frameworks for biogas production using AI and dynamic 
control systems optimize energy recovery from organic waste, 
supporting both sustainability and resource efficiency. AI-driven 
waste management strategies show that composting is the most 
environmentally friendly option, while incineration and landfilling 
can better meet social and economic goals, ultimately reducing 
landfill use and overall energy demand. ML optimization of 
advanced insulation materials greatly improves thermal perfor-
mance, leading to substantial energy savings and reductions in 
carbon emissions. Active learning models for predicting heating 
and cooling demand enable more efficient building operation, 
lower energy consumption, and decreased carbon footprints. 
Multi-objective optimization frameworks help balance energy 
efficiency, cost-effectiveness, emissions reduction, and occupant 
comfort, while AI integration with renewable energy and sup-
portive policies can further enhance long-term sustainability 
outcomes.
These findings indicate that AI has a transformative role in 

making green buildings more sustainable and efficient. AI enables 
these buildings to operate at their optimal performance, thereby 
reducing waste and unnecessary energy use. The integration of AI 
in waste management and energy recovery demonstrates that 
technology can simultaneously address environmental, social, and 
economic objectives (see Ref. [9]). Optimization of materials and 
design parameters through ML improves energy efficiency and 
supports reductions in carbon emissions, contributing to climate 
goals. Active learning and multi-objective frameworks demon-
strate that AI can effectively balance competing priorities, thereby 
providing a holistic approach to building design and operation. In 
essence, AI is a strategic enabler for sustainable, resource-efficient, 
and human-centered green buildings.
In relation to Subsection 5.2.2.3, recent research shows that AI 

can greatly improve green building project outcomes by improving 
cost estimation accuracy, providing probabilistic forecasts, and 
optimizing cost control. AI-based frameworks effectively manage 
complex, non-linear relationships between numerous cost-
influencing factors, achieving high prediction accuracy across 
different algorithms, including neural networks, gradient boost-
ing, and RF. In addition, AI facilitates comprehensive risk assess-
ment by identifying and quantifying critical project risks such as 
economic, market, functional, and fire-related hazards. Hybrid 
approaches that combine expert judgment with ML further in-
crease predictive reliability by enabling the prioritization of key 
risks and the optimization of mitigation strategies. As a whole, AI 
applications demonstrate strong potential for reducing un-
certainties, improving decision-making, and supporting sustain-
able construction practices.
These findings suggest that AI is no longer merely a supportive 

tool but a strategic enabler in sustainable green building man-
agement. Project managers can proactively address both cost and 
safety challenges by integrating predictive analytics with risk 
assessment, thereby reducing resource waste and enhancing 
project efficiency. The convergence of multiple AI techniques un-
derscores the importance of tailored, context-specific applications, 
where models are selected based on project needs and available 
data. Furthermore, the evidence points towards a shift in
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professional practice: reliance on AI can enhance human decision-
making without replacing critical judgment, ultimately fostering a 
more robust, data-driven approach to green building design and 
construction.
As regards RQ3, the study demonstrated that AI has become 

central to the optimization and management of ZEBs, nZEBs, PEBs, 
and NZEBs. As to Subsection 5.1.3.1, recent research underscores 
the central role of AI-driven technologies in advancing energy ef-
ficiency, renewable energy integration, and intelligent energy 
management. EEMs are shown to reduce building demand through 
advanced design strategies, material innovations, and HVAC opti-
mization, while RETs such as solar, wind, biomass, and geothermal 
are increasingly integrated through distributed generation sys-
tems. BEMS enhanced by AI play a critical role in monitoring, fault 
detection, and performance optimization. Advanced predictive 
models, including neural networks, model predictive control, and 
ML algorithms, enable real-time optimization of energy con-
sumption, accurate forecasting of renewable production, and 
occupant-aware adaptation. Case studies demonstrate cost-
effectiveness, with systems producing more energy than 
consumed, reducing or eliminating energy costs, and achieving 
favorable payback periods. In addition, data-driven frameworks 
emphasize balancing energy demand reduction, renewable supply 
optimization, occupant comfort, and economic performance to 
achieve net-zero or positive energy outcomes at both building and 
district scales.
These findings underscore the transition from static, efficiency-

focused strategies towards dynamic, AI-enhanced building eco-
systems capable of self-learning, adapting, and optimizing energy 
use in real time. The integration of AI with BEMS and distributed 
renewable systems demonstrates that ZEBs are no longer only 
about minimizing consumption, but also about intelligently 
managing generation, storage, and distribution to create resilient, 
cost-effective, and environmentally aligned buildings. The 
emphasis on predictive modeling and adaptive control points to a 
model where buildings function as active participants in energy 
networks, capable of balancing supply and demand, anticipating 
environmental conditions, and enhancing user comfort. This 
convergence pushes ZEBs and PEBs beyond compliance-oriented 
sustainability, positioning them as key enablers of future smart 
cities and carbon-neutral energy systems.
In regard to Subsection 5.1.3.2, research shows that AI and ML 

are key to optimizing NZEB performance across multiple di-
mensions, including predictive energy analytics, intelligent HVAC 
systems, and real-time energy management. Hybrid optimization 
methods, surrogate models, and predictive frameworks enhance 
energy efficiency, renewable energy integration, and building au-
tonomy. XAI frameworks and advanced forecasting models 
improve transparency, trust, and deployment accuracy in real-
world contexts. Multi-objective optimization approaches balance 
energy consumption, thermal comfort, and self-sufficiency, while 
smart home management systems enable buildings to act as 
flexible energy resources. Region-specific strategies, load fore-
casting improvements, and integration with smart grids and 
microgrids further demonstrate the practical applicability of AI in 
achieving net-zero and positive-energy objectives.
These findings indicate that NZEBs are evolving into adaptive, 

data-driven systems that leverage AI and ML for operational effi-
ciency, occupant comfort, and environmental performance. The 
convergence of various techniques allows buildings to actively 
manage energy flows, integrate renewable sources, and minimize 
grid dependence. The inclusion of XAI frameworks and climate-
adapted solutions emphasizes that technical performance must 
be paired with transparency, stakeholder trust, and contextual 
adaptability. Overall, these studies illustrate a shift from isolated

energy-efficiency measures towards comprehensive, intelligent, 
and resilient building systems, setting a strong foundation for 
large-scale deployment of sustainable buildings.
With respect to RQ4, the study revealed that AI-driven DTs in 

smart buildings drive performance optimization through auto-
mation, predictive maintenance, and occupant-centered control. 
Applications include thermal comfort optimization, environ-
mental monitoring, and system integration via IoT and BIM, which 
enable adaptive decision-making and resilience in building oper-
ations. Although promising, most studies remain simulation-
based, pointing to a need for large-scale empirical validation. In 
green buildings, AI–DT integration enhances energy efficiency, 
reduces carbon emissions, and improves occupant comfort by 
enabling predictive modeling, real-time monitoring, and intelli-
gent material selection. Studies highlight applications in energy 
consumption prediction under climate change, CO 2 emissions 
tracking, and resource optimization, while also emphasizing the 
importance of occupant well-being and human-centered design. 
For ZEBs and PEDs, AI-DT integration provides advanced energy 
management and strategic planning by balancing renewable en-
ergy production with demand across both buildings and neigh-
borhoods. Case studies show how AI–DT models optimize district-
scale systems, integrating energy, transportation, and resource 
flows to achieve net-zero or positive energy goals.
These findings suggest that the integration of AI and DTs offers 

innovative potential for advancing sustainability in the built 
environment. They allow buildings to minimize consumption and 
actively contribute to net-zero and positive energy goals. At larger 
scales, they provide the infrastructure for smart cities and sus-
tainable districts, where multiple systems can be integrated for 
improved resilience and efficiency. The emphasis on occupant 
comfort and carbon reduction shows that DTs are not limited to 
technical performance but extend to human-centered and envi-
ronmental priorities. However, the predominance of simulation-
based evidence indicates that more large-scale, real-world appli-
cations are necessary to validate their potential. Taken together, 
AI-powered DTs represent a key step towards adaptive, efficient, 
and sustainable building ecosystems.
Concerning RQ5, the proposed framework demonstrates that 

AI- and DT-enabled SGZEBs can advance the goals of environ-
mental sustainability, sustainable development, and sustainable 
smart cities. AI and AIoT technologies are shown to optimize 
resource use, minimize waste, integrate renewable energy, and 
enhance energy efficiency at both building and urban scales. AI 
supports circular economy integration, real-time emissions 
reduction, climate resilience, and green infrastructure. At the ur-
ban scale, interconnected AI- and DT-enabled SGZEBs facilitate the 
creation of energy-positive districts, support climate-resilient 
infrastructure, and enable sustainable resource management. 
They also align operational building performance with broader 
sustainability and SDG objectives. By combining AI and DT capa-
bilities, SGZEBs serve as both local and networked sustainability 
enablers. At the building level, they reduce environmental impacts 
and operational costs. When integrated across neighborhoods or 
cities, they provide aggregated benefits, including grid stabiliza-
tion, reduced emissions, and enhanced urban resilience. This dual 
impact demonstrates that AI-DT-enabled SGZEBs are a practical 
pathway for advancing sustainable smart cities: they translate 
real-time data and predictive intelligence into actionable strate-
gies that connect micro-level efficiency with macro-level sus-
tainability goals.
The framework was designed to address critical sustainability 

challenges such as resource efficiency, climate change mitigation, 
energy resilience, and ecological health. It supports the transition 
to sustainable smart cities by operationalizing sustainable energy
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integration, fostering circular economy practices, and enabling 
real-time environmental responsiveness. This cross-scale, dy-
namic approach ensures that buildings and urban spaces evolve 
from static entities into intelligent, self-optimizing systems that 
contribute proactively to sustainable development objectives. The 
framework provides a transformative pathway towards building 
energy-efficient, resilient, and ecologically restorative cities by 
embedding AI and DTs at the core of urban systems.

6.2. Comparative analysis: advancing beyond fragmented AI 
applications towards a holistic framework for sustainable smart 
built and urban environments

While numerous studies have explored the role of AI and DTs in 
smart and sustainable buildings, the majority adopt a fragmented 
or domain-specific approach by focusing narrowly on applications, 
such as energy management, HVAC optimization, building auto-
mation, AI–IoT integration, and/or DT simulations, in isolation. 
While Sleem and Elhenawy [42] primarily emphasize AIoT-

driven operational efficiency, predictive analytics, and security 
optimization, they do not examine AI's systemic potential to ach-
ieve broader environmental or net-zero energy goals. This study 
extends these findings by demonstrating how AI-driven automa-
tion can simultaneously optimize building performance, renew-
able energy integration, and support carbon-neutral objectives. 
Similarly, Qolomany et al. [87] highlight ML and big data appli-
cations in building automation, showing predictive analytics for 
real-time decision-making, but they do not integrate these capa-
bilities with sustainability and cross-building typology optimiza-
tion. In contrast, this study explicitly connects AI-driven 
automation with energy efficiency, occupant comfort, and broader 
environmental goals.
In energy management, Alanne and Sierla [53] explore ML 

applications enabling adaptive energy management and using DTs 
as AI-powered optimization environments. Wang et al. [43] focus 
on DTs for carbon peak management in terms of monitoring 
emissions and modeling net-zero strategies. Although these 
studies recognize AI's role in energy efficiency and carbon reduc-
tion, they primarily approach these aspects from an energy man-
agement perspective and do not fully explore AI's broader impact 
on sustainable building performance. This study builds upon these 
studies by combining AI and DT-based optimization with a holistic 
sustainability perspective, coordinating energy management, 
renewable integration, and occupant comfort across multiple 
building typologies.
Regarding green and sustainable buildings, Rodríguez-Gracia 

et al. [89] provide a bibliometric mapping of AI applications, and 
Debrah et al. [55] combine bibliometric and systematic analyses to 
identify trends, gaps, and future directions, including DTs, AIoT, 
blockchain, robotics, and ethical considerations. Wu et al. [90] 
further position AI as a driver of GBTI, while Hua et al. [91] 
demonstrate AI's role in reducing carbon emissions and improving 
operational efficiency. Although these studies highlight AI's po-
tential in green buildings, they primarily focus on predictive 
modeling and thematic analyses, without fully synthesizing AI 
applications across environmental indicators or in relation to 
other building typologies. This study advances these findings by 
providing a comprehensive framework that integrates AI-driven 
strategies for emission reduction, energy optimization, waste 
minimization, sustainable materials, adaptive design, cost esti-
mation, and risk assessment simultaneously, thereby operation-
alizing systemic sustainability objectives.
For net-zero and positive energy buildings, Mousavi et al. [80] 

show that data-driven prediction and optimization can greatly 
enhance energy efficiency and renewable energy integration.

However, while their findings demonstrate energy savings at the 
building scale, they do not address how such gains translate into 
systemic sustainability outcomes across diverse building typol-
ogies. In contrast, this study extends these results by demon-
strating how AI-enabled prediction and optimization can be 
embedded within a holistic SGZEB framework that aligns energy 
efficiency with carbon reduction, lifecycle sustainability, and 
cross-scale integration. Similarly, Bibri et al. [2] find that DT-based 
frameworks strengthen ZEB assessment in smart cities by 
improving energy management, enabling real-time monitoring, 
and facilitating renewable energy integration through AI, IoT, and 
CPS convergence. Yet, their results remain confined to perfor-
mance assessments of ZEBs. This study builds on these insights by 
integrating AI-DT-enabled monitoring and predictive mechanisms 
into a broader sustainability framework that links ZEB optimiza-
tion to built and urban goals, thereby achieving cumulative envi-
ronmental benefits beyond isolated building-level improvements. 
In sum, the existing literature predominantly analyzes indi-

vidual AI technologies and isolated building functions, missing the 
opportunity to explore their holistic role in fostering environ-
mentally sustainable smart built environments. Our study ad-
vances beyond these fragmented approaches by synthesizing AI 
applications across multiple building typologies and environ-
mental sustainability indicators, integrating predictive, adaptive, 
and DT-driven mechanisms into a comprehensive framework that 
links micro-level building performance with macro-level urban 
sustainability goals. This framework addresses the fragmented 
nature of previous research by emphasizing the synergistic role of 
AI and DTs in optimizing resource use, reducing carbon footprints, 
enhancing adaptive operations, and enabling real-time environ-
mental monitoring and circularity. Furthermore, it extends the 
discourse beyond individual building performance to the creation 
of interconnected urban ecosystems, contributing a fresh 
perspective that aligns with broader SDGs and provides a strategic 
roadmap for the realization of environmentally sustainable smart 
urban environments.

6.3. Implications of the proposed framework for research, practice, 
and policy-making

The proposed framework carries significant implications for 
advancing research, guiding practical implementation, and 
informing policy-making towards the realization of an environ-
mentally sustainable smart built environment. In terms of 
research, the framework establishes a structured foundation for 
future interdisciplinary studies that further explore the integration 
of AI, DT, environmental science, and sustainable development 
across building and urban scales. It emphasizes the importance of 
developing dynamic, cross-scale models capable of capturing the 
complex interactions between intelligent building systems, urban 
ecosystems, and environmental outcomes. Researchers should 
also focus on designing new metrics, simulation environments, 
and performance evaluation tools that can assess the long-term 

ecological impacts of AI- and DT-enabled building systems in 
broader urban contexts.
From a practical perspective, the framework provides archi-

tects, urban planners, engineers, sustainability consultants, and 
facility managers with actionable guidance for designing, oper-
ating, and optimizing SGZEBs. It provides a roadmap for inte-
grating AI and DT technologies into building management 
systems, enabling real-time, predictive, and adaptive optimization 
of energy consumption, environmental quality, resource flows, 
occupant comfort, and carbon emissions. Practitioners can 
leverage the framework to support operational resilience, enhance 
building lifecycle performance, and contribute more effectively to
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broader urban sustainability agendas. In addition, the framework 
supports the development of industry standards, certification 
schemes, and best practices that integrate intelligent and sus-
tainable technologies into the planning, design, construction, and 
retrofitting of urban infrastructure.
For policy-making, the framework highlights the necessity of 

creating supportive regulatory environments, incentives, and in-
vestment strategies that promote the large-scale deployment of 
AI- and DT-enabled SGZEBs. It advocates for policies that ensure 
interoperability, ethical AI use, data transparency, and the align-
ment of digital innovation with global climate goals. Moreover, the 
framework underscores the importance of integrating intelligent 
building systems into municipal and national sustainable devel-
opment strategies, climate action plans, and urban resilience 
frameworks. Policy-makers can enable the systemic transition 
towards dynamic, adaptive, and regenerative urban ecosystems 
that meet current sustainability targets by operationalizing the 
transformative and synergistic capabilities of AI and DTs.

6.4. Challenges, barriers, and limitations

While the proposed framework offers significant potential, 
several challenges, barriers, and methodological limitations need 
to be addressed to fully realize its impact. This subsection dis-
cusses these key issues from both a theoretical and practical 
standpoint, providing a comprehensive understanding of the ob-
stacles researchers, practitioners, and policy-makers may 
encounter in the adoption and implementation of AI–DT technol-
ogies in the built environment.

6.4.1. Technological and operational challenges
One of the primary challenges associated with the integration 

of AI and DTs in SGZEBs is the technological complexity involved in 
deploying these systems at scale. AI and DTs require substantial 
computational power, sophisticated algorithms, and vast amounts 
of high-quality, real-time data to function effectively. Collecting, 
processing, and integrating data from diverse sources, such as 
sensors, IoT devices, and BMS, presents significant operational 
difficulties. The integration of AI models with DTs must account for 
the diversity of building typologies, varying levels of data avail-
ability, and potential interoperability issues across different tech-
nologies and platforms. In addition, AI models used in these 
systems must be continually trained and updated to adapt to dy-
namic environmental conditions, building behaviors, and evolving 
energy demands. Ensuring that AI-driven systems remain effective 
and responsive to these changes in real-time is a major challenge, 
particularly when dealing with the large-scale, multi-functional 
nature of sustainable smart cities.
Furthermore, the adoption of AI and DT technologies requires a 

robust technical infrastructure that may not be available in exist-
ing buildings or urban settings. The need for significant in-
vestments in retrofitting existing infrastructure to integrate 
intelligent systems poses both financial and logistical challenges. 
Moreover, the complexity of operating these technologies across 
multiple scales, ranging from individual buildings and neighbor-
hoods to entire city systems, demands an advanced level of coor-
dination and synchronization. Ensuring seamless interaction 
between AI and DT systems across various building types and ur-
ban scales is a complex, ongoing challenge.

6.4.2. Environmental risks and costs
While AI and DT technologies offer transformative potential for 

enhancing the environmental performance of buildings, they also 
introduce significant environmental risks and costs that must be 
carefully considered. The development, training, and operation of

AI models, especially large-scale DL Systems, require substantial 
computational power, leading to high energy consumption and 
increased carbon emissions [197–200]. Similarly, maintaining DT 
systems necessitates continuous data collection, transmission, 
storage, and processing, all of which contribute to considerable 
resource and energy demands over their lifecycle [1,201–203]. The 
production and disposal of sensors, IoT devices, servers, and other 
hardware components associated with DT ecosystems also raise 
concerns related to electronic waste (e-waste) and the depletion of 
critical raw materials. If left unmanaged, these hidden environ-
mental costs could offset the environmental gains achieved 
through smarter and more sustainable building operations. 
Therefore, a paradox emerges: technologies intended to promote 
environmental sustainability may, without responsible lifecycle 
management and renewable energy sourcing, create additional 
burdens. To mitigate these risks, it is crucial to implement stra-
tegies such as green AI or computing practices (e.g., model effi-
ciency optimization), sustainable DT design, renewable-powered 
data centers, e-waste recycling initiatives, and full lifecycle as-
sessments for AI and DT deployments in the built environment.

6.4.3. Data privacy and security and other ethical concerns
Data privacy and security are among the most pressing con-

cerns in the integration of AI and DTs in the built environment. The 
collection and analysis of vast amounts of real-time data from 

sensors, IoT devices, and other monitoring systems pose signifi-
cant risks to data protection, particularly due to the sensitive na-
ture of information on occupants’ behaviors, energy consumption, 
and environmental conditions. There is an inherent challenge in 
safeguarding this data against potential breaches, unauthorized 
access, or misuse. In addition, the integration of AI and DTs often 
involves sharing data across different stakeholders, including 
building owners and operators, service providers, and government 
agencies, which may raise concerns about data ownership, 
accountability, and compliance with privacy regulations.
In addition to data privacy, there are concerns regarding the 

ethical use of AI. As AI systems are designed to make decisions 
based on large datasets, questions arise about the transparency 
and fairness of these algorithms. It is crucial to ensure that AI 
systems do not inadvertently perpetuate biases, leading to unfair 
or discriminatory outcomes, particularly in relation to energy 
distribution, resource allocation, and occupant comfort. To address 
these challenges, the study critically analyzes current mitigation 
strategies, including algorithmic transparency, bias detection 
protocols, ethical AI frameworks, and stakeholder accountability 
mechanisms. By systematically reviewing these approaches, the 
framework provides actionable guidance for researchers, practi-
tioners, and policymakers to implement AI and DT systems 
responsibly, balancing technological advancement with privacy, 
fairness, and equity considerations. Addressing these ethical con-
cerns requires the development of transparent and accountable AI 
systems, along with robust data governance frameworks that 
prioritize privacy, security, and fairness.

6.4.4. Standardization and interoperability barriers
Another significant barrier is the lack of standardization and 

interoperability across the various technologies involved in AI and 
DT systems. The success of integrated sustainable smart building 
solutions relies on the seamless communication and data ex-
change between different hardware and software components, 
including sensors, IoT devices, BMS, AI models, and DT platforms. 
However, the lack of a universal set of standards for integrating 
these technologies can lead to compatibility issues between sys-
tems, hindering the scalability of AI and DT applications across 
various building typologies and urban environments. This lack of
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standardization also makes it difficult for stakeholders, such as 
building owners, developers, service providers, and regulatory 
bodies, to adopt and implement these technologies in a consistent 
and coordinated manner.
Efforts to establish industry-wide standards for AI and DTs in 

sustainable smart cities are still in the early stages, and their 
development is often fragmented. Without standardized protocols 
and frameworks for data exchange, system integration, and per-
formance evaluation, the potential for AI and DT technologies to 
drive meaningful change in environmental sustainability remains 
constrained. To overcome these barriers, efforts must be made to 
develop standardized guidelines and best practices for the design, 
implementation, and evaluation of AI systems and AI-driven DT 
frameworks in sustainable smart built environments.

6.4.5. Financial and institutional barriers
Financial and institutional barriers pose real challenges to the 

widespread adoption of AI and DT technologies for enhancing 
environmental practices in the built environment. The initial in-
vestment required to implement these technologies can be pro-
hibitive, particularly for small- and medium-sized enterprises or 
property owners with limited financial resources. The interplay of 
financial and institutional factors with economic and industrial 
structures highlights the complexity of adoption rates and envi-
ronmental outcomes [204]. In addition, many organizations lack the 
expertise or infrastructure necessary to integrate AI and DT systems 
into existing building operations. There is also a lack of financial 
incentives, subsidies, or support programs from governments and 
industry bodies to encourage the adoption of these technologies. 
Institutional barriers, including resistance to change and the 

slow pace of regulatory approval processes, can further delay the 
implementation of AI and DT-driven solutions. As these technol-
ogies evolve rapidly, it is crucial for policy-makers and regulatory 
bodies to create a supportive environment that facilitates inno-
vation while ensuring safety, fairness, and accountability. This 
includes creating policies that promote collaboration between 
public and private sectors, provide financial incentives, and sup-
port workforce development initiatives to build the necessary 
skills and expertise.

6.4.6. Methodological and framework limitations
From a research perspective, there are several methodological 

limitations associated with the systematic review process 
employed in this study. Despite its comprehensive scope, this 
study faced several constraints. The review was limited to peer-
reviewed articles published in English and retrieved from two 
major academic databases, which may have excluded relevant 
insights from non-English sources, region-specific studies, or non-
indexed academic work. In addition, by concentrating on literature 
published between 2020 and 2025, earlier foundational studies 
that continue to shape the evolution of AI applications in SGZEBs 
may have been overlooked. The thematic synthesis and categori-
zation of studies required interpretive judgment, which, despite 
methodological rigor, may have introduced subjectivity, particu-
larly in classifying research spanning multiple building typologies 
or environmental sustainability dimensions.
Moreover, the exclusion of grey literature, including industry 

reports, technical standards, and professional white papers, may 
have omitted practical innovations and real-world applications 
that could further contextualize the academic findings. While the 
comparative analysis illuminated differences, synergies, and 
complementarities across building typologies and AI applications, 
the uneven availability and quality of metadata in some studies 
limited the granularity of the analysis, potentially leaving nuanced 
dynamics underexplored.

In terms of the framework, while the review has been 
comprehensive in its scope, the availability and quality of studies 
on the integration of AI and DTs in SGZEBs remain uneven. Many 
studies focus on isolated technologies or specific building typol-
ogies, and there is a lack of comprehensive, cross-cutting research 
that addresses the holistic integration of AI and DTs across 
different environmental metrics. As a result, the framework pre-
sented in this study is based on a synthesis of available literature 
that may be fragmented in terms of scope.
Furthermore, there is a lack of consensus on the most appro-

priate methodologies for evaluating the performance of AI and DT 
systems in the context of sustainability. Different studies employ 
various metrics and performance indicators, making it difficult to 
compare results across studies and draw definitive conclusions 
about the effectiveness of these technologies in achieving envi-
ronmental targets. Developing standardized evaluation frame-
works that can be consistently applied across different research 
contexts is essential for advancing the field and enabling more 
robust comparative analyses.
In conclusion, significant challenges, barriers, and limitations 

must be addressed to ensure the effective integration and wide-
spread adoption of AI–DT integration in SGZEBs. These challenges 
require coordinated efforts from researchers, practitioners, poli-
cymakers, and industry stakeholders to overcome. Addressing 
these challenges can unlock the full potential of AI and DTs in 
building future sustainable smart urban environments.

6.5. Suggestions for future directions

The integration of AI and DT technologies in the development 
of environmentally sustainable smart built environments offers 
fascinating opportunities, but also poses several unresolved issues. 
While this study presents a comprehensive framework for 
leveraging these technologies, it is clear that further research and 
practical innovations are needed to overcome current barriers and 
unlock their full potential. This subsection outlines several key 
areas for future research, technological development, and policy 
advancement that will shape the evolution of SGZEBs in the years 
to come.

6.5.1. Expanding real-world case studies, pilot projects, and 
inclusion criteria
One of the key recommendations for future research is the 

expansion of real-world case studies and large-scale pilot projects 
that test the effectiveness and scalability of AI and DT technologies 
in diverse building systems and urban contexts. Existing studies 
largely focus on theoretical models or small-scale applications that 
may not fully capture the complexities and challenges of imple-
menting AI and DT systems in real-world settings, so there is a 
need for research that investigates how these technologies 
perform in real-world environments, across different climate 
zones, building typologies, and urban infrastructures. Longitudinal 
studies tracking the performance of AI- and DT-driven buildings 
over extended periods will provide invaluable insights into their 
long-term sustainability impacts, including energy savings, emis-
sions reduction, resource optimization, and operational efficiency. 
These case studies will also help identify practical challenges 
related to system integration, data management, and performance 
evaluation, which can inform the development of more robust 
implementation strategies. Future endeavors should also prioritize 
large-scale implementations to better understand the practical 
implications of integrating these technologies at a city-wide level. 
Prospective studies could benefit from broadening the inclu-

sion criteria to encompass non-peer-reviewed and grey literature, 
earlier influential studies, and a range of indexed databases, while
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also adopting mixed-methods approaches to mitigate classifica-
tion ambiguities. Such steps would offer a richer, more nuanced 
understanding of the evolving role of AI and DTs in advancing 
environmental goals across the built environment and support 
more actionable strategies for researchers, practitioners, and pol-
icymakers working towards sustainable smart built environments.

6.5.2. Standardization of AI and DT integration
As highlighted in the challenges section, a lack of standardi-

zation and interoperability remains a significant barrier to the 
widespread adoption of AI and DT technologies. Continued 
research should prioritize the development of universal standards 
and protocols for the integration of AI, DTs, and other smart 
technologies in the built environment. This includes developing 
guidelines for data exchange, system interoperability, and perfor-
mance measurement, which will facilitate collaboration between 
stakeholders across different sectors. Establishing these standards 
will both simplify the implementation process as well as promote 
the scalability of AI and DT systems across diverse building ty-
pologies and urban environments.

6.5.3. Development of advanced AI models for environmental 
sustainability
AI plays a critical role in driving environmental sustainability 

through resource optimization, emissions control, and energy 
management. However, current AI models are often limited by 
their ability to account for the complexity and dynamic nature of 
urban environments. Future research is recommended to focus on 
the development of more advanced AI models that are capable of 
incorporating a broader range of environmental factors and socio-
economic conditions. These models should be designed to opti-
mize energy use while also supporting the broader goals of urban 
ecological restoration, circular economy integration, and social 
equity. Future models can play a more active role in advancing 
sustainable smart city agendas by enhancing the ability of AI or AI-
driven DT to predict, adapt, and optimize across multiple sus-
tainability dimensions.

6.5.4. Integration of social and behavioral data
Another area for future exploration is the integration of social 

and behavioral data into AI and DT systems. While much of the 
current focus has been on technical optimization (e.g., energy use, 
emissions control), understanding human behavior and its impact 
on building performance is crucial for achieving the status of 
sustainable smart cities. For instance, occupant behavior, such as 
energy consumption patterns, waste management practices, and 
comfort preferences, can significantly influence the performance 
of AI and DT systems. Future research should explore how AI 
models can incorporate behavioral data, along with environmental 
sensors, to more accurately predict and optimize building opera-
tions. In addition, incorporating human-centered design principles 
into the development of sustainable and smart buildings can 
ensure that these technologies are user-friendly, promote sus-
tainable lifestyles, and enhance occupant satisfaction.

6.5.5. Ethical and governance frameworks for artificial intelligence 
in sustainability
As AI and AIoT systems become more integrated into sustain-

able smart cities [3,8,205,11,13,14,206], ensuring their ethical use 
and alignment with sustainability goals will be increasingly 
important. Additional investigations must focus on developing 
ethical and governance frameworks that guide the responsible 
deployment of AI technologies in the built environment. This in-
cludes addressing issues such as data privacy, algorithmic trans-
parency, fairness, accountability, and equity. AI systems must be

designed to avoid biases that could lead to unequal access to re-
sources or unfair outcomes in energy distribution, urban man-
agement, and planning. Moreover, governance frameworks should 
facilitate collaboration between public and private stakeholders by 
ensuring that AI and AI-driven solutions are developed and 
deployed in a way that supports the broader social, environmental, 
and economic goals of sustainability.

6.5.6. Policy development and incentive structures
To accelerate the adoption of AI and DT technologies in the built 

environment, there is a need for supportive policy development 
and incentive structures. Further research is encouraged to 
examine the role of government policies in promoting the inte-
gration of AI and DTs in sustainable smart building practices. This 
could include financial incentives, tax credits, subsidies for retro-
fitting existing buildings, and funding for pilot projects. Moreover, 
policy-makers should collaborate with industry stakeholders to 
create regulatory frameworks that promote innovation while 
ensuring environmental standards, safety, and fairness. In addi-
tion, policies that encourage the development of green infra-
structure, renewable energy integration, and circular economy 
practices will further align AI and DT technologies with the global 
agenda for sustainable development.

6.5.7. Education, training, and capacity building
The successful implementation of AI and DT technologies in the 

built environment requires a highly skilled workforce capable of 
developing, managing, and optimizing these systems. Upcoming 
investigations should examine the role of education and training 
in preparing professionals for the integration of AI and DTs in 
sustainable smart buildings. This includes the development of 
interdisciplinary programs that combine expertise in AI, environ-
mental science, urban development, design, and engineering. 
Moreover, capacity-building initiatives aimed at upskilling exist-
ing professionals, such as building managers, architects, engineers, 
and policy-makers, will be essential for ensuring the widespread 
adoption of these technologies. Collaboration between academic 
institutions, industry leaders, and government bodies will be 
crucial for creating a pipeline of talent and fostering innovation in 
AI-driven sustainability solutions.

7. Conclusion

This study conducts a comprehensive systematic review of AI 
and AI-driven DT applications across SGZEBs. The aim is to provide 
a holistic understanding of how these advanced technologies 
enhance the environmental performance of SGZEBs by analyzing 
key related sustainability indicators. The study explores the extent 
to which AI and AI-driven DTs enable integrated, system-level 
strategies for enhancing environmentally sustainable smart prac-
tices in the built environment by synthesizing, comparing, and 
evaluating recent research studies. By addressing five research 
questions, the study provides comprehensive insights into how 

these technologies contribute to the broader goals of sustainable 
urban development by enhancing the environmental performance 
of SGZEBs.

7.1. Key findings and implications

Table 6 summarizes the key findings of the study across 
building typologies, highlighting how AI and AI–DT integration 
enhance environmental performance and sustainability outcomes. 
With respect to RQ5, the novel integrated framework demon-

strates that AI- and DT-enabled SGZEBs contribute to environ-
mental sustainability, sustainable development, and sustainable
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smart cities across diverse domains. It positions AI and DTs as 
systemic enablers of environmentally sustainable smart built en-
vironments, emphasizing their cross-scale convergence in pro-
moting carbon neutrality, circular economy principles, climate 
resilience, and environmentally regenerative urban strategies. The 
findings confirm that SGZEBs, guided by AI and DT frameworks, 
can align building-level performance with city-wide sustainability 
objectives, driving systemic transformations towards resource-
efficient, climate-resilient, and ecologically adaptive urban envi-
ronments. These insights complement Table 6 by highlighting the 
broader systemic impact of AI and AI–DT integration in advancing 
environmentally sustainable urban development.

7.2. Significance of the proposed framework for environmentally 
sustainable smart built and urban environments as enabled by 
artificial intelligence-digital twin integration

The proposed AI–DT framework carries significant implications 
for the transition towards environmentally sustainable smart built 
environments and cities:
Principle-based reinforcement across building typologies: The 

framework establishes a cycle of reciprocal reinforcement among 
SGZEBs. Data-driven control in smart buildings enhances the 
sustainability metrics of green buildings by enabling precise 
monitoring, adaptive system management, and performance 
optimization. In turn, the circularity and resource-efficiency 
principles of green buildings provide the foundation for self-
sufficiency and closed-loop strategies in ZEBs. Meanwhile, 
renewable energy integration and balancing mechanisms in ZEBs 
feed back into smart buildings by strengthening adaptive intelli-
gence, occupant-centered optimization, and system resilience. 
This continuous principle-based feedback loop ensures that 
progress in one typology directly amplifies performance and sus-
tainability outcomes in the others.
Advancement of environmental performance benchmarks: The 

framework enables ongoing monitoring, predictive interventions, 
and evidence-based decision-making by embedding AI–DT intel-
ligence into the core of building operations. This moves buildings 
beyond static compliance with environmental standards towards a 
dynamic capacity to meet evolving benchmarks in energy

efficiency, resource conservation, and occupant well-being. 
Transition from isolated assets to systemic urban actors: 

Buildings are no longer standalone entities but interconnected 
nodes within a larger urban environmental network. Their oper-
ations feed into broader urban flows, including energy grids, waste 
systems, water systems, and material cycles, which enable 
regenerative urban ecosystems that are both adaptive and 
resource-efficient.
Continuous learning and adaptation through AI–DT feedback 

loops: The iterative cycle of AI learning from DT data, refining 
models through simulations, and reapplying insights to real-world 
systems ensures that the built environment becomes a self-
improving system. This adaptability is critical for addressing dy-
namic environmental pressures, such as ecological degradation, 
resource scarcity, climate change, and urbanization.
Contribution to broader sustainability and climate agendas: At 

the macro scale, the framework provides a strategic pathway for 
advancing global goals, including carbon neutrality, climate resil-
ience, circular economy adoption, and SDGs. Its ability to integrate 
micro-level performance optimization with systemic urban plan-
ning positions it as a transformative model for the future of sus-
tainable smart cities.
In conclusion, this study underscores the significant impact and 

innovative role of AI and DT technologies in advancing environ-
mental sustainability in the context of SGZEBs by providing an 
integrated framework. The findings highlight the importance of 
adopting a systemic approach that encompasses both micro-level 
building performance and macro-level city-scale sustainability 
outcomes. AI and DTs represent a promising pathway for creating 
more energy-efficient, resilient, and ecologically responsible cities, 
ultimately contributing to the realization of global sustainability 
goals. With continued research, innovation, and collaboration 
across sectors, these technologies have the potential to reshape the 
future of environmentally sustainable smart built and urban 
environments.
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