Environmental Science and Ecotechnology 28 (2025) 100628

journal homepage: www.journals.elsevier.com/environmental-science-and-

Contents lists available at ScienceDirect es :
) . BEARING
Environmental Science and Ecotechnology BURDENS

ecotechnology/

Review
Al and Al-powered digital twins for smart, green, and zero-energy R |
buildings: A systematic review of leading-edge solutions for e

advancing environmental sustainability goals

Simon Elias Bibri’, Jeffrey Huang

Swiss Federal Institute of Technology in Lausanne (EPFL), Institute of Computer and Communication Sciences (IINFCOM), School of Architecture, Civil and
Environmental Engineering (ENAC), Media and Design Laboratory (LDM), Lausanne, Route Canontale, 1015, Switzerland

ARTICLE INFO

Article history:

Received 3 May 2025
Received in revised form
13 October 2025
Accepted 13 October 2025

Keywords:

Artificial intelligence

Digital twins

Smart buildings

Green buildings
Zero-energy buildings
Environmental sustainability
Built environment
Sustainable smart cities

ABSTRACT

Buildings are among the largest contributors to global energy consumption and carbon emissions, making
their transformation essential for advancing environmental sustainability goals. Innovative technologies
such as artificial intelligence (Al) and digital twins (DTs) offer powerful tools for optimizing performance
in smart, green, and zero-energy buildings. However, existing research remains fragmented—AI and
Al-driven DT applications are often confined to isolated functions or specific building types—resulting in a
limited, non-cohesive understanding of their collective potential in the built environment. This frag-
mentation, in turn, has hindered the development of integrated strategies that link building-level effi-
ciencies with the broader environmental objectives of smart cities. To address these interrelated gaps, this
study conducts a comprehensive systematic review of leading-edge Al and Al-powered DT solutions
applied across smart, green, and zero-energy buildings. It aims to provide a holistic understanding of how
these solutions enhance environmental performance through the analysis of key building-related in-
dicators. By synthesizing, comparing, and evaluating recent research, it examines how Al and Al-powered
DT technologies facilitate integrated, system-level strategies that promote environmentally sustainable
smart practices across the built environment. The study reveals that Al enhances smart buildings by
enabling dynamic energy optimization, occupant-centered environmental control, improved thermal
comfort, renewable energy integration, and predictive system management. In green buildings, Al con-
tributes to greater resource efficiency, minimizes construction and operational waste, promotes the use of
sustainable materials, strengthens cost estimation and risk assessment processes, and supports adaptive
design strategies. For zero-energy buildings, Al facilitates multi-objective optimization, advances
explainable and transparent Al-driven control systems, supports performance benchmarking against net
and nearly zero-energy standards, and enables renewable energy integration tailored to diverse climatic
and regulatory contexts. Furthermore, Al-powered DTs enable real-time environmental monitoring,
predictive analytics, anomaly detection, and adaptive operational strategies, thereby enhancing building
performance, energy optimization, and resilience. At broader spatial scales, these technologies foster
interconnected urban ecosystems, advancing environmental sustainability, sustainable development, and
smart city initiatives. Building on these insights, this study introduces a novel integrated framework that
positions Al and Al-driven DTs as systemic enablers of environmentally sustainable smart built and urban
environments, emphasizing their cross-scale convergence in promoting carbon neutrality, circular
economy principles, climate resilience, and regenerative urban strategies. The findings offer actionable
pathways for advancing research agendas, inform practical strategies for building and urban system
design, and provide evidence-based recommendations for policymakers committed to fostering more
intelligent, sustainable, and resilient urban futures. This work establishes Al and Al-driven DTs as
transformative catalysts for realizing the next generation of resource-efficient, carbon-neutral, and
ecologically integrated urban ecosystems.
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1. Introduction

Rapid urbanization, escalating ecological degradation, intensi-
fying climate risks, and increasing resource constraints have made
the development of sustainable smart cities a global imperative.
Within this framework, as urban populations continue to expand,
the carbon footprint of the built environment has grown sig-
nificantly—buildings alone account for nearly 40% of global
energy-related carbon dioxide (CO;) emissions. This positions the
building sector as a critical driver for advancing the environmental
goals of sustainable urban development. In this context, environ-
mental sustainability denotes the capacity to maintain ecological
systems and resource cycles in balance by ensuring that human
activities remain within the regenerative and absorptive limits of
the natural environment. The building industry is among the
largest consumers of natural resources and one of the major
contributors to ecological pressures. Buildings are responsible for
considerable energy use, environmental impacts, material con-
sumption, and waste generation throughout their life cycle, from
construction and operation to eventual demolition.

In response, recent technological innovations—particularly
Artificial Intelligence (Al), Artificial Intelligence of Things (AloT),
Urban Digital Twins (UDTs), and their convergence—have created
new opportunities to tackle pressing environmental challenges in
sustainable urban and built environments [1-6]. These advanced
technologies enable dynamic, data-driven decision-making
capable of optimizing energy consumption and reducing carbon
footprints, as well as enhancing the performance, resilience, and
adaptability of the built environment. Reflecting this technological
shift, sustainable smart cities are increasingly prioritizing envi-
ronmental strategies across key domains, including renewable
energy, resource management, transportation management,
pollution control, waste management, ecosystem protection,
biodiversity conservation, and climate resilience [3,4,7-15],
thereby aligning more closely with the environmental objectives
of the Sustainable Development Goals (SDGs) [16-18]. This tran-
sition is marked by a growing emphasis on smart energy grids,
adaptive energy management, renewable energy integration,
decarbonization, and pollution mitigation [19,20-22,23,24].

By integrating Al with the Internet of Things (IoT), DTs, Building
Information Modeling (BIM), and Cyber-Physical Systems (CPS)
across diverse building typologies and domains [2,5,25-36], the
Architecture, Engineering, and Construction (AEC) industry is un-
dergoing rapid transformation. This shift is driving more intelli-
gent, adaptive, and sustainable practices across the sector [37-41].
Within this dynamic landscape and transformative shift, key
building typologies—namely smart buildings, green buildings, and
Zero-Energy Buildings (ZEBs)—have emerged as critical arenas
where Al, AloT, DTs, and CPS converge. These technologies drive
impactful environmental outcomes, support climate mitigation
efforts, and advance sustainable development objectives.

Al particularly Machine Learning (ML) and Deep Learning (DL),
is transforming smart buildings by enhancing automation, energy
efficiency, occupant comfort, and safety, among others. Equipped
with advanced systems and relying heavily on Al, IoT, and real-
time data, smart buildings involve monitoring and control opera-
tions such as heating, ventilation, air conditioning, lighting, and
security to improve efficiency, comfort, and performance. Al-
driven systems leverage data generated via IoT devices, DTs, and
predictive analytics to optimize energy consumption, improve
photovoltaic self-consumption, and enable sustainable carbon
peak management (e.g., Ref. [42-45]). Smart vision and DL
contribute to automation in construction and intelligent building-
transportation integration, facilitating real-time monitoring and
efficiency improvements [46,47]. Al-powered occupant profiling
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enhances thermal comfort and energy savings, while predictive
models support fire safety, health applications, and personalized
decision-making in smart environments [48-51]. Furthermore, Al-
driven control frameworks, such as borehole thermal energy
storage and wastewater heat recovery, optimize energy distribu-
tion, and ML-based predictive models aid in cost-efficient smart
building operations [52,53]. These advancements underscore Al's
critical role in transforming smart buildings into dynamic, self-
optimizing systems that leverage predictive analytics, adaptive
control strategies, and autonomous decision-making. These sys-
tems advance environmental objectives by optimizing resource
use, minimizing operational costs, anticipating maintenance
needs, and continuously adapting to occupant behaviors and
environmental conditions.

Regarding Al integration into green buildings, it reflects a par-
allel focus on sustainable design, green innovation, and resource
and lifecycle optimization. These structures are designed to
minimize environmental impact through energy efficiency, sus-
tainable materials, water conservation, and waste reduction.
Increasingly, Al is being applied to both the design and perfor-
mance enhancement of green buildings, with an emphasis on
improving environmental and operational effectiveness and
enabling multi-level integration [9,54-56] and energy system
optimization, including biogas energy supply modeling and multi-
objective energy optimization approaches [57-60]. Al also con-
tributes to sustainability evaluation and performance analysis,
including energy consumption assessment and cost reasonable-
ness prediction in green building projects [61,62]. In addition, Al is
increasingly applied in cost estimation, risk assessment, and
overall project evaluation in green buildings, supporting more
informed decision-making and optimized resource allocation
[63-66]. ML techniques are further applied to evaluate thermal
conductivity improvements using nano-insulations [67] and to
enhance thermal comfort using random forest (RF) and non-
dominated sorting genetic algorithm II (NDSGA) [58]. Finally,
hybrid Al models that combine neural networks and decision
support tools are employed to assess the waste management and
energy-saving potential in green buildings [68].

While green buildings primarily emphasize passive design
strategies, material sustainability, and overall environmental
impact reduction, ZEBs, net-zero energy buildings (NZEBs), nearly-
zero energy buildings (nZEBs), and positive energy buildings
(PEBs) explicitly focus on achieving operational energy neutrality
or surplus. In this area, Al plays a critical role through predictive
optimization, smart energy management, and renewable energy
integration. ZEBs, nZEBs, NZEBs, and PEBs are defined as follows,
each uniquely contributing to environmental goals [69]:

e ZEBs achieve net-zero annual operational energy by balancing
on-site renewable generation with consumption, without
relying on external sources.

e NZEBs have very low energy demand, mostly supplied by high-
efficiency systems, with only a small part coming from external
sources.

e NZEBs achieve a net-zero annual energy balance through on-
site renewable generation and minimal external energy
imports.

e PEBs produce more energy than they consume annually,
generating surplus energy that can be exported to the grid.

Research focuses on load forecasting and energy management,
using ML and neural network models to predict building energy
demand, separate heating, ventilation, and air conditioning
(HVAC) loads, and support energy optimization in smart and NZEB
homes [70-72]. Al is also applied to the design and performance
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optimization of energy systems, including hybrid optimization
methods, surrogate modeling, and battery-based autonomy
enhancement to improve comfort, efficiency, and building per-
formance [33,73-75]. Moreover, research also explores control
strategies using Al, including application programming interface
(API)-integrated smart grid controls, predictive neural network-
based energy control, and adaptive systems for dynamic building
operations [76-78]. Moreover, several studies provide more
comprehensive insights into Al applications for ZEBs and PEBs,
system integration, and research frontiers [79-81]. Further, Al is
leveraged in DT applications and smart city frameworks to support
ZEB assessment and integration into sustainable urban systems
[69].

The convergence of Al and DT technologies further enhances
the potential for simulation-based optimization, continuous per-
formance monitoring, and the integration of smart cities. This
synergy enhances building performance, sustainability, and oper-
ational efficiency. This is evidenced by recent research on Al-
enabled DT for energy consumption prediction, focusing on
improving energy modeling, forecasting loads, and optimizing
building energy use in real time [28,29,34]. Other studies utilize Al
and DTs for thermal comfort monitoring, providing frameworks
for maintaining occupant well-being while optimizing HVAC sys-
tems and energy balance [26]. The synergy of Al and DTs is also
evident in predictive analytics and energy management, where
CPS and AloT infrastructures contribute to monitoring emissions,
forecasting CO, equivalents, and improving asset performance
across the building lifecycle [25,27,82,83]. In urban-scale applica-
tions, DTs are combined with Al and IoT to support sustainable
smart city and building environments [5]. In addition, compre-
hensive studies focus on assessing the characteristics, applica-
tions, and challenges of Al-powered DTs in building performance
simulation and intelligent built environments [84,85].

Despite the growing interest in smart, green, and zero-energy
building (SGZEB) typologies—and the emerging points of conver-
gence enabled by Al and DTs—the current literature remains
fragmented, often analyzing Al and Al-driven DT applications in
isolation or focusing on specific types of buildings and aspects of
environmental sustainability. Specifically, while existing review
studies have explored various applications of Al in smart buildings,
they often focus on certain domains such as AloT integration, ML-
driven energy management, DT applications, thermal comfort
optimization, and energy efficiency [42,53,86-88]. Other review
studies have examined Al techniques for green buildings [89,90],
Al-driven carbon emission forecasting [91], computational intel-
ligence for HVAC system optimization [92], and Al and DT appli-
cations for zero-energy, net-zero energy, and positive energy
buildings [27,69,80]. The roles of Al in fire safety [50], predictive
control-based energy management [45], and building perfor-
mance simulation [84] have also been reviewed. While these re-
view studies provide valuable insights, they often adopt a
fragmented approach, addressing Al and/or DT solutions in isola-
tion rather than as part of a system-level approach. There is also a
lack of a unified framework that consolidates Al- and DT-driven
strategies across SGZEB typologies through the lens of environ-
mental sustainability, providing an integrated and holistic
perspective.

To address these gaps, this study conducts a comprehensive
systematic review of leading-edge Al and Al-powered DT solutions
applied across smart, green, and zero-energy buildings. It aims to
provide a holistic understanding of how these solutions enhance
environmental performance through the analysis of key building-
related indicators. By synthesizing, comparing, and evaluating
recent research, it examines how Al and Al-powered DT technol-
ogies facilitate integrated, system-level strategies that promote
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environmentally sustainable practices across the built environ-
ment. It highlights the interconnectedness among Al and DT
technologies, building typologies, and environmental objectives in
shaping more adaptive, efficient, resilient, and low-impact build-
ing systems. The study, by bridging these domains, offers deeper
insights into the transformative potential of Al and Al-driven DTs
in advancing sustainable smart buildings and establishes a struc-
tured foundation for future research and practical implementa-
tion. To achieve the overall aim and meet the objectives, this study
is guided by the following research questions (RQs):

RQ1: How is Al currently applied to enhance the environmental
performance of smart buildings?

This question focuses on applications of Al in intelligent
building management systems, predictive analytics, and energy
optimization in smart buildings.

RQ2: What role does Al play in optimizing the environmental
performance of green buildings?

This question addresses Al's integration in sustainable design,
green certifications, decision-support tools, and project manage-
ment processes such as cost estimation and risk assessment.

RQ3: How does Al contribute to improving the environmental
performance of zero-energy, net-zero-energy, and nearly-zero-
energy, and positive-energy buildings?

This question examines the intersection of Al with energy-
efficient building technologies, renewable energy integration,
and performance benchmarking in highly energy-efficient
buildings.

RQ4: In what ways can Al-powered DT technologies be lever-
aged to advance environmental goals in building systems or
environments?

This question investigates the potential of Al-enabled DT
frameworks for real-time monitoring, simulation, and system-
level sustainability assessment.

RQ5: How can Al- and DT-enabled SGZEBs align with and
contribute to advancing environmental sustainability, sustain-
able development, and sustainable smart cities?

This question explores the role of Al and DT integration in
scaling building-level sustainability practices to broader urban and
global agendas.

This study makes several concrete contributions to the evolving
discourse on Al, DTs, and environmentally sustainable smart built
environments:

e Conceptual integration of Al and DT for SGZEBs: The study
develops a cohesive, principle-based framework that links Al
and DT technologies across SGZEBs, highlighting their syner-
gistic potential for advancing environmental sustainability in
the built environment.

Cross-typology reinforcement: It demonstrates how data-
driven control in smart buildings, circularity in green build-
ings, and renewable integration in ZEBs can reinforce each
other in a continuous feedback loop by analyzing how sus-
tainability principles flow between different building
typologies.
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e Bridging building and urban scales: It positions buildings not as
isolated assets but as interconnected actors within wider urban
systems, demonstrating how AI-DT integration enables a sys-
temic transition from building-level optimization to urban-
level environmental performance and resilience.

Advancing theory and practice: It synthesizes fragmented Al-
and DT-related research into a unified perspective, providing
both theoretical grounding (linking simulations, models, and
real-time applications) and practical guidance for researchers,
practitioners, and policy-makers.

e Strategic alignment with sustainability agendas: It aligns the
AI-DT framework with broader environmental and societal
goals, including net-zero transitions, circular economy adop-
tion, climate resilience, and SDGs.

Bridging innovation and implementation: It connects techno-
logical advancements in Al and DT with real-world application
pathways, providing practical recommendations for diverse
stakeholders and supporting the systemic transformation of
buildings and cities towards environmental sustainability.

This study is structured as follows: Section 2 provides a survey
of related work, identifying current research trends and high-
lighting key gaps in the integration of Al technologies in sustain-
able smart buildings. Section 3 outlines the systematic literature
review methodology, including its integration with bibliometric
analysis to ensure a comprehensive and structured exploration of
the field. Section 4 presents the outcomes of the bibliometric
analysis, offering a quantitative overview of research patterns and
trends. Section 5 details the results of the tabulated thematic
analysis and the thematic synthesis of the literature on the three
building typologies and their integration with Al and DTs. It also
introduces, illustrates, and elaborates on the novel integrated
framework developed to drive environmental goals across SGZEBs.
Additionally, it examines the relationship between the proposed
framework and the broader objectives related to environmental
resilience, sustainable development, and sustainable smart cities.
Section 6 provides a comprehensive discussion, summarizing the
key findings in relation to the research questions, offering a
comparative analysis with previous related studies, exploring
implications for research, practice, and policymaking, addressing
the identified challenges, barriers, and methodological limitations,
and suggesting future research directions. Finally, Section 7 con-
cludes the study by synthesizing the key insights, emphasizing the
contributions made, and offering final reflections on the future
prospects for sustainable smart built environments.

2. Related work

Al has emerged as a key driver in the development of smart and
sustainable buildings, offering transformative solutions for auto-
mation, energy optimization, improved performance, and
achieving net-zero energy goals. Various review studies have
examined Al's applications in the built environment, yet they often
adopt a fragmented approach, focusing on specific domains or
technologies rather than providing a comprehensive framework
that integrates Al-driven strategies for environmental sustain-
ability. This section synthesizes existing literature on Al applica-
tions in smart and sustainable buildings, highlighting key
contributions and limitations that shape the research gap.

Al-driven automation in smart buildings has focused on inte-
grating Al and AloT to enhance operational efficiency, safety, and
occupant comfort. Sleem and Elhenawy [42] provided an overview
of AloT technologies in smart buildings, emphasizing their role in
optimizing building functionality, reducing energy consumption,
and improving security. However, their study also addressed
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challenges such as data privacy concerns and interoperability is-
sues, which hinder large-scale AloT adoption. Similarly, Qolomany
et al. [87] reviewed the role of ML and big data in smart building
automation, detailing how predictive analytics can enhance real-
time decision-making.

Al applications in energy management have gained significant
attention, particularly through the use of ML models and DT
technology. Alanne and Sierla [53] examined ML applications in
smart buildings, focusing on how autonomous learning processes
can enable adaptive energy management. Their study also dis-
cussed the role of DTs as Al-powered training environments for
optimizing energy use. In contrast, Wang et al. [43] explored dig-
ital twin applications specifically for carbon peak management.
They highlight their ability to monitor emissions in real time and
model net-zero energy strategies.

Several studies have focused on the potential of Al in green and
sustainable buildings, particularly in optimizing resource effi-
ciency and minimizing ecological impact. Rodriguez-Gracia et al.
[89] conducted a bibliometric analysis of Al applications in green
and smart buildings, identifying key themes such as energy opti-
mization, structural stability, and reduction of environmental
impact. Debrah et al. [55] complemented this perspective by
examining Al in green buildings through a mixed-methods
approach, combining bibliometric and systematic analyses to
present a comprehensive overview of state-of-the-art research.
Their study identifies key research trends, major hotspots, and
knowledge gaps, highlighting future directions including the
integration of DTs, AloT, blockchain, robotics, four-dimensional
printing, and considerations of legal, ethical, and moral implica-
tions in Al-enabled green buildings. Wu et al. [90] extended this
line of inquiry by shifting the focus from Al applications in
buildings to Al as the central driver of green building technology
innovation (GBTI). Through bibliometric and dynamic topic
modeling analyses, they map the knowledge structure, thematic
evolution, and emerging research paradigms of Al-driven GBTI.
Hua et al. [91] examined the role of Al in forecasting and managing
building carbon emissions, highlighting how Al-driven models
enhance accuracy by up to 20% compared to traditional methods.
Their study demonstrates that Al-based real-time monitoring and
adaptive management strategies can reduce carbon emissions by
up to 15%, improve energy efficiency by 25%, and lower operational
costs by 10%.

Integrating elements of smart building technology but pri-
marily oriented toward green building sustainability, Adewale
et al. [93] presented a systematic review of Al applications across
the sustainable building lifecycle. They focused on how Al can
enhance energy efficiency, support predictive maintenance, and
improve design simulation processes. The review underscores the
use of advanced ML and DT technologies to enable data-driven
decision-making and real-time performance optimization, while
also identifying key barriers to implementation, including high
costs, data security concerns, and technical complexity.

Mousavi et al. [80] reviewed Al applications for net-zero and
positive energy buildings (NZEBs), examining how data-driven
prediction and optimization models can enhance energy effi-
ciency and optimize renewable energy generation. Their study
highlights the importance of integrating Al into energy manage-
ment systems to achieve sustainability targets. Meanwhile, Bibri
et al. [2] proposed a DT-based framework for assessing and opti-
mizing ZEB performance within sustainable smart cities. The study
identifies key trends in the integration of DTs and ZEBs, empha-
sizing the increasing influence of Al, IoT, and cyber-physical sys-
tems (CPS). It also highlights specific research patterns that
illustrate their synergistic interaction and their role in driving this
convergence. Moreover, it demonstrates how UDTs enhance ZEBs'
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energy management and performance by improving energy effi-
ciency, facilitating the integration of renewable energy, and
reducing carbon emissions through real-time monitoring,
advanced data analytics, predictive maintenance, and operational
optimization.

HVAC systems represent one of the most energy-intensive as-
pects of buildings, and Al-driven strategies have been widely
studied to enhance their efficiency. Sha et al. [92] presented a
detailed review of computational intelligence techniques for
optimizing HVAC system design, outlining how Al-driven models
can improve energy efficiency while maintaining indoor comfort.
Merabet et al. [86] further explored Al-based thermal comfort
control, demonstrating that Al-assisted building control systems
can balance energy savings with occupant comfort through real-
time adaptive mechanisms. Similarly, Yussuf and Asfour [88]
reviewed Al applications across various stages of the building
lifecycle. They highlight predictive control, energy benchmarking,
and fault detection as critical components of Al-driven HVAC
optimization. While these studies contribute to Al's role in energy-
efficient climate control, they primarily address individual HVAC
improvements without considering Al's broader role in sustain-
able building design, operation, and user-centric optimization.

Al applications in building performance and safety manage-
ment have also been explored. De Wilde [84] examined Al's inte-
gration with building performance simulation, discussing how Al-
enhanced models can improve predictive accuracy and optimiza-
tion capabilities in building operations. However, they focus pri-
marily on simulation methodologies without addressing Al's role
in sustainability-driven performance optimization. Zeng and
Huang [50] investigated Al's application in fire safety design,
demonstrating how Al-driven risk assessment models can
enhance early fire detection and emergency response.

Although prior studies have provided extensive and diverse
reviews of Al applications in smart and sustainable buildings, they
often adopt a domain-specific approach by examining Al models
and techniques in isolated contexts such as energy management,
HVAC optimization, or DT simulations. Existing reviews on Al-
driven energy efficiency primarily focus on technical improve-
ments without fully addressing sustainability principles, while
studies on Al for net-zero buildings and green construction often
lack insights into Al's role in automation and lifecycle optimiza-
tion. Furthermore, although DT applications have been explored in
energy monitoring and carbon management, their potential in
supporting holistic Al-driven sustainability frameworks remains
underdeveloped.

This comprehensive systematic review addresses these gaps by
providing a holistic perspective on the role of Al and Al-driven DT
in achieving environmental objectives in smart and sustainable
buildings. Unlike previous studies, this review adopts a cross-
system approach, integrating Al and Al-driven DT applications
across various building functions, typologies, and lifecycle stages
to examine their collective environmental impact. Through this
synthesis, the study aims to establish a structured framework for
future research and practical implementations of both Al and Al-

driven DT in environmentally sustainable smart built
environments.
Specification of Formulation of LilaEte Screening
objectives research identification e
questions selection
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3. Research methodology

This study adopts a mixed-method research design that in-
tegrates a systematic literature review with bibliometric analysis
to investigate how Al and Al-driven DT technologies contribute to
environmental goals across SGZEBs. The systematic review serves
as the central methodological framework, enabling an in-depth
and structured examination of peer-reviewed studies that focus
on the intersection between Al and DT technologies and sustain-
ability objectives in the built environment. It addresses all five
research questions guiding the study. Complementarily, the bib-
liometric analysis provides a quantitative lens to assess research
trends, emerging patterns, and knowledge gaps in the interdisci-
plinary field as identified in this study, which helps situate it
within the evolving scholarly landscape. It provides a macro-level
overview of the research landscape and dynamics by identifying
intellectual trends, thematic concentrations, and co-authorship
networks, thereby enhancing the foundation of the study.

The systematic review facilitates a structured and qualitative
synthesis of theoretical, empirical, and experimental findings by
specifically identifying how advanced technologies—such as Al,
ML, CV, NLP, GenAl, AloT, and DTs—are being leveraged to enhance
different aspects and objectives of environmental resource man-
agement across three major building typologies. Simultaneously,
the bibliometric analysis, conducted using VOSviewer, maps the
research field by analyzing keyword co-occurrences, citation net-
works, and thematic clusters to reveal the structure and evolution
of the research field from 2020 to 2025. This dual-method
approach offers both trend-level breadth and thematic depth,
essential for a nuanced understanding of how Al and DT support
environmental efforts across diverse architectural, technical, and
operational contexts of buildings. It captures the trajectory of
recent research while distilling insights relevant to the systematic
integration of Al in environmentally sustainable smart building
practices. It also ensures that both qualitative and quantitative
dimensions of the literature are addressed, allowing for a
comprehensive synthesis that encapsulates the multifaceted ways
in which Al and DT capabilities are being harnessed to improve the
environmental performance of building systems.

3.1. Research design

The study was designed as a multi-phase, iterative process
structured around the standard stages of a systematic literature
review (Fig. 1). At its core, the goal is to map how Al and Al-driven
DT technologies contribute to environmental sustainability
through key indicators across SGZEBs. Accordingly, the research
systematically examined applied solutions to energy efficiency,
renewable integration, carbon footprint reduction, waste mini-
mization, water efficiency, indoor environmental quality, and
thermal comfort across these building typologies. This thematic
mapping served as the analytical groundwork for identifying
cross-cutting insights and guiding the development of the inte-
grated framework.

The research design employs a thematic approach, which is
particularly suitable for interdisciplinary inquiries that span

environmental science, architectural design, engineering,
Data Quality Thematic Thematic
extraction appraisal analysis synthesis

Fig. 1. A multi-phase structured process of the systematic literature review.
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sustainability, and technology. It aligns with the study's objective
of developing a comprehensive understanding of Al's role in
optimizing environmental processes and practices within the built
environment. Each study was reviewed not only in terms of its
technological focus but also for its contribution to one or more of
the sustainability indicators across the three building typologies.
This structured yet flexible categorization informed the develop-
ment of comparative tables that map the intersection of Al, Al-
driven applications, and sustainability objectives. In addition, the
research design allowed for the identification of recurring themes,
potential synergies, and underexplored areas. This, in turn, sup-
ported the development of an integrated framework that high-
lights key convergences in Al-enabled sustainable building
practices.

3.2. PRISMA and literature search strategy

The preferred reporting items for systematic reviews and meta-
analyses (PRISMA) framework (Fig. 2) was adopted to ensure
transparency and rigor in the literature search and selection pro-
cess. The PRISMA flow diagram guided the documentation of the
review process, from the initial identification of records through
the final inclusion of eligible studies. This process included the
systematic removal of duplicates, assessment of relevance based
on titles and abstracts, full-text review, and quality appraisal.

The literature search was conducted across two major aca-
demic databases—Scopus and Web of Science—chosen for their
breadth of interdisciplinary coverage and inclusion of authorita-
tive sources of evidence. These databases were selected to ensure
comprehensive retrieval of scholarly works pertinent to the
multifaceted topic addressed in this study. To enhance specificity
and relevance, search queries were formulated using tightly
coupled keyword combinations, applied across the title, abstract,
and keyword fields, to target both the technological dimensions of
Al and the environmental objectives specific to the three building
types. The curated keywords and their combinations guiding the

Identification of literature via databases: Scopus and Web of Science
Publication date: From 2020 to 2025
Publication type: Journal articles, conference papers, and book chapters
Publication language: English

o
c . Y
S | | Records identified from Records removed before screening:
5] academic research ] )
£ indexing databases: —>1 Duplicate and irrelevant records removed:
é Total (n=483) Total removed (n =269)
— I
!
o
Records excluded based on inclusion and
Abstract of the records - -
e’ exclusion criteria check of the abstract of
’ * the records:
> (n=214) (n=51)
c
.E I
o !
O
@ Reports excluded based on inclusion and
Reports assessed for usi teria check of the full
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Fig. 2. The PRISMA flowchart for literature search and selection.
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literature search were systematically organized into thematic
categories. These categories were designed to capture the breadth
and depth of existing knowledge while aligning with the study's
scope. The selection of keyword combinations reflected the
multidimensional nature of this research and ensured a thorough
exploration of related literature across various fields. Boolean
operators were strategically used to refine the search scope and
construct complex search strings that captured the intersection-
ality of various domains. Accordingly, among the query structures
employed were:

(“Artificial Intelligence” OR “Al” OR “Machine Learning” OR
“Deep Learning”) AND (“Smart Buildings” OR “Intelligent
Buildings”)

(“Artificial Intelligence” OR “Al” OR “Machine Learning” OR
“Deep Learning”) AND (“Green Buildings” OR “Sustainable
Buildings™)

(“Artificial Intelligence” OR “AI” OR “Machine Learning” OR
“Deep Learning”) AND (“Zero Energy Buildings” OR “Net Zero
Energy Buildings” OR “Nearly Zero Energy Buildings” OR “Pos-
itive Energy Buildings”)

(“Artificial Intelligence” OR “AI” OR “Artificial Intelligence of
Things” OR “AloT”) AND (“Digital Twins” OR “DT”) AND (“Smart
Buildings” OR “Green Buildings” OR “Zero-Energy Buildings”)
(“Smart Buildings” OR “Green Buildings” OR “Zero-Energy
Buildings”) AND (“Environmental Indicators” OR “Performance
Indicators” OR “Sustainability Indicators”)

(“Artificial Intelligence” OR “Al” OR “Artificial Intelligence of
Things” OR “AloT”) AND (“Environmental Sustainability” OR
“Sustainable Development”) AND (“Smart Cities” OR “Sustain-
able Smart Cities” OR “Built Environment”)

(“Artificial Intelligence” OR “Al”) AND (“Energy Efficiency” OR
“Thermal Comfort” OR “Performance” OR “Architectural
Design”) AND (“Buildings” OR “Building Environment”)

These queries were iteratively refined to exclude irrelevant
results while maximizing the inclusion of studies that address the
convergence of Al and Al-driven DT technologies and environ-
mental integrity in building systems. The review timeframe was
set between 2020 and 2025 to capture the most recent and im-
pactful developments in Al-driven environmental applications in
the building sector. This period, especially 2022-2025, reflects a
surge in Al research in the AEC sector, especially in the wake of
global climate action and technological advances in Al, AloT, and
DTs. This strategy yielded a broad but thematically focused set of
records, ensuring that the final sample reflects the diversity of Al
and Al-driven DT applications across SGZEB typologies.

3.3. Inclusion and exclusion criteria

The inclusion and exclusion criteria were developed to ensure
the relevance, quality, and coherence of selected studies. Only
studies published in English between 2020 and 2025 were included,
focusing on peer-reviewed journal articles, conference proceedings,
scholarly book chapters, and policy documents. Eligible studies
explicitly primarily addressed Al, ML, or DL and related DT appli-
cations in one or more of the three building typologies, with a direct
connection to at least two environmental indicators.

Studies were excluded if they did not meet the time frame,
lacked a focus on Al, Al-driven DT, or environmental sustainability;
addressed buildings only peripherally; did not directly address Al
or Al-driven DT applications in smart, green, or zero-energy
buildings; or were non-peer-reviewed sources such as editorials,
white papers, and grey literature. Studies that dealt solely with
economic modeling, structural engineering unrelated to
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environmental performance, or speculative conceptual essays
without empirical grounding were also excluded. This filtering
process helped refine the dataset to include only high-quality,
thematically relevant contributions that informed the study's
research questions and comparative analysis.

3.4. Data extraction and quality appraisal

Following the selection process, a structured data extraction
protocol was implemented to capture consistent and essential
information across the included studies. Each study was reviewed
for key metadata, including authorship, publication year, meth-
odological approach, Al techniques applied, Al-driven DT solution,
building typology, and environmental indicators addressed.
Detailed notes were taken on objectives, experimental or
modeling techniques, theoretical or conceptual emphases, out-
comes or findings, and limitations or challenges. This process
ensured consistency and accuracy while enabling cross-
comparison among studies. A parallel quality appraisal was con-
ducted to assess the methodological rigor and relevance of each
study in relation to the research questions and transparency in
reporting. Only those studies that demonstrated a clear applica-
tion of Al and Al-driven DT in one or more environmental in-
dicators were retained for further analysis. Studies with
ambiguous methodologies, limited scope, or unclear relevance
were excluded from the final outcome to maintain the focus of the
review.

3.5. Data analysis

The data analysis was organized thematically, guided by the
core environmental indicators and conceptual categories identi-
fied during the research design phase. Accordingly, each study was
categorized based on its alignment with building typologies and
one or more of these indicators. Studies were grouped under each
building type and evaluated for convergence and divergence in Al
models and applications. To systematically map these associations,
a set of comparative tables was developed, each corresponding to
SGZEBs. These tables function as a comparative matrix, enabling
structured analysis across the three building typologies. The ma-
trix serves not only as an analytical tool but also as a foundation for
the subsequent framework development by visually organizing Al
applications in relation to environmental indicators.

Cross-cutting themes such as DT integration and Al in AEC, and
GenAl in architectural design were also examined. Bibliometric
results were used to validate emerging themes, visualize research
clusters, and support the identification of dominant and under-
explored areas. Thematic overlaps were documented and explored
in the discussion section, while gaps in the literature were flagged
as areas for future research.

3.6. Synthesis of findings and framework development

The synthesis stage involved integrating insights from both the
thematic and bibliometric analyses into a coherent narrative to
build a comprehensive understanding of the topic on focus. This
process entailed systematically comparing Al applications across
different building typologies, identifying commonalities, distinc-
tions, and emerging trends in relation to key environmental in-
dicators. Through this comparative synthesis, patterns of Al
convergence, such as shared applications in energy efficiency,
predictive analytics, and automation, were highlighted, alongside
areas of divergence where Al's role is more specialized for certain
building types. In addition, underexplored intersections between
Al techniques and sustainability objectives were identified,

Environmental Science and Ecotechnology 28 (2025) 100628

revealing gaps and opportunities for future research.

These synthesized insights informed the development of a
novel integrated framework that visually and conceptually repre-
sents the alignment of Al technologies with environmental in-
dicators across building typologies. The framework captures cross-
cutting applications while also mapping distinct roles Al plays in
each building type, serving as a tool for identifying pathways to-
wards comprehensive integration of Al in the sustainable built
environment. The study moves beyond fragmented un-
derstandings of Al applications in buildings to offer a holistic,
actionable view by synthesizing findings across technological,
environmental, and typological dimensions. The framework con-
tributes to academic discourse and practical applications, sup-
porting informed decision-making in building design, policy
development, and urban planning.

4. A bibliometric analysis of smart, green, and zero-energy
buildings: mapping artificial Intelligence's role in
environmental sustainability in the built environment

To situate this study within the evolving scholarly landscape,
the bibliometric analysis provides a quantitative lens through
which to assess research trends, emerging patterns, and knowl-
edge gaps across the interdisciplinary domain intersecting build-
ing typologies, advanced technologies, and environmental
solutions. It was employed to map and visualize the landscape of
integrating Al, ML, DL, CV, NLP, and Generative Al in advancing
SGZEBs as part of broader environmental strategies. The objective
was to uncover the thematic structure, dominant clusters, and
emerging trends in this rapidly burgeoning field, thereby
providing context and direction for the integrated tabulated
analysis, qualitative synthesis, and framework development that
follow.

The bibliometric analysis was conducted using VOSviewer
version 1.6.17, a specialized tool for visualizing bibliometric net-
works. A comprehensive dataset was compiled in March 2025,
targeting peer-reviewed articles published between 2020 and
2025, a timeframe selected to capture recent advancements and
emerging research directions. The dataset spans multiple disci-
plines, including engineering, environmental science, energy,
computer science, architectural design, construction, and building
technology. A total of 678 documents were retrieved from three
major sources: Scopus (88), Web of Science (47), and ScienceDirect
(543). The bibliometric dataset was systematically retrieved from
Scopus and WoS, which served as the core indexing databases for
bibliometric analysis. ScienceDirect, by contrast, was used pri-
marily as a full-text repository for screening and contextual
reading, rather than as an indexing source. The higher number of
publications visible on ScienceDirect reflects Elsevier's hosting of a
wide range of journals, not all of which are indexed in Scopus or
Web of Science. The search strategy adopted was designed to be
both targeted and comprehensive, combining key terms related to
Al subdomains, building typologies, and environmental indicators.
Metadata, including titles, abstracts, author keywords, and citation
data, were extracted for analysis.

VOSviewer was used to conduct a term co-occurrence analysis,
identifying frequently used terms and key themes that dominate
the literature on Al in sustainable smart buildings. Fig. 3 displays a
visual map of these co-occurring terms, where the size of each
node represents term frequency, and the proximity between nodes
indicates the strength of their co-occurrence. Different clusters are
distinguished by color, reflecting thematic groupings within the
research landscape.

The analysis identified 15 thematic clusters and 249 frequently
occurring terms, each revealing a different facet of how Al is being
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Fig. 3. Result of the term co-occurrence analysis.

applied to enhance the environmentally sustainable built
environment.

Cluster 1 (36 items) is focused on artificial neural networks
(ANNs), generative adversarial networks (GANs), automation,
smart buildings, solar energy, indoor air quality, energy efficiency,
and thermal comfort. This cluster highlights the integration of Al-
driven energy management tools in smart buildings, particularly
those leveraging predictive modeling and neural learning to
enhance operational efficiency and occupant comfort.

Cluster 2 (29 items) reflects growing research on Al, Generative
Al, diffusion models, large language models (LLMs), and AloT ap-
plications targeting climate change mitigation, carbon removal,
and SDGs. It shows how advanced generative architectures are
being deployed to model, simulate, and optimize environmental
performance in urban systems.

Cluster 3 (23 items) addresses themes such as sustainability,
construction 4.0, energy system modeling, life cycle assessment
(LCA), and digitalization, with a strong presence of terms related to
green buildings and the built environment. This cluster highlights
the application of Al and ML in monitoring resource consumption
and enhancing energy performance through data-driven design
strategies.

Cluster 4 (21 items) includes keywords such as carbon foot-
print, BIM, deep reinforcement learning, cybersecurity, and

optimization. It focuses on DL approaches in managing energy
demand and enhancing energy security, especially through inte-
gration with smart grids and CPS.

Cluster 5 (21 items) covers ZEBs, climate change, energy
modeling, urban sustainability, waste management, and emissions
reduction. This cluster represents the convergence of Al-enabled
modeling tools and sustainability goals in designing buildings
that meet net-zero or near-zero energy targets.

To further interpret these findings, each thematic cluster
identified in the bibliometric analysis can be directly linked to
specific advanced technologies. Cluster 1's focus on ANNs, GANs,
and automation highlights the role of ML, DL, and Al-driven opti-
mization in predictive building management. Cluster 2's emphasis
on GenAl, LLMs, and AloT reflects the integration of cutting-edge Al
architectures with IoT systems to address climate change mitiga-
tion and SDG-related objectives. Cluster 3's themes of sustain-
ability, LCA, and digitalization align closely with Al- and ML-
enabled decision support for green building lifecycle perfor-
mance. Cluster 4's inclusion of BIM, deep reinforcement learning,
and cybersecurity demonstrates the role of DL and DT frameworks
in optimizing energy demand while ensuring system resilience.
Finally, Cluster 5's focus on ZEBs, emissions reduction, and urban
sustainability illustrates how Al-powered simulation and
modeling tools are being leveraged for net-zero and positive-
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energy building strategies. This linkage between thematic clusters
and enabling technologies provides a clearer map of how Al, ML,
CV, NLP, Generative Al, AloT, and DTs are advancing the environ-
mental performance of different building typologies.

Fig. 4 illustrates the interrelationships among the 15 identified
clusters, revealing how different strands of research are inter-
connected. The relative size of each cluster indicates the weight of
occurrence, serving as a proxy for the dominance of each research
theme in the current literature. Clusters 1 and 2 dominate the
landscape, showing a strong emphasis on Al strategies for energy
optimization, climate adaptation, and smart building automation.
Clusters 3 and 4 underscore Al's contributions to lifecycle perfor-
mance, carbon reduction, and security in green building contexts.
Cluster 5 presents evidence of a focused yet still developing body
of work on ZEBs, highlighting both the promise and gaps in this
area. Overall, this clustering indicates the growing but uneven
integration of Al across the three building typologies, with smart
buildings receiving the most attention, followed by green build-
ings, and lastly ZEBs, which remain comparatively underexplored.

Between 2020 and early 2025, the scholarly output on Al,
Generative Al, ML, DL, CV, and NLP in the context of advancing
smart, green, and zero-energy buildings as environmental solu-
tions has grown significantly (Fig. 5). While publications were
relatively sparse in 2020—with only 1 article indexed in Web of
Science, 8 in Scopus, and 14 in ScienceDirect—the following years
witnessed a steady rise. In 2021, the numbers climbed to 4, 11, and
43, respectively, reflecting growing academic engagement with Al
applications in sustainable smart building practices. This upward
trend continued into 2022, which saw 8 publications in Web of
Science, 18 in Scopus, and 79 in ScienceDirect, suggesting the field
was gaining traction across engineering, energy, and environ-
mental science disciplines.

A sharper increase was evident in 2023, with 12 publications
indexed in Web of Science, 26 in Scopus, and 114 in ScienceDirect.
This marked a point at which Al's environmental potential in the
built environment began to draw more focused attention. The
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Fig. 5. Number of publications from 2020 to 2025 across three databases (Web of
Science, Scopus, and ScienceDirect).

most notable surge, however, occurred in 2024. That year, publi-
cations peaked at 19 in both Web of Science and Scopus, and an
impressive 199 in ScienceDirect, highlighting a significant expan-
sion of interdisciplinary research. This dramatic growth reflects an
intensifying interest in Al's capacity to optimize energy systems,
support predictive building operations, enable net-zero strategies,
and contribute to broader sustainability goals within smart city
frameworks.

While data for 2025 only covers the first quarter (January—
March), the early figures—3 publications in Web of Science, 6 in
Scopus, and 94 in ScienceDirect—indicate that the momentum has
not slowed. If this trajectory continues, 2025 is likely to match or
even surpass the previous year's record, reinforcing the notion that
this domain is not only maturing but rapidly expanding.

These trends signal two important developments. First, there is
an increasing scholarly focus on Al's critical role in addressing
climate-related and environmental challenges through sustain-
able smart building systems. Second, the presence of emerging
technologies such as Generative Al, advanced neural networks,
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and NLP points to a diversification of Al tools being employed—not
just for monitoring and control, but also for generative design,
emissions forecasting, and integrated sustainability planning.
Together, these shifts highlight the growing complexity and
promise of Al-powered solutions in shaping the future of envi-
ronmentally sustainable buildings.

Overall, the publication trend (Fig. 5) confirms the emergence of
a robust and rapidly evolving research domain, where Al-powered
technologies are increasingly positioned as key enablers of sus-
tainable transformation in architecture, engineering, construction,
and the built environment. This trend is substantiated by studies in
the AEC sector, including Zhang et al. [37], Momade et al. [38],
Rafsanjani and Nabizadeh [39], Saka et al. [40], and Mor et al. [41],
which document the application of Al in sustainable building
design, operation, and management. The steady rise in scholarly
output reflects growing recognition of Al's potential to advance
environmental performance across the three building typologies.
This trend is evidenced by numerous representative studies on
smart buildings (e.g., Ref. [42,46-50,52,53]), green buildings (e.g.,
Ref. [9,51,55,59,61,54,62,94,68,95,96]), as well as ZEBs, NZEBs,
nZEBs, and PEBs (e.g., Ref. [70,71,73,76,78-80]). At the same time,
the uneven distribution of research across building types and sus-
tainability indicators highlights a fragmented landscape—under
scoring the need for integrative frameworks that can bridge disci-
plinary silos and support holistic, Al-driven environmental
strategies.

In summary, the bibliometric analysis reveals an increasingly
dynamic and interdisciplinary research landscape focused on the
intersection of Al technologies and the environmental perfor-
mance of the built environment. Through the identification of
thematic clusters, co-occurring terms, and publication trends, the
analysis highlights both the growing momentum and existing gaps
in the field. Smart buildings dominate current research, particu-
larly in relation to Al-driven energy optimization, automation, and
climate mitigation and adaptation, while green buildings and ZEBs
remain comparatively underexplored. The rapid rise in scholarly
output—especially from 2023 onward—demonstrates expanding
interest in the application of Al, including emerging tools such as
Generative Al and NLP, to address sustainability challenges.
However, the fragmentation across domains and the limited
integration of Al across building typologies and sustainability in-
dicators suggest the need for a more cohesive, integrated
approach. These findings provide a critical foundation for the
tabulated analysis, qualitative synthesis, and integrated frame-
work that follow, offering direction for future research and
practice.

5. Tabulated analysis and thematic synthesis

This section presents the outcomes of the systematic review
conducted to address the five research questions guiding this
study. The results are presented through a tabular and typological
analysis, as well as a thematic synthesis of key evidence. Table 1
presents a comprehensive thematic mapping of Al applications
across various building typologies, technologies, and domains,
thereby supporting RQ1 through RQ4. Tables 2-4 map Al's role in
advancing environmental indicators in smart (RQ1), green (RQ2),
and zero-energy building typologies (RQ3), respectively. It should
be noted that the studies included in Table 3 are presented as
illustrative subsets, selected to demonstrate how Al applications
intersect with sustainability indicators in this typology; all studies
are subsequently analyzed and synthesized thematically in greater
depth in the subsequent subsection. This also applies to Table 1,
where Al subdomains in this typology are highlighted for illus-
trative purposes. Together, these results form the foundation for
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developing the framework in response to RQ4, and further
contribute to answering RQ5 by synthesizing insights across
building environments towards broader environmentally SDGs in
smart cities.

In complement to the tabular and thematic mapping presented
in the first part of the results, the synthesis deepens the analysis by
categorizing the studies into four major areas of advancement.
Each area corresponds to one or more aspects of the research
questions and collectively highlights how Al and DT technologies
are operationalized across SGZEB typologies. This structured syn-
thesis identifies the core innovations within each category and
uncovers cross-cutting patterns, emerging trends, and evolving
practices that position Al and DTs as key drivers of environmental
sustainability across building domains and scales. This section
provides a comprehensive and integrated view of the state-of-the-
art landscape by bridging the detailed mapping of applications
with broader thematic insights.

5.1. Comprehensive analysis of artificial intelligence applications in
building systems and environmental sustainability indicators

This subsection presents a detailed analysis of the first part of
this section, starting with Table 1, which includes Subsections 5.1.1
and 5.1.2. It summarizes nine thematic areas and explores their
interconnections in the broader context of Al applications across
building typologies, domains, and technologies. Table 1 highlights
how various Al subdomains are applied and interrelated, offering
insights into their collective impact on smart building design,
energy efficiency, thermal comfort, building performance, green
buildings, ZEBs, DTs, generative architectural design, and key as-
pects of Al applications in the AEC industry. Subsection 5.1.3 fo-
cuses on established environmental indicators across SGZEBs,
highlighting how Al and DT technologies enhance their imple-
mentation and performance.

In Subsection 5.1.4, which involves Tables 2-4, the focus shifts
to how Al contributes to the environmental indicators related to
the three building typologies. These tables systematically map the
integration of Al in addressing specific environmental metrics
across SGZEBs. The organization of findings provides a holistic
understanding of the role of Al in sustainable smart building
practices, providing insights into how environmental indicators
shape the design and performance of these building typologies.
Through this tabulated and thematic analysis, the comparative
component becomes evident, allowing for the identification of
patterns, trends, and contrasts across the three typologies. This
comparison highlights the differing ways Al contributes to envi-
ronmental goals and points to areas that may require further
exploration. The dual approach examines how Al-driven in-
novations align with sustainable practices and uncovers synergies
between technology, environment, and architectural design.
Overall, these tables form a comprehensive perspective on how Al
is transforming the built environment and enhancing the envi-
ronmental performance of SGZEBs.

5.1.1. Tabulated thematic analysis of artificial intelligence models
in building typologies, domains, and technologies

Table 1 presents a systematic mapping of 109 peer-reviewed
studies that apply Al in the context of buildings. Each row in-
dicates whether a particular Al model or subdomain is applied in
the given study, allowing for a quantitative and thematic overview
of how Al is being implemented across different areas of building
research. Table 1 provides a detailed overview of how Al is being
integrated into various building typologies, domains, and tech-
nologies, reflected in nine key themes: (1) Al in smart buildings,
(2) Al for energy efficiency, (3) Al for thermal comfort, (4) Al for
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Table 1
Mapping Al subfields and subdomains across building research areas.

No. Article title Al AloT ML DL CV NLP GAI Reference

Artificial intelligence in smart buildings

1  Survey of artificial intelligence of things for smart buildings: A closer outlook v v/ X X x x x [42]

2 Carbon peak management strategies for achieving net-zero emissions in smart buildings: Advances and modelingin v X v X X X x [43]
digital twin.

3 Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and vV X v v/ x X x [46]
applications

4 Smart buildings and intelligent transportations with artificial intelligence and digitalization technology v X X X X x X [47]

5  Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost v X vV o/ X X X [44]
optimization

6  Machine learning and predictive control-based energy management system for smart buildings X v / X X X x [45]

7 Deep learning in healthcare: Opportunities, threats, and challenges in a green smart environment solution for smart X X x v x x x [51]

buildings and green cities—towards combating COVID-19
8 Towards automated occupant profile creation in smart buildings: A machine learning-enabled approach for user persona vv X v X X X X [48]
generation

9  Machine learning-based predictive model for thermal comfort and energy optimization in smart buildings vV X v/ v/ x X x [49]

10 An overview of machine learning applications for smart buildings. vV X v/ X x X x |[53]

11 Application of an Al-based optimal control framework in smart buildings using borehole thermal energy storage v X X x x X x [52]
combined with wastewater heat recovery

12 Smart building fire safety design driven by artificial intelligence v X X X x x x [50]

13 Energy-efficient heating control for smart buildings with deep reinforcement learning X X X v x x x [97]

14 Artificial intelligence evolution in smart buildings for energy efficiency v X vV v/ X x X [98]

Artificial intelligence for energy efficiency in buildings

15 Optimizing high-rise buildings for self-sufficiency in energy consumption and food production using artificial v X X v x x x [99]
intelligence: Case of europoint complex in rotterdam

16 An artificial intelligence-based method to efficiently bring CFD to building simulation v X X X X X X [100]

17 Overview of computational intelligence for building energy system design v X X X x x x [92]

18 Approximate model predictive building control via machine learning X X v/ v/ x x x [101]

19 Heat loss coefficient estimation applied to existing buildings through machine learning models. X X v x x x x [102]

20 Application of machine learning to estimate building energy use intensities X X v X x X x [103]

21 The future role of artificial intelligence (Al) design's integration into architectural and interior design education is to v X X X X X X [104]
improve efficiency, sustainability, and creativity.

22 Artificial intelligence for calculating and predicting building carbon emissions: a review. v X [91]

23 An integrated artificial intelligence-driven approach to multi-criteria optimization of building energy efficiency and v X [31]
occupants' comfort: A case study

24 Applications of artificial intelligence for energy efficiency throughout the building lifecycle: An overview. v X X X x x x [88]

25 Intelligent management of industrial building energy saving based on artificial intelligence v X X X x x x [105]

26 Building energy management and forecasting using artificial intelligence: Advance technique. v X X X X X X [106]

27 Early energy performance analysis of smart buildings by consolidated artificial neural network paradigms v X X v x x x [107]

28 Al-powered deep learning for sustainable industry 4.0 and internet of things: enhancing energy management in smart v v X v X X X [108]
buildings

29 A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings v X X X X x X [109]

30 Integrated applications of building information modeling and artificial intelligence techniques in the aec/fm industry. v X X X x x x [37]

31 Optimal control of renewable energy in buildings using the machine learning method. X X v X x X x [36]

32 Artificial intelligence for calculating and predicting building carbon emissions: A review v X v / v/ X X [91]

Artificial intelligence for thermal comfort in buildings

33 Using an ensemble machine learning methodology-bagging to predict occupants’ thermal comfort in buildings X X v X x X x [110]

34 Artificial intelligence tools and inverse methods for estimating the thermal diffusivity of building materials v X X X x x x [111]

35 Energy and thermal modelling of an office building to develop an artificial neural networks model. v X X X X v x [112]

36 Field studies of the artificial intelligence model for defining indoor thermal comfort to acknowledge the adaptive aspect. v X X X x v x [113]

37 Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence v X X X X v X [114]

38 Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial v X X X X X X [86]
intelligence-assisted techniques

39 Comprehensive integration of artificial intelligence in optimizing hvac system operations: a review and future outlook. v X X v x x x [115]

40 Nonlinearity in thermal comfort-based control systems: A systematic review. v X X v/ X X X [116]

41 Towards various occupants with different thermal comfort requirements: A deep reinforcement learning approach X X X v X X X [117]
combined with a dynamic pmv model for hvac control in buildings.

42 Optimizing building heat load prediction using advanced control strategies and artificial intelligence for hvac system. v X X X X X X [118]

43 Enhancing IAQ, thermal comfort, and energy efficiency through an adaptive multi-objective particle swarm optimizer- « X X X X v X [119]
grey wolf optimization algorithm for smart environmental control.

44 Al based temperature reduction effect model of fog cooling for human thermal comfort: climate adaptation technology. v X X X X X X [120]

45 Artificial intelligence (Al)-based occupant-centric heating ventilation and air conditioning (HVAC) control system for v X X X X [121]
multi-zone commercial buildings

Artificial intelligence for building performance

46 Building performance simulation in the brave new world of artificial intelligence and digital twins: a systematic review. v v X X X X X [84]

47 Applications of artificial intelligence enabled systems in buildings for optimized sustainability performance v X X X x x x [122]

48 Optimizing building energy performance predictions: a comparative study of artificial intelligence models v X X X x x x [123]

49 The artificial intelligence reformation of sustainable building design approach: a systematic review on building design v X /oOoX o x o x  x [124]
optimization methods using surrogate models

50 Application of artificial intelligence technique in optimization and prediction of the stability of the walls against wind v X v v X X X [125]
loads in building design

Artificial intelligence in green buildings

51 Artificial intelligence in green building v X X X X X %X [55]

(continued on next page)
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Table 1 (continued )

No. Article title Al AloT ML DL CV NLP GAI Reference

52 Constructing a smart framework for supplying the biogas energy in green buildings using an integration of response v X v X X X X [59]
surface methodology, artificial intelligence and petri net modelling

53 Research on sustainability evaluation of green building engineering based on artificial intelligence and energy v X X X X x X [61]
consumption

54 Review of artificial intelligence techniques in green/smart buildings X X X X [89]
55 Bim-supported automatic energy performance analysis for green building design using explainable machine learningand X X «v X X X X [35]
multi-objective optimization
56 Thermal conductivity improvement in a green building with nano insulations using machine learning methods X X v X x X x [67]
57 A machine learning-based two-stage integrated framework for cost reasonableness prediction of green building projects X X «v X X X X [62]
58 Application of hybrid machine learning algorithm in multi-objective optimization of green building energy efficiency X X vV X X x X [60]
59 Evaluation of waste management and energy saving for sustainable green building through analytic hierarchy processand v % X X x x x [68]
artificial neural network model
Artificial intelligence in zero, net zero, and nearly zero energy buildings
60 A comprehensive review on technologies for achieving zero-energy buildings v X X X X X X [81]
61 Net zero energy cost building system design based on artificial intelligence v X X X X x x [33]
62 Prospective research trend analysis on zero-energy building (ZEB): An artificial intelligence approach v X X X X v x [79]
63 Data-driven prediction and optimization toward net-zero and positive-energy buildings: a systematic review. v X v/ X X X x [80]
64 Energy management in zero-energy building using neural network predictive control. v X X X x v x [72]
65 Leveraging digital twins for zero-energy building ratings in sustainable smart cities: a comprehensive review and novel v X X X x x x [2]
framework
66 Optimizing NZEB performance: A review of design strategies and case studies. v X X X X X X [76]
67 ExplainerX: An integrated and explainable Al framework for nearly zero-energy buildings. v X X x x X x [78]
68 Design and accomplishment of ai control strategy with api in nearly zero energy building smart grid. v X x X x x x [77]
69 A hybrid optimization approach for autonomy enhancement of nearly-zero-energy buildings based on battery v X X X X v X [74]
performance and artificial neural networks
70 Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine x X /X x x x [75]
learning algorithm
71 Artificial intelligence method for the forecast and separation of total and HVAC loads with application to energy v X X x x X x [70]
management of smart and NZE homes.
72 Nearly zero-energy building load forecasts through the competition of four machine learning techniques X vV X x x x [71]
73 An optimal surrogate-model-based approach to support comfortable and nearly zero energy buildings design. v X X X X v x [73]
Artificial intelligence-driven digital twins in buildings
74 Machine learning and artificial intelligence for digital twin to accelerate sustainability in positive energy districts. X X /X X X X [34]
75 Cyber-physical systems improving building energy management: Digital twin and artificial intelligence vV X / X x X x [25]
76 Artificial intelligence and a digital twin are effecting building energy management. Vv o/ X x X x [82]
77 Al -powered digital twins and internet of things for smart cities and sustainable building environment v X X X X x X [5]
78 Prediction of an efficient energy-consumption model for existing residential buildings in lebanon using an artificial neural v X X X X v X [29]
network as a digital twin in the era of climate change.
79 Digital twin technology for thermal comfort and energy efficiency in buildings: A state-of-the-art and future directions. v X X v X v/ X [26]
80 A digital twin for energy consumption prediction and thermal comfort monitoring in residential buildings v v/ X X X x X [28]
81 Improving building energy footprint and asset performance using digital twin technology. X v X X x X x [83]
82 Digital twin with machine learning for predictive monitoring of CO, equivalent from existing buildings. Vv o/ X x x x [27]
83 Digital twins in built environments: An investigation of the characteristics, applications, and challenges v v/ X X X X X [85]
Artificial intelligence and generative artificial intelligence for architectural design
84 A generative architectural and urban design method through artificial neural networks. vV X /X x X x [126]
85 Artificial intelligence applied to conceptual design. A review of its use in architecture. v X o/ o x o x  x [127]
86 Generative design of outdoor green spaces based on generative adversarial networks v X vV o/ X X x [128]
87 Learning to generate urban design images from the conditional latent diffusion model. v X X v v/ x x [129]
88 Artificial intelligence applications in earthquake resistant architectural design: determination of irregular structural v X X X X X X [130]
systems with deep learning and image Al method
89 The role of artificial intelligence in architectural design: conversations with designers and researchers. vV X /o X x x x [131]
90 Visualized co-simulation of adaptive human behavior and dynamic building performance: An agent-based model (ABM) v X v X x X x [132]
and artificial intelligence (Al) approach for smart architectural design
91 Al-assisted design: Utilizing artificial intelligence as a generative form-finding tool in architectural design studio teaching v X% X X x x v [133]
92 Integrating multimodal generative ai and blockchain for enhancing generative design in the early phase of architectural v X X X X x v [134]
design process
93 Generative artificial intelligence and building design: Early photorealistic render visualization of fagades using local v X X X X X v [135]
identity-trained models
94 Experiments on generative Al-powered parametric modeling and bim for architectural design. v X X X X X v [136]
95 Generative Al for architectural design: A literature review. v X X X X X v [137]
96 Sketch-to-architecture: Generative Al-aided architectural design AR X X x x v [138]
97 Generative Al design for building structures. v X X X x x v [139]
98 Design process with generative Al and thinking methods: Divergence of ideas using the fishbone diagram method v X X X X X v [140]
99 Bibliometric analysis of generative design, algorithmic design, and parametric design in architecture v X X X X X X [141]
100 Can artificial intelligence mark the next architectural revolution? Design exploration in the realm of generative v X X X x x v [142]
algorithms and search engines.
101 Prototyping with generative Al v X X X X xX v [143]
102 Generative Al and the history of architecture v X X X X X v [144]
103 Generative vs. non-generative Al: Analyzing the effects of Al on the architectural design process. VX /O X x X v/ [145]
104 Rethinking computer-aided architectural design (CAAD)—From generative algorithms and architectural intelligence to v X vV X X x v [146]
environmental design and ambient intelligence
105 Building layout generation using site-embedded GAN model X X X X x x v [147]
106 3D building fabrication with geometry and texture coordination via hybrid GAN X X X X X xX v [148]
107 Architectural layout generation using a graph-constrained conditional generative adversarial network (GAN) X X X X X X v [149]

12



S.E. Bibri and J. Huang

Table 1 (continued )

Environmental Science and Ecotechnology 28 (2025) 100628

No. Article title

AI AloT ML DL CV NLP GAI Reference

108 GAN as a generative architectural plan layout tool: A case study for training DCGAN with Palladian plans and evaluation of X X X X X X v [150]
DCGAN outputs

109 Generation of geometric interpolations of building types with deep variational autoencoders X X X X X X v [151]

110 FloorDiffusion: Diffusion model-based conditional floorplan image generation method using parameter-efficient fine- X x X X x x v [152]
tuning and image inpainting

111 Research on predicting building fagcade deterioration in winter cities using diffusion model X X X X x x v [153]

112 Using generative Al Midjourney to enhance divergent and convergent thinking in an architect's creative design process X X X X X xX v [154]

113 Text semantics to controllable design: A residential layout generation method based on stable diffusion model X X X X X x v [155]

114 Generating accessible multi-occupancy floor plans with fine-grained control using a diffusion model X X X X X x v [156]

115 Exploring the potential of artificial intelligence as a tool for architectural design: A perception study using Gaudi's works X X X X X x v [157]

116 Exploration of the intelligent-auxiliary design of architectural space using artificial intelligence model v X X v X x x [158]

117 A machine learning model driven by geometry, material, and structural performance data in the architectural design v X v X X X X [159]
process

Artificial intelligence in the architecture, engineering, and construction industry

118 Artificial intelligence in construction engineering and management v X X v x x x [160]

119 Systematic review of application of artificial intelligence tools in architectural, engineering and construction. v X X X X v X [38]

120 Towards human-centered artificial intelligence (Al) in architecture, engineering, and construction (AEC) industry. v X X X X X X [39]

121 Conversational artificial intelligence in the AEC industry: A review of present status, challenges and opportunities v X X X x v x [40]

122 Application of artificial intelligence in sustainable construction. v X X X x x x [41]

Table 2
Contributions of artificial intelligence to environmental sustainability indicators in smart buildings.

No. Energy efficiency = Renewable energy Carbon footprint and Water efficiency and Indoor environmental Predictive maintenance and Reference
and demand integration and emissions resource quality and thermal building lifecycle
reduction optimization monitoring management comfort optimization

1 v x X x X X [42]

2 v v X X X X [43]

3 v X X v X v [46]

4 v v v x x x [47]

5 v v X x X X [44]

6 v v X X X v [45]

7 v v x x x x [51]

8 v X X X v X [48]

9 v X X X v v [49]

10 v v v X X X [53]

1 v 4 v X X X [52]

12 % X X x X 4 [50]

13 v X X X X X [97]

14 v 4 v X X X [98]

Table 3
Contributions of artificial intelligence to environmental sustainability indicators in green buildings.

No. Energy performance Renewable energy Carbon footprint Sustainable water  Indoor Waste reduction, circular  Reference
and passive design integration and net- reduction and climate and resource environmental economy, and sustainable
optimization zero goals adaptation management quality and well- materials

being

1 v X v X v v [55]

2 v X X X X v [59]

3 v v X v X v [61]

4 v X 4 4 X X [89]

5 v X v X X X [35]

6 v X X X X v [67]

7 v X X X X v [62]

8 v X v x X v [60]

9 v v X X X v [68]

building performance, (5) Al in green buildings, (6) Al in ZEBs, (7)
Al and DTs in buildings, (8) Al and generative Al in architectural
design, and (9) Al in the AEC industry. It functions as a meta-
review tool, supporting both trend analysis and gap identifica-
tion by highlighting which Al technologies are most prevalent and
which areas remain underexplored or require integration.

Across these themes, it is clear that Al is transforming the built
environment in several important ways. In the realm of smart

13

buildings, Al is increasingly linked with [oT to optimize building
management systems, enabling real-time monitoring, predictive
control, and improved decision-making. A major focus lies
in energy optimization, where ML- and DL-driven models enhance
efficiency, reduce consumption, and integrate renewables.
Another strong thread is occupant-centered applications, which
enhance comfort, safety, and well-being. Beyond energy and
comfort, Al is also advancing safety and risk management.
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Table 4
Contributions of artificial intelligence to environmental sustainability in zero, net-zero, and nearly-zero energy buildings.

No. Energy efficiency Renewable energy Carbon footprint Water efficiency  Smart indoor Optimized predictive Reference
and demand generation and storage reduction and net-zero and resource environmental quality  maintenance and lifecycle
reduction optimization carbon strategies management and thermal comfort management

1 v v/ v x v/ v [81]

2 v v X X X X [33]

3 v v v v x x [79]

4 v v/ v x v/ v [80]

5 v v X X X v [72]

6 v v/ v x v v [76]

7 v X x X x X [78]

8 v X X X x X [77]

9 v v/ x x X v [74]

10 v v v x v v [75]

1 v X X X X v [70]

12 v x X x x v [71]

13 v v x X v v [73]

When it comes to energy efficiency, Al's role is primarily driven
by ML and DL techniques, which enable the development of data-
driven models for predicting energy usage patterns and optimizing
building performance. These algorithms are instrumental in
detecting inefficiencies, forecasting demand, and automating the
operation of HVAC systems and lighting. ML and DL facilitate
intelligent control systems that dynamically adapt to user
behavior and environmental conditions, resulting in reduced en-
ergy consumption, cost savings, and enhanced sustainability
across various building types.

Thermal comfort is another key area where Al, including DL and
NLP, enhances occupant well-being while supporting energy
optimization. DL models are used to analyze complex environ-
mental data and predict indoor comfort conditions with high
precision. At the same time, NLP techniques enable systems to
interpret user feedback and natural language inputs about thermal
preferences. These Al techniques allow smart HVAC systems to
dynamically adjust temperature, humidity, and airflow conditions
in real-time, ensuring personalized comfort while maintaining
energy efficiency.

In connection with building performance, Al aids in predicting
how buildings will function over their lifespan, both in terms of
energy use and structural integrity. Al tools simulate various
operational scenarios, allowing for the optimization of building
design and the identification of potential performance issues
before they arise. This predictive capability is key to improving the
operational efficiency of buildings both after construction and
during the design phase. Technologies, such as ML, DT, CPS, and
IoT, are increasingly interconnected with building performance
simulation.

Al is also playing a significant role in advancing green buildings.
Al, including ML, contributes to reducing the environmental
impact of buildings by optimizing energy use and resource man-
agement. This includes the integration of renewable energy sour-
ces, efficient waste management systems, and sustainable
material choices. Through data analysis, Al helps make green
buildings more efficient, cost-effective, and aligned with sustain-
ability goals.

The push for ZEBs, NZEBs, and nZEBs is another area where Al is
making a major impact. Al is used to balance energy consumption
with energy generation, enabling buildings to produce as much
energy as they consume. Al-driven strategies support the inte-
gration of renewable energy sources and the optimization of en-
ergy storage and distribution systems. ML techniques are widely
applied for load forecasting and system optimization, while NLP
has emerged as a tool for interpreting user feedback or docu-
mentation to fine-tune energy strategies. These applications are
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critical to achieving net-zero energy targets and advancing global
sustainability efforts.

The concept of DT is transforming how buildings are managed
and optimized. DTs, as digital replicas of physical buildings powered
by Al, enable real-time monitoring, simulation, and optimization of
building performance. These virtual models identify issues before
they arise, leading to more efficient building operations and better
decision-making. ML plays a crucial role in predicting energy con-
sumption patterns and enhancing system efficiency. The integra-
tion of the AloT allows for seamless communication between
devices, contributing to smarter building operations and data
collection. In addition, NLP is used to analyze building-related
documents or feedback, providing valuable insights for more effi-
cient resource management and better decision-making. These
technologies lead to more proactive building operations and sig-
nificant improvements in sustainability.

Furthermore, Al is significantly advancing architectural design
beyond the capabilities of traditional methods. Through ML and
DL, architects can analyze complex datasets, optimize spatial
layouts, and enhance building performance predictions at early
design stages. While Generative Al is enabling the automated
exploration of innovative, functional, and aesthetic design solu-
tions, broader Al techniques support design decision-making by
processing spatial, environmental, and user data. This integration
of Al, spanning from predictive analytics to creative generation, is
opening up new possibilities for both efficiency and creativity in
the architectural design process.

Lastly, Al is making a significant impact across the AEC industry.
From enhancing project management and construction processes
to improving material selection and safety, Al technologies are
streamlining operations and reducing inefficiencies. NLP, as noted
in two studies, is being applied to interpret construction docu-
ments, extract actionable insights, and improve communication
across stakeholders. More broadly, Al tools are automating routine
tasks, predicting delays, optimizing workflows, and enhancing on-
site safety through predictive hazard detection and risk mitigation
strategies. These applications are transforming the AEC industry
by driving smarter, more data-informed decision-making.

Worth noting, among the various Al models and subdomains
examined across the 122 studies, CV appears to be the least
commonly utilized, with only a few instances identified across the
thematic landscape. This limited representation can be attributed
to several interconnected factors. First, many CV applications
depend on large volumes of visual data, such as images, video
streams, or sensor-based spatial inputs, which are not always
readily available or feasible to collect in typical building environ-
ments, particularly in existing or retrofitted structures. Moreover,
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the integration of visual monitoring technologies into occupied
spaces often raises significant privacy and ethical concerns, espe-
cially when monitoring occupants or user behavior in real time.
These concerns have likely constrained the broader deployment of
CV tools in real-world smart and sustainable building contexts.

In addition, the thematic focus of most studies tends to revolve
around areas such as energy efficiency, predictive maintenance,
thermal comfort, or renewable integration—domains where ML
and DL techniques, often based on numerical, time-series, or cat-
egorical data, are more directly applicable. In contrast, CV methods
are typically associated with more specialized use cases, such as
construction monitoring, visual defect detection, or occupancy
estimation, which may not align as directly with the core envi-
ronmental indicators that dominate the reviewed literature.
Moreover, the technical complexity and resource requirements of
deploying CV systems also present barriers. Implementing such
systems often demands specialized hardware (e.g., cameras, light
detection and ranging [LiDAR]), robust computational infrastruc-
ture, and advanced image processing capabilities, elements that
may be beyond the scope of many research initiatives. As a result,
while CV holds clear potential in specific aspects of the built
environment, its practical integration into Al-driven sustainability
frameworks remains limited and context-dependent.

In conclusion, across these nine themes, Al is driving a trans-
formation in the built environment. From enhancing energy effi-
ciency and occupant comfort to enabling smarter, more
sustainable design and construction practices, Al is at the heart of
the future of SGZEB technologies. These developments highlight
Al's ability to make buildings more intelligent, efficient, and
environmentally friendly, paving the way for a more sustainable
and innovative built environment.

5.1.2. Thematic convergence of Al applications in the built
environment

The previous subsection addresses the individual themes that
define the role of Al in building typologies, domains, and tech-
nologies, analyzing their unique contributions. However, the real
power of Al in this context lies not just in isolated applications but
in the way these elements are integrated to enhance overall
building outcomes. This subsection delves into the synergies be-
tween these Al-driven innovations, highlighting how their in-
terconnections create smarter, more efficient, and sustainable
building environments. Understanding these relationships offers
valuable insight into how Al can transform the built environment
as an integrated whole, thereby driving progress across multiple
dimensions of design, energy efficiency, comfort, and
performance.

The relationship between Al in smart buildings and energy
efficiency is particularly synergistic. Smart buildings rely on Al to
collect and analyze data from building systems, such as HVAC,
lighting, space usage, and security, optimizing them in real-time
for both performance and efficiency. ML algorithms are used to
predict energy consumption based on environmental data and
occupancy patterns. The feedback from energy-efficient strategies
in smart buildings enhances the Al's learning capabilities, which
allows for continuous optimization over time. This feedback loop
ensures that energy management becomes more accurate,
reducing overall consumption while maintaining comfort levels.

Al's role in thermal comfort is closely tied to energy efficiency.
Al can dynamically adjust heating or cooling systems to maintain
comfort while optimizing energy usage by utilizing real-time data
from sensors measuring temperature, humidity, air quality, and
occupancy. As Al systems become more precise in understanding
human comfort preferences and environmental conditions, they
can better balance energy savings with occupant satisfaction. For
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instance, Al can optimize HVAC systems to lower energy con-
sumption while keeping spaces at comfortable temperatures, thus
addressing both thermal comfort and energy efficiency
simultaneously.

Al for building performance and green buildings are inter-
connected through the optimization of building systems and the
reduction of environmental impact. Al is used to simulate and
predict a building's performance across various operational sce-
narios, such as energy use, structural integrity, and resource con-
sumption, helping to identify areas for improvement. These
predictions, combined with Al's ability to model green building
systems, allow for the fine-tuning of energy systems, water usage,
waste management, and materials in ways that maximize sus-
tainability. As buildings become more performance-driven and
energy-efficient, the potential for achieving green building stan-
dards such as leadership in energy and environmental design
(LEED) or building research establishment environmental assess-
ment method (BREEAM) increases, which demonstrates how Al
drives sustainable architectural design.

NZEB concept directly benefits from Al's ability to optimize
energy efficiency and renewable energy integration and optimi-
zation. Buildings can be designed to achieve a state where they
produce as much energy as they consume by using Al algorithms
to balance energy inputs (from renewable sources) with internal
consumption. Al's predictive capabilities and real-time data anal-
ysis assist in forecasting energy generation patterns, managing
energy storage, and integrating systems that align building per-
formance with environmental goals. The shift towards NZEB is
closely tied to Al's ability to optimize energy flows and system
efficiencies, while also contributing to these broader goals by
reducing reliance on nonrenewable energy sources.

Al-powered DTs play an important role in enhancing building
performance. These virtual replicas of physical buildings allow for
real-time monitoring, simulation, and optimization. The integra-
tion of Al into DTs enables the creation of highly accurate models
that simulate how buildings will behave over time under different
conditions. Al can predict maintenance needs, optimize systems,
and improve building lifespan by integrating performance data
into these virtual models. In this sense, Al enhances building
performance through simulations and predictive maintenance and
helps make adjustments that are both cost-effective and
sustainable.

The connection between Al in architectural design and smart
buildings is rooted in the potential of Al to inform and optimize
design decisions before construction even begins. Al algorithms
can be used to simulate building designs, considering various
factors such as energy use, occupant behavior, and environmental
impact. These Al-driven designs can then be integrated with smart
building systems to ensure that the building operates efficiently
from the moment it is completed. Furthermore, Al-generated de-
signs can make buildings more adaptable to future needs, inte-
grating features such as smart sensors and automated systems that
enhance overall building intelligence.

The integration of Al into the AEC industry and smart buildings
is mutually reinforcing. In construction, Al technologies are used
for project planning, scheduling, resource management, and
quality control. These technologies ensure that smart building
features are implemented effectively and with precision. For
example, Al tools are used to optimize the construction process,
detect potential design flaws, and improve collaboration between
stakeholders, which in turn results in more efficient smart build-
ing designs. Moreover, the data collected during the construction
phase can be fed into building management systems to allow Al to
continuously monitor and optimize performance.

Al's integration into the AEC industry influences both thermal
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comfort and green buildings by driving more sustainable and
efficient building designs. ML models can optimize energy flows,
design passive solar systems, and incorporate natural ventilation
strategies in ways that enhance both comfort and sustainability.
For instance, an Al-based model might suggest the most energy-
efficient placement of windows to maximize natural lighting and
reduce heating or cooling costs, thus ensuring that the building
remains comfortable and energy-efficient. This approach reduces
the reliance on mechanical systems and minimizes environmental
impact, which aligns well with green building principles.

Taken as a whole, these themes form a network where each
contributes to and enhances the others. Al's ability to optimize
energy systems, predict building performance, and improve sus-
tainability is a key thread that runs through all of these areas. With
new advances in Al, the relationship between themes such as
energy efficiency, thermal comfort, and building performance
becomes increasingly integrated, allowing for a more holistic
approach to building design, operation, and sustainability. In this
context, Al does not just serve isolated functions; rather, it enables
a more interconnected, dynamic, and responsive built environ-
ment where performance, comfort, and sustainability are contin-
uously optimized through data-driven insights.

By bringing together these diverse elements, Al can establish a
comprehensive framework that transforms the built environment
into a more intelligent, adaptable, and future-ready system. This
interconnectedness demonstrates how Al's subdomains, including
those in relation to data analytics and predictive modeling, play
critical roles across various building functions, enabling advanced
technologies in each area to complement and enhance one another
seamlessly.

5.1.3. Environmental indicators enhanced by artificial intelligence
and digital twins across smart, green, and zero-energy buildings

To explore the intersection of Al, particularly ML and DL, and
DTs with environmentally sustainable built environments in the
subsequent subsections, this study utilizes well-established envi-
ronmental indicators that are recognized across academic and
industry research. These indicators, which are used to assess the
environmental performance of buildings, form the foundation for
evaluating the impacts of Al and DT technologies on energy effi-
ciency, carbon emissions reduction, resource management, and
overall sustainability in SGZEBs. The application of these in-
dicators is crucial for understanding how advanced technologies
can enhance environmental outcomes in these buildings, making
them a critical lens through which the contributions of Al and DTs
are assessed.

This study situates these indicators within a broader context,
ensuring that the reviewed literature validates them and high-
lights the advancements that Al and DT technologies bring to the
field. The following synthesis presents key studies that report on
how these indicators have been operationalized and improved
across SGZEB typologies.

Smart buildings represent a dynamic typology where digital
intelligence is tightly integrated into the design, operation, and
performance of the built environment. Several studies focus on
defining and measuring the concept of smartness in buildings.
Dakheel et al. [161] explore the concept of smart buildings, high-
lighting their main features, functions, and technologies, while
also developing a set of nine groups of representative performance
indicators. Their results emphasize the need for quantified
guidelines to enhance energy performance and technological
innovation in smart buildings. Similarly, Ghansah et al. [162]
investigate indicators for measuring the smartness of buildings in
the construction industry. Using survey data from 227 re-
spondents, they find that awareness of smart building
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technologies (SBTs) is moderately high in the Ghanaian construc-
tion industry and develop a blueprint guidance model to support
policymakers and improve building performance. Alanne [163]
introduces the learning ability index (LAI) to quantify the learning
capacity of buildings. Applying the index to three case studies, the
author demonstrates that LAI provides a flexible and illustrative
measure of building intelligence, monitoring data-driven pro-
cesses, and supporting strategies for higher levels of smartness.

Other studies examine environmental impacts and sustain-
ability performance. Lagarde et al. [164] assess the environmental
impact of integrating connected devices in residential buildings
using life cycle assessment with uncertainty analysis. Their results
show that while connected devices improve environmental per-
formance compared to the original building, full refurbishment
remains the most effective strategy across almost all indicators.
They also emphasize the importance of measurement campaigns
to more accurately quantify energy gains. Koller et al. [165] explore
the environmental dimensions of smart buildings through a
literature review, building analysis, and expert interviews. The
authors demonstrate that standardized definitions, enhanced data
availability, and stakeholder collaboration are essential for
achieving measurable ecological benefits. They provide case
studies illustrating the practical impacts on building sustainability.

A separate group of studies addresses smart building readiness
and indoor environmental quality. Delavar et al. [ 166] examine the
smart readiness indicator (SRI), aiming to evaluate buildings’
readiness to support energy-efficient and adaptive functionalities.
Their findings reveal rapid growth in SRI research, primarily
focused on energy efficiency, and show that the SRI can be applied
beyond individual buildings to neighborhoods and districts. They
identify six understudied research areas necessary for advancing
the evolution of smart buildings, including the applicability of SRI
across various contexts and its integration with other standards.
Aldakheel et al. [167] focus on Al techniques for evaluating indoor
environmental quality in smart buildings. The authors demon-
strate that smart real-time monitoring and intelligent ventilation
strategies optimize occupant comfort and energy efficiency,
highlighting the role of ML and DL in selecting appropriate in-
dicators and measurement technologies for smart indoor
environments.

Regarding green buildings, several studies focus on developing,
assessing, and prioritizing indicators to measure the sustainability
performance of green buildings across environmental, social, and
economic dimensions. Abdel-Basset et al. [168] aim to establish a
framework for evaluating sustainable green building indicators in
developing countries under uncertain conditions. Using a multi-
criteria decision-making (MCDM) method combined with the
Delphi method and analytical hierarchy process (AHP), the authors
assess and prioritize the dimensions and indicators of green
building design. Their results show that water efficiency is the
most significant dimension (weight = 0.330), while energy effi-
ciency is the least significant (weight = 0.100) for green buildings
in developing countries. The study concludes with practical
administrative implications for applying sustainable development
strategies in green buildings, emphasizing the need for adaptation
to local characteristics and resource availability.

Focusing on ecological indicators for green building construc-
tion, Liu and Lin [169] quantify regional differences in ecological
performance. Using a slack-based data envelopment analysis
approach and a panel dataset from 1995 to 2012, the authors
reveal that roughly half of China's provinces have the potential to
improve ecological performance by more than 60%, with devel-
oped areas outperforming developing areas. In addition, they
identify the 11th five-year plan as a turning point, where national
green building policies significantly enhance ecological
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performance, highlighting the strong influence of policy and
planning on sustainable building practices.

Marotta et al. [170] examine whether green buildings can serve
as an indicator of broader sustainable development. Using data
from Eurostat and green building directories across 27 European
Union countries (2010-2019), the authors apply linear regression
analysis and confirm the environmental Kuznets curve hypothesis:
economic growth in developed countries is associated with envi-
ronmental improvements. The study demonstrates that the vari-
ance in green building implementation correlates strongly with
both gross domestic product per capita (p = 0.0004, R? = 0.8475)
and greenhouse gas emissions (p = 0.0002, R> = 0.8825), sup-
porting the idea that green buildings are an effective measure of
sustainable development and emphasizing the importance of
policies such as tax incentives to encourage their adoption.

Li et al. [171] develop key performance indicators (KPIs) for
operational monitoring of green buildings, seeking a practical,
efficient alternative to comprehensive evaluation standards that
are time- and labor-intensive. The authors establish a library of 27
KPIs encompassing outdoor and indoor environmental quality,
HVAC systems, renewable energy, total resource consumption, and
occupant behavior. Using the Delphi method and the specific,
measurable, achievable, relevant, and time-bound (SMART) prin-
ciple, the KPIs are validated through two Chinese case studies,
demonstrating that the framework enables long-term monitoring
while being more practical and systematic than conventional ap-
proaches, thereby reducing evaluation time and costs.

Braulio-Gonzalo et al. [172] focus on how green building rating
systems (GBRS) address sustainability and life cycle frameworks in
residential buildings. Analyzing 387 indicators across eight GBRS,
they classify them by sustainability dimension, information
module, and construction stage. Their results indicate that the
environmental dimension is most emphasized, while social and
economic dimensions require more attention. Furthermore, most
indicators focus on the product and construction stages (A1-A5)
rather than the early design or operational stages, suggesting that
a more holistic, lifecycle-spanning approach is necessary. Building
on this, the study by Sartori et al. [173] focuses on developing a
schematic environmental impact assessment (EIA) framework for
building design, integrating LCA and GBRS. The authors compare
LCA and GBRS methodologies, analyze the inclusion of LCA pa-
rameters in GBRS, and review LCA software compatible with GBRS
requirements. The findings suggest that the most suitable EIA
approach varies according to the stage of the design life cycle.
Combining LCA's quantitative analysis with GBRS's qualitative
criteria enhances transparency, supports better-informed design
decisions, and improves environmental performance assessment,
especially when linked to graphical outputs and three-
dimensional modeling.

ZEBs, NZEBs, nZEBs, and PEBs represent the forefront of sus-
tainable design, emphasizing energy self-sufficiency, carbon
neutrality, and long-term environmental resilience. Research on
these building typologies emphasizes the need for robust perfor-
mance indicators and holistic assessments to guide design, con-
struction, and operation. Key studies have explored various
approaches to evaluate energy efficiency, renewable energy use,
and environmental sustainability. Indicators such as self-
consumption, self-production, loss-of-load probability, and
coverage rate are proposed to measure a building's energy per-
formance, although their practical application can be challenging
[174]. Complementary metrics, including the overall renewable
energy fraction (OREF), extend conventional indicators by ac-
counting for both on-site and off-site renewable energy, empha-
sizing independence from fossil fuels and highlighting the benefits
of self-consumption over exported energy [175]. Early selection of
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performance thresholds is recommended to guide design de-
cisions, with seven key thresholds identified to balance trade-offs
and overcome societal and technical barriers in NZEB development
[176].

Environmental aspects in nZEB design have also been investi-
gated. Sensitivity analyses indicate that maximizing renewable
energy generation, particularly through photovoltaic systems,
often reduces life-cycle environmental impacts more effectively
than increasing insulation, especially in Mediterranean and con-
tinental climates [177]. However, life cycle assessments indicate
that the carbon footprint of renewable energy technologies, such
as photovoltaic (PV) panels, depends on the energy mix of the
country where they are produced, which can influence overall
greenhouse gas emissions [178]. Together, these studies suggest
that achieving NZEB/nZEB goals requires a multi-criteria approach,
combining energy performance indicators with life-cycle envi-
ronmental analyses. Using both types of assessments ensures that
designs not only meet net-zero energy targets but also minimize
broader environmental impacts.

Furthermore aiming to facilitate the transition from PEBs to
positive energy communities (PECs), the study by Cai and Gou
[179] introduces a set of KPIs to evaluate site planning and energy
autonomy potential. Through geographic analyses and simulations
based on data from 81 PEBs, the study evaluates factors such as
energy surplus, spatial coverage, and shared energy dynamics
under different photovoltaic (PV) installation scenarios and spatial
ranges. The results indicate that establishing PECs from existing
PEBs is feasible, with optimal community boundaries typically
falling between 150 and 250 m. The proposed KPIs offer practical
guidance for site selection, community planning, and policy-
making, supporting the creation of sustainable and energy-
positive urban developments.

Overall, these studies provide robust validation for the envi-
ronmental indicators used in this review, demonstrating their
relevance and applicability across various building typologies.
They reveal how the role of Al and DT technologies is not only
compatible with established sustainability metrics but also en-
hances their implementation, accuracy, and real-world impact.
The reviewed literature showcases an evolving paradigm in which
intelligent systems drive measurable environmental improve-
ments by integrating these technologies with domain-specific
indicators—Ilaying the groundwork for more adaptive, efficient,
and ecologically integrated built environments.

5.14. Tabulated thematic mapping and cross-typology
comparative analysis of environmental indicators and artificial
intelligence in smart, green, and zero-energy buildings

This subsection presents a detailed thematic and comparative
analysis of environmental indicators driven by Al across three
distinct building typologies: SGZEBs. The analysis begins with
Tables 2-4, which systematically map peer-reviewed studies on
Al integration within these typologies and synthesizes their in-
sights according to these key tailored indicators. These tables
provide a visual representation of how Al contributes to sustain-
ability across building typologies. The comparative approach
adopted identifies patterns and trends across these typologies,
contrasting the role of Al in supporting different indicators. The
analysis highlights knowledge gaps, such as underrepresented
indicators in specific typologies, and synthesizes key insights into
the broader role of Al in advancing environmental goals in the built
environment.

Table 2 systematically maps 14 peer-reviewed studies on the
integration of Al in smart buildings, specifically evaluating their
contribution to the identified indicators. It is organized by citation
and the categorical presence of these indicators. Each row reflects
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whether a given study addresses specific sustainability di-
mensions, providing a thematic overview of how Al applications
align with environmental goals in the built environment. Table 2
facilitates a visual analysis of prevalent research foci, revealing
areas that require further investigation in Al-enabled smart
building design and operation.

Al applications in smart buildings overwhelmingly concentrate
on energy efficiency and demand reduction (Table 2), which ap-
pears consistently across nearly all studies. Predictive
maintenance and renewable energy integration also emerge as
recurring themes, whereas water efficiency and carbon footprint
monitoring remain largely underexplored. This distribution sug-
gests that research on Al in smart buildings is still primarily ori-
ented towards operational optimization, with sustainability
dimensions such as resource management and emissions reduc-
tion representing notable gaps for future investigation.

Table 3 systematically maps nine peer-reviewed studies as an
illustrative subset on the integration of Al in the context of green
buildings. Similarly organized by citation and categorical presence,
it highlights how Al supports sustainability goals in this typology.
It provides a thematic overview of prevalent research trends and
highlights underexplored areas in Al-enabled green building
design and operation.

Research on Al in green buildings most frequently emphasizes
energy performance and passive design optimization (Table 3),
which is a consistent focus across all reviewed studies. Waste
reduction and circular strategies also recur, often in conjunction
with more specific applications. In contrast, areas such as renew-
able energy integration, carbon footprint reduction, and particu-
larly sustainable water management are far less explored. This
imbalance indicates that while Al is being applied to optimize
building performance and material efficiency, its potential to drive
climate resilience, net-zero transitions, and holistic resource
management in green buildings remains underdeveloped.

Table 4 systematically maps 13 peer-reviewed studies on the
integration of Al within zero-energy, net-zero-energy, and nearly
zero-energy buildings. Likewise, it uses the same categorical
mapping approach to identify which sustainability indicators are
addressed. The table provides a comparative overview of Al's role
in advancing energy neutrality and sustainability, while also
highlighting indicators that remain relatively underrepresented.

Table 4 presents Al applications in zero, net-zero, and nearly-
zero energy buildings, which most prominently address energy
efficiency, renewable energy generation and storage optimization,

Table 5
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and predictive maintenance, reflecting a strong operational and
systems-integration focus. A number of studies also link Al with
carbon reduction and net-zero carbon strategies, underscoring its
central role in achieving climate targets. By contrast, water effi-
ciency and, to a lesser extent, indoor environmental quality remain
underexplored, suggesting that resource management and
occupant-centered outcomes are secondary priorities in this
domain. Overall, the research landscape reveals that Al is being
leveraged primarily to ensure energy neutrality and long-term
building performance, while opportunities for a more holistic
sustainability approach are not yet fully realized.

The indicators featured in the three comparative tables repre-
sent a shared framework of environmental concerns—energy,
water, carbon, indoor environmental quality, and lifecycle opti-
mization—that are broadly relevant across all three typologies.
However, their implementation is tailored to the core objectives of
each building typology. For example, while energy efficiency is a
common goal, smart buildings emphasize real-time demand
response, green buildings focus on passive performance, and ZEBs
prioritize achieving net-zero status through energy balancing.

These shared indicators offer a consistent lens through which
Al contributions to environmental goals can be assessed, while still
acknowledging the specific design logic and functional priorities of
each typology. In smart buildings, Al is primarily applied to real-
time system optimization and environmental quality control. In
green buildings, Al supports passive design enhancement, climate
resilience, and long-term material planning. In zero-energy ty-
pologies, Al enables seamless integration of on-site renewables
with energy demand, supporting energy-positive or carbon-
neutral operation. Although the same thematic indicators are
used to structure the comparison across typologies, their imple-
mentation and significance vary depending on each building type's
sustainability strategy. This shared framework enables structured
cross-typology analysis while honoring each typology's distinct
trajectory.

The synthesis of the three typology-specific tables reveals both
convergence and divergence in how Al supports environmental
performance (Table 5). Smart buildings prioritize automated
control and operational efficiency. Green buildings focus on life-
cycle intelligence, natural system optimization, and resource
circularity. ZEBs emphasize energy neutrality through Al-
optimized energy generation and storage.

Merging the strengths of the three typologies offers the most
comprehensive path forward. These findings suggest that no single

Comparative analysis of artificial intelligence-driven sustainability indicators across smart, green and zero-energy buildings.

Sustainability
indicators

Smart buildings

Green buildings

Zero-energy buildings

Energy efficiency and

demand reduction through real-time data and adaptive controls.

Al automates HVAC, lighting, and energy use Al optimizes passive design strategies,
including natural ventilation, shading, and

insulation.

Renewable energy
integration and
storage optimization

Carbon footprint
reduction and net-
zero strategies

Water efficiency and Al detects leaks, optimizes irrigation, and
resource management predicts water demand.

Indoor environmental ~ Al-based HVAC, air quality monitoring, and
quality and thermal adaptive lighting optimize occupant well-
comfort being.

Predictive maintenance Al-powered DTs and fault detection reduce
and lifecycle energy and resource waste.
optimization

Al integrates renewables with smart grids,
optimizes battery storage, and enables
demand response.

Al tracks emissions, optimizes electrification,
and suggests carbon reduction pathways.

Al forecasts renewable energy availability and
enhances hybrid energy system integration.

Al selects low-carbon materials, models
building lifecycle emissions, and supports
carbon-neutral design.

Al improves rainwater harvesting, greywater
recycling, and sustainable plumbing design.

Al enhances passive thermal comfort strategies
and daylighting optimization.

Al predicts material degradation, lifecycle
impacts, and resource reuse.

Al balances energy demand using predictive
modeling and smart grids.

Al ensures on-site renewables meet energy
needs, manages energy storage, and interacts
with the grid.

Al-driven carbon accounting ensures net-zero
operations and offsets unavoidable emissions.

Al integrates water-energy nexus for efficiency
and monitors real-time consumption.

Al balances thermal comfort with energy
neutrality while ensuring air quality.

Al ensures long-term building performance
while maintaining zero-energy targets.
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Al-driven approach is universally adequate. Instead, the most
promising  pathway lies in  hybrid models that
integrate automation, passive strategies, and net-zero frame-
works. This hybridization forms the foundation for a unified,
typology-aware, cross-domain Al sustainability framework, one
that supports intelligent, resilient, and environmentally optimized
building design. Al can unlock a built environment that is adaptive,
high-performing, and holistically sustainable by merging the
strengths of SGZEB approaches.

5.2. Thematic synthesis of advancements and applications in
smart, green, and zero-energy buildings: artificial intelligence and
digital twins for environmentally sustainable smart built
environment

This subsection analyzes and synthesizes the selected studies
to provide a deeper, thematic understanding of how Al, ML, DL,
and DT technologies are enhancing the environmental outcomes
of SGZEBs. It moves beyond the tabular comparative analysis by
offering an integrated examination of key trends, innovations, and
implementation areas. Specifically, it explores how Al and DTs
enable smart buildings to achieve greater efficiency, performance,
thermal comfort, and intelligent control; how green buildings
leverage Al for enhanced energy efficiency, sustainable design, and
waste management; how Al supports the optimization, manage-
ment, and realization of zero-energy, net-zero-energy, and nearly-
zero-energy buildings; and finally, how Al-driven DTs are applied
across building systems to support the development of sustainable
smart built environments. This thematic synthesis offers a more
comprehensive account of the transformative role of Al and DTs,
connecting technological advancements and applications to
broader environmental objectives.

5.2.1. Smart buildings: leveraging artificial intelligence and
machine learning for enhanced efficiency, performance, thermal
comfort, and control

In recent years, Al has emerged as a key driver in the evolution
of smart buildings. As cities around the world strive to enhance
sustainability, energy efficiency, and occupant well-being, Al-
powered smart buildings are at the forefront of this trans-
formation, enabling more intelligent, adaptive, and environmen-
tally conscious urban spaces. The reviewed studies provide a
comprehensive overview of how Al and ML are transforming the
environmental aspects of smart buildings. Covering diverse ap-
plications, they illustrate a multifaceted approach that supports
the development of more efficient, adaptive, and user-centered
smart building environments.

Sleem and Elhenawy [42] provide a comprehensive overview of
the emerging field of AloT and its applications in smart buildings.
AloT, which merges Al algorithms with data generated by IoT,
enables real-time monitoring, automation, and intelligent
decision-making. The study highlights the potential of AloT to
enhance smart building operations by reducing energy consump-
tion and operational costs, improving occupant comfort and pro-
ductivity, and strengthening safety and security systems. It also
outlines key challenges in implementing AloT in smart buildings,
including issues of data privacy, security, interoperability, and the
demand for specialized technical expertise. Overall, it positions
AloT as a transformative enabler in the development of smarter
and more efficient building systems. The study lays the foundation
for subsequent research by highlighting how real-time data from
IoT devices can optimize various building systems, setting the
stage for Al-driven solutions to enhance building performance
across multiple domains.

In an integrative approach, Pan and Zhou [47] examine how Al
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and digitalization technologies are transforming smart buildings
and intelligent transportation systems. Their study emphasizes the
role of integrated digital solutions in advancing carbon neutrality
through renewable energy integration, energy efficiency, and
smart mobility. The discussion highlights smart buildings as key
components within e-mobility and energy-sharing frameworks,
illustrating the growing convergence of digital infrastructure
across built and transport environments. Al and digitalization are
further portrayed as crucial enablers of sustainability and grid
independence in urban systems. This perspective aligns with
Wang et al. [43], who discuss the use of DTs for energy optimiza-
tion, and emphasizes the interconnected nature of smart cities,
where building and transportation systems must be optimized
together.

In this line of thinking, Sen et al. [45] explore the critical role of
smart buildings within the broader context of smart city devel-
opment. Emphasizing the importance of sustainable urban infra-
structure, the authors provide an overview of how smart buildings
integrate renewable energy sources, such as solar photovoltaics,
mini wind turbines, and biomass, with energy storage and smart
grid technologies. The focus is placed on the development of
predictive control-based energy management systems that
leverage ML for enhanced performance. A particular emphasis is
given to the application of ML techniques for forecasting variable
parameters related to both energy generation and consumption.
These forecasts are then used to optimize energy management
through predictive control, aiming to balance efficiency, occupant
comfort, and sustainability. The study positions smart buildings as
fundamental to the realization of smart cities and highlights the
importance of integrating ML and control systems to improve
operational efficiency and reduce energy consumption. This aligns
with the findings of Gupta et al. [97] on RL for heating control and
extends the discussion on predictive models by linking real-time
data inputs with long-term energy optimization. It also relates to
several studies that focus on improving the adaptability and effi-
ciency of building systems.

Exploring strategies for achieving carbon peak and net-zero
emissions in smart buildings, Wang et al. [43] integrate Al and
DT technologies into renewable energy management. The authors
introduce a modified differential evolution (DE) algorithm com-
bined with RF regression to forecast renewable energy generation
and optimize power distribution in a smart building microgrid.
They aim to balance economic efficiency with environmental
resilience, reducing both operational costs and emissions by
formulating a nonlinear multi-objective optimization model. The
study demonstrates the flexibility of the proposed Al approach
under different power exchange scenarios and compares its per-
formance against particle swarm optimization (PSO) using real-
time data. A key innovation is the incorporation of DT—virtual
models of physical microgrid systems—to simulate and optimize
the behavior of renewable energy sources such as solar and wind.
This integration enhances predictive capabilities and operational
control, positioning DTs as a powerful tool in transitioning towards
low-carbon, energy-efficient smart building ecosystems. The
study's outcome aligns with the findings on ML's role in opti-
mizing photovoltaic energy consumption [180] and thermal stor-
age solutions [52]. These approaches support the transition to net-
zero emissions and contribute to reducing the environmental
footprint of smart buildings.

Farzaneh et al. [98] examine how Al is transforming smart
buildings to achieve higher energy efficiency. The authors high-
light the integration of sensors, big data, and Al technologies in
building management systems (BMS) and demand response pro-
grams (DRPs) to improve energy control, automation, and system
reliability. They categorize Al applications across energy use
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prediction, occupant comfort, building design, and maintenance.
The findings align with Alanne and Sierla [53], who emphasize
comprehensive adaptability in smart buildings through autono-
mous Al agents and DTs. They also complement Anik et al. [48],
who demonstrate the use of ML to automate occupant profiling,
further enhancing the efficiency and user-centeredness of Al-
driven building management systems.

In their investigation of how ML can be leveraged to improve PV
self-consumption and optimize life cycle costs in smart buildings,
Amini Toosi et al. [180] address the challenge of modeling energy
storage systems (ESS), which is often complex and time-
consuming. In this context, the authors evaluate 24 ML models
as surrogate tools for analyzing PV performance. Among them,
Gaussian process regression, neural networks, support vector
machines (SVM), and Ensemble Trees emerged as top performers
for accurate and efficient predictions. They further explore how
short-term thermal energy storage (TES), when paired with elec-
tric heat pumps, can greatly improve PV self-consumption. A key
outcome shows that optimizing TES size using ML-based life cycle
cost analysis can yield up to 7.1% savings over a 30-year building
lifespan. This study identifies effective ML models for PV predic-
tion and demonstrates their potential in enabling smarter, cost-
effective, and energy-efficient building systems. This study com-
plements Wang et al.'s focus on renewable energy integration and
aligns with the ongoing discussions about optimizing renewable
energy systems [52] to reduce reliance on traditional power grids.
It also feeds into the broader dialogue on Al's role in managing
energy systems more efficiently.

Anik et al. [48] introduce an ML-based approach to automate
occupant profiles that personalize building management systems,
an essential step towards human-centered design and energy ef-
ficiency. The study directly contributes to enhancing building
management systems and energy optimization efforts, particularly
in terms of personalized control over heating, lighting, and
ventilation. Using the Residential Energy Consumption Dataset, six
ML algorithms (e.g., RF, SVM, AdaBoost) were tested to classify and
predict 16 occupant characteristics, including thermal comfort,
age, and cooling preferences. The models achieved over 90% ac-
curacy for certain features such as age group and cooling equip-
ment usage. The study demonstrates that ML can effectively
streamline persona smart creation, supporting smarter, more
personalized building design. This focus on occupant modeling
provides a foundation for Boutahri and Tilioua [49], who extend
ML-driven personalization into real-time occupancy prediction
and thermal comfort optimization, thus bridging static user
profiling with dynamic energy management in smart buildings.

The integration of occupant data into energy management
systems is discussed further by Boutahri and Tilioua [49], where an
ML-based predictive model optimizes thermal comfort based on
real-time occupancy data and energy efficiency in smart buildings.
Using data from sensor-equipped Raspberry Pi devices, the study
evaluates four ML algorithms—SVM, ANN, RF, and extreme
gradient boosting (XGBoost)—to forecast thermal comfort (via
predicted mean vote [PMV]) and optimize HVAC energy con-
sumption. Among the tested models, RF and XGBoost demonstrate
the highest accuracy (up to 96.7%), notably outperforming SVM.
The findings highlight the strong potential of ML algorithms,
particularly ensemble methods, to improve both user comfort and
energy efficiency in intelligent building systems. This study further
develops the ideas from Anik et al. [48] by incorporating real-time
data from occupants to dynamically adjust building systems for
optimal energy use and predict thermal comfort needs. It also
connects with Sen et al. [45] on predictive control, reinforcing the
importance of using Al to anticipate building needs and enhance
energy efficiency.
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Alshamrani et al. [52] propose an Al-enhanced optimal control
framework designed to improve energy efficiency and sustain-
ability in smart residential buildings. The framework integrates
borehole thermal energy storage (BTES) with wastewater heat
recovery, heat pumps, and a smart ventilation system. Using
TRNSYS and MATLAB, the authors develop and simulate an intel-
ligent energy system that reclaims heat from wastewater and
radiator return water and preconditions ventilation air, enhancing
energy reuse and reducing carbon emissions. At the core of the
system is an Al-assisted control strategy, specifically an ANN,
which optimizes energy storage and usage in real time. This smart
integration achieves significant improvements over conventional
ventilation systems, showing a reduction in energy costs by
$41.5 MWh~!, a total cost saving of over $10,000, and a CO,
emissions reduction of 1.7 kg MWh ™. This study also reveals that
performance can be further optimized through strategies like
adjusting mass flow rates and borehole depth, contributing to both
environmental and economic benefits. This work ties into the
broader sustainability goals outlined by Wang et al. [43] and Amini
Toosi et al. [44], where energy systems are optimized for carbon
neutrality. It also links Al with practical energy management so-
lutions in real-world applications.

Gupta et al. [97] propose a deep reinforcement learning (DRL)-
based heating controller to enhance thermal comfort and reduce
energy consumption in smart buildings. Using real-world tem-
perature data in simulation experiments, the DRL controller
demonstrates a 15-30% improvement in thermal comfort and a
5-12% reduction in energy costs compared to conventional ther-
mostat systems. The study also compares centralized and decen-
tralized DRL-based control in multi-building scenarios, finding
that decentralized control performs better as the number of
buildings and their temperature preferences vary. It highlights the
potential of DRL for more adaptive and energy-efficient building
management systems. The study relates to the predictive control
models discussed by Sen et al. [45] and Maurya et al. [51], which
emphasize the importance of data-driven solutions for optimizing
heating systems and energy use in buildings.

Baduge et al. [46] investigate how Al, ML, and DL are being
applied across the full lifecycle of buildings within the framework
of Construction 4.0. The study focuses on the use of these tech-
nologies in diverse areas, including architectural and structural
design, material optimization, offsite manufacturing, construction
management, safety monitoring, smart operations, and building
maintenance. A notable strength of the study is its holistic
approach, examining how Al and smart vision systems support
buildings from initial concept to end-of-life, with an emphasis on
life cycle analysis and the circular economy. The study positions Al
as a transformative force in creating more intelligent, sustainable,
and efficient buildings throughout their lifecycle. This work aligns
with earlier works on Al in building management systems by
showcasing its application in optimizing materials, structural
design, and lifecycle analysis. It links well with studies on smart
operations and the need for continuous Al-based monitoring and
learning (e.g., Ref. [45,52]).

Alanne and Sierla [53] examine the integration of ML and Al in
smart buildings, emphasizing the role of these technologies in
improving energy efficiency, adaptability, and resilience in the face
of unpredictable operational changes, especially those related to
climate change. The authors take a comprehensive approach, with
a focus on autonomous Al agents that can make independent de-
cisions for energy management across a building's life cycle. They
highlight the use of DTs as training environments to enhance the
learning processes in building. The study concludes that the
greatest potential for improving energy efficiency lies in incorpo-
rating Al-driven adaptability solutions within HVAC control
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systems and electricity market participation. This study supports
the idea that Al can autonomously optimize energy systems in real
time, an approach that complements predictive control models
and reinforcement learning discussed earlier (e.g., Ref. [45,49,97]),
which focus on improving energy management through Al.

Maurya et al. [51] discuss the role of DL in fostering sustainable,
green smart buildings and cities. The authors present renewable
energy as a key alternative to coal, focusing on smart buildings as
part of the future of clean energy solutions. The study links Al
applications to the broader theme of reducing carbon footprints
and supporting green cities, aligning with research that examines
Al's role in energy optimization, renewable energy integration, and
achieving carbon neutrality [43,180]. It emphasizes how Al can
help reduce energy consumption and promote sustainability in
smart buildings.

Zeng and Huang [50] introduce an Al-driven approach to
building fire safety design through the Intelligent Fire Engineering
Tool (IFET), which leverages large datasets from high-fidelity fire
simulations. The Al system captures spatiotemporal patterns of
fire development, enabling fast and accurate prediction of detector
and sprinkler response times under dynamic conditions. It facili-
tates performance-based fire safety evaluations for complex
architectural spaces and can identify critical design thresholds in
seconds. The tool aims to support more adaptive, responsive, and
efficient fire safety design in smart buildings, with potential for
continuous learning and future expansion to broader fire sce-
narios. This work complements other studies focused on opti-
mizing energy and comfort (e.g., Ref. [49,97]).

Overall, the reviewed studies demonstrate the innovative po-
tential of Al and ML in improving the environmental outcomes of
smart buildings. They showcase how these technologies are
applied to optimize energy consumption, integrate renewable
energy sources, enhance occupant comfort, and improve safety.
Each study builds on, relates to, or expands upon the other ones,
progressively broadening the scope of Al applications and deep-
ening our understanding of how Al addresses the complex chal-
lenges of sustainability in smart buildings. Together, the studies
form a cohesive narrative that highlights both the practical ap-
plications and conceptual advancements of Al in building tech-
nologies. They contribute to the development of smarter, more
adaptive, and more sustainable built environments by connecting
and building upon each other's findings.

5.2.2. Green buildings

Al is rapidly emerging as a transformative force in advancing
green building design, performance, and overall project manage-
ment. As the AEC industry continues to prioritize sustainability
and environmental responsibility, Al-powered solutions are
revolutionizing the design, construction, and operation of green
buildings. Al applications in green buildings offer vast potential for
improving environmental outcomes. Its integration into building
systems enables innovative design processes, smarter energy ef-
ficiency solutions, waste reduction strategies, and carbon emission
monitoring—critical components for achieving carbon neutrality.
In addition, Al is increasingly applied in cost estimation, risk
assessment, and overall project evaluation, supporting more
informed decision-making, optimized resource allocation, and
reduced operational and financial uncertainties. The reviewed
studies provide a comprehensive overview of how Al and ML are
reshaping green buildings, highlighting key advancements and
applications across various domains.

5.2.2.1. Artificial intelligence applications in green building design:
performance, prediction, optimization, and sustainability.
Recent research highlights the diverse ways Al is being integrated
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into green building design, ranging from predictive modeling and
compliance support to optimization frameworks and critical re-
flections on the role of creativity. The reviewed studies demon-
strate Al's role not only in improving efficiency and sustainability
but also in reshaping professional practice and decision-making in
the architecture and construction sectors.

Bura and Bharati [94] investigate the application of Al in green
building design, emphasizing its potential to streamline compli-
ance with sustainability rating systems. The authors highlight how
Al facilitates faster and more reliable decision-making in areas
such as energy efficiency, water management, ventilation, and
daylighting. The study demonstrates that Al tools can support ar-
chitects, engineers, and designers in optimizing building perfor-
mance by enhancing the likelihood of achieving green building
certification. It concludes that Al provides a broad scope of ap-
plications and significant advantages in improving productivity,
communication, and sustainability outcomes in the green building
sector. This study relates to Sari et al. [181], as both explore Al
methods for enhancing the efficiency and predictive capabilities of
green building design.

Omar and Al-Boridi [96] examine how Al can improve green
building construction for environmental sustainability, focusing
on reducing carbon emissions and energy consumption. Their
work employs predictive analytics and ML algorithms, including
SVM and GAs, to optimize construction decisions, concrete mix
strength, and energy use. The findings show that Al models can
achieve prediction accuracies above 95%, with genetic algorithms
(GA) models predicting CO, emissions with an R? of 0.95. In
addition, k-fold cross-validation confirmed the robustness of these
models, demonstrating that Al can significantly lower operational
costs, improve efficiency, and reduce greenhouse gas emissions
during construction. These findings extend the practical applica-
tions discussed by Bura and Bharati [94] by providing concrete
examples of Al in operational green building processes.

In examining the broader implications of Al adoption in sus-
tainable building design, Jain and Babu [95] focus on its impact on
architectural practice and human creativity. The study identifies
potential risks, including reduced innovation, diminished personal
expression, and the simplification of professional roles, resulting
from reliance on Al-generated solutions. Despite these challenges,
the authors argue that Al can serve as a valuable tool for aug-
menting human decision-making, provided it is applied judi-
ciously. Their findings advocate for a human-centered approach in
Al-assisted design, ensuring that technology enhances, rather than
undermines, the cognitive and artistic contributions of architects.
This critical perspective highlights an often-overlooked dimension
in research on Al in green buildings, encouraging other studies to
consider not only technical performance and efficiency but also
the preservation of creativity, professional judgment, and the
cultural and intellectual richness of architectural practice.

Sari et al. [181] focus on developing ML models to predict green
building design performance, aiming to accelerate the design
process while maintaining sustainability standards. The study
evaluates criteria such as energy efficiency, indoor environmental
quality, water efficiency, and site planning. Among the tested
models, the combination of ANNs with an IF-ELSE algorithm pro-
duces the most accurate predictions, achieving a mean square
error of 1.3. These results suggest that ML-based predictive models
can effectively support designers in creating optimized green
buildings more efficiently, thereby reducing the time and
complexity traditionally associated with integrating sustainable
design. This study relates to Bura and Bharati [94] because both
emphasize AI/ML for design efficiency, but it focuses specifically
on predictive modeling rather than broad design compliance or
sustainability assessment.
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Shen and Pan [35] propose a framework that combines BIM
with XML and multi-objective optimization to predict and opti-
mize energy performance in green building design. The framework
integrates DesignBuilder simulation, Bayesian Optimization-
LightGBM (BO-LGBM), and SHAP (Shapley additive explanation)
to provide accurate predictions of energy performance. It also uses
the AGE-MOEA algorithm for multi-objective optimization, mini-
mizing energy consumption, CO, emissions, and indoor thermal
discomfort. The results showed that the BO-LGBM model achieves
a prediction accuracy with an R? value greater than 93.4% and a
mean absolute percentage error smaller than 2.13%. The optimi-
zation process yields a 13.43% improvement in energy perfor-
mance, and considering uncertainty further enhances the results
by approximately 4%. This approach enhances transparency and
efficiency in green building design by providing interpretable
predictions and optimizing key building performance factors. This
study complements both Sari et al. [181] and Bura and Bharati [94],
as all three emphasize AI/ML support for design efficiency, though
Shen and Pan [35] advance the discussion by combining predictive
modeling with interpretable optimization tools for greater trans-
parency and multi-objective performance improvement.

Liu et al. [58] propose a BIM-enabled hybrid ML framework to
address the challenge of balancing multiple objectives in green
building design. The approach achieves optimized design param-
eters that simultaneously reduce life cycle carbon emissions, lower
costs, and enhance thermal comfort by integrating BIM-
DesignBuilder simulations with RF prediction, Grey Wolf Optimi-
zation, and NSGA-II, The case study shows reductions of 16.6% in
carbon emissions, 2% in economic cost, and an 18.3% improvement
in comfort, highlighting the framework's value in supporting
reliable multi-objective optimization for sustainable building
design. This study complements Shen and Pan [35], as both employ
BIM with Al-driven optimization to enhance energy performance,
while Liu et al. [58] extend the scope by explicitly integrating cost
and comfort trade-offs into the optimization process.

The study by Mahmood et al. [56] investigated how to optimize
green building design by applying ML and DL techniques to the
ASHARE-884 dataset, with preprocessing methods such as Z-Score
normalization and label encoding to improve model performance.
A range of algorithms are tested, including ML models like RF, DT,
and EGB, and DL models such as GNN, LSTM, and RNN, with
evaluation based on metrics like accuracy, precision, recall, and F1-
score. The findings show that GNN and LSTM outperform con-
ventional DL techniques, offering greater efficiency and accuracy
in enhancing environmental practices. Accelerating the design
process and enhancing decision-making, these models help reduce
environmental impacts, optimize resources, and improve occu-
pant comfort, underscoring Al's crucial role in shaping more sus-
tainable green building design practices. This work complements
Liu et al. [58] by further demonstrating how advanced Al models
can optimize resource use and occupant comfort, extending opti-
mization strategies beyond energy and cost to encompass more
holistic sustainability goals.

On the whole, these works indicate that Al applications in green
buildings are evolving from predictive tools to comprehensive
decision-support and optimization systems, addressing energy,
cost, comfort, and sustainability in increasingly integrated ways,
while also raising essential questions about creativity and human-
centered design. The convergence of technical precision, opera-
tional efficiency, multi-objective optimization, and critical reflec-
tion underscores Al's transformative yet complex role in advancing
sustainable architectural design.

5.2.2.2. Leveraging artificial intelligence for advancing energy effi-
ciency, waste management, thermal comfort, and sustainability.
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Recent research highlights how predictive modeling, ML, and
multi-objective optimization frameworks can improve operational
performance, reduce energy use and carbon emissions, and sup-
port sustainable decision-making across building design, mate-
rials, and occupant management.

Xiang et al. [61] propose an Al-based energy management
model (AI-EMM) designed to optimize energy consumption in
green buildings. The AI-EMM utilizes infrared communication
systems and smart user identification subsystems to adapt energy
use based on the internal and external environments, aiming to
enhance user comfort, safety, and energy efficiency. The model
incorporates long short-term memory (LSTM) techniques to pre-
dict energy needs, thereby enhancing the efficiency of HVAC sys-
tems. The study's experimental results demonstrate a high
performance ratio of 94.3%, a 15.7% reduction in energy con-
sumption, a prediction accuracy of 97.1%, and an energy manage-
ment level of 95.7%. These findings demonstrate that Al can play a
crucial role in enhancing energy management in green buildings,
aligning with environmental objectives. This study complements
Mahmood et al. [56] by demonstrating predictive energy man-
agement using Al, where both studies emphasize accurate fore-
casting to improve HVAC efficiency and reduce energy
consumption.

Shahsavar et al. [59] introduce a smart framework for supplying
biogas energy in green buildings by integrating response surface
methodology (RSM), Al and Petri net modeling. The study focuses
on addressing energy supply and waste management in green
buildings, particularly in relation to SDGs. The framework employs
various Al techniques, including random tree, RF, ANN, and
adaptive-network-based fuzzy inference system (ANFIS), to pre-
dict accumulated biogas production (ABP). Among these, ANFIS
achieves the highest accuracy, with a correlation coefficient of
0.99. The study also integrates a dynamic control system using
Petri Net modeling to optimize the biogas production process. This
novel approach emphasizes the synergy between energy supply,
waste management, and sustainability in green buildings. This
work aligns with Lu et al. [68] in addressing sustainable waste
management and energy efficiency, and both studies extend the
discussion on Al's role from optimizing waste strategy to pre-
dicting and dynamically controlling energy recovery processes. It
also connects to Feng et al. [57], as integrating renewable energy
sources complements Al-driven energy efficiency strategies.

Lu et al. [68] propose a framework for evaluating waste man-
agement and energy-saving strategies in green buildings, inte-
grating the analytic hierarchy process (AHP) with ANN. The study
focuses on construction and demolition waste, aiming to reduce
waste sent to landfills and lower the use of energy and resources.
Their approach evaluates various waste management strategies,
including incineration, composting, and landfilling, taking into
account environmental, social, and economic factors. The study
finds that composting performs best when environmental aspects
are prioritized, while incineration and landfilling are more favor-
able when considering social and economic criteria. This study
builds on Shahsavar et al. [59] by exploring decision-making
strategies in waste management, complementing their focus on
dynamic biogas production. It also links to Xiang et al. [61] in
emphasizing Al-supported optimization to improve overall
building efficiency and sustainability outcomes.

Ghalandari et al. [67] propose the use of ML models to optimize
the thermal conductivity and energy efficiency of green buildings
through the application of nano-insulation. The authors focus on
the impact of different insulation thicknesses and configurations
on energy consumption, utilizing ML methods such as SVM,
Gaussian process regression, and decision trees. Their results
demonstrate that the decision tree model offers the best
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performance for predicting thermal conductivity with an accuracy
above 99%. It reveals that buildings with Nano insulation save up to
40% more energy compared to conventional insulation materials.
Moreover, the energy savings per unit area and the reduction in
CO, emissions range between 290 and 293 kg m >, depending on
various factors such as weather conditions and insulation speci-
fications. This study complements Xiang et al. [61] and Mahmood
et al. [56,182], as all emphasize Al/ML-driven improvements in
energy efficiency, and it also connects to Zhu et al. [60] by
demonstrating how optimization of materials and design param-
eters can feed into multi-objective building performance
frameworks.

Addressing the problem of energy inefficiency caused by gaps
in occupant behavior and energy management, Mahmood et al.
[56] introduce an ML approach based on active learning for pre-
dictive modeling in green buildings. Their work develops models
capable of predicting heating and cooling demands with high ac-
curacy, using a wide range of regressors including RF, DT, GB,
XGBoost, CatBoost, LGBM, KNN, and LR. The proposed CBR-AL
model achieves exceptional predictive performance, with R?
values of 0.9975 for cooling and 0.9883 for heating. Beyond its
technical accuracy, the model demonstrates significant potential
for reducing energy consumption, improving operational effi-
ciency, lowering carbon footprints, and generating cost savings.
This predictive framework sets a benchmark for next-generation
energy management systems in green buildings. This study ex-
tends Xiang et al. [61] by demonstrating broader predictive ca-
pabilities for both cooling and heating, and it complements Feng
et al. [57] by offering a technical foundation for achieving pro-
jected reductions in energy use and emissions through Al

Zhu et al. [60] present a multi-objective optimization frame-
work for green building design that integrates BIM-DB, Bayesian-
RF (Bayesian-RF), and non-dominated sorting genetic algorithm III
(NSGA-III). This framework aims to optimize energy efficiency,
reduce emissions, enhance cost-effectiveness, and improve ther-
mal comfort by accurately predicting building performance across
these factors. The study shows that BIM-DB efficiently generates
building data through simulation and orthogonal tests. The
Bayesian-RF method significantly improves prediction accuracy,
achieving a mean squared error (MSE) below 0.08 and an R? above
0.85 for all three prediction objectives. Furthermore, the Bayesian-
RF-NSGA-III optimization algorithm reduces energy consumption
by 7.68%, carbon emissions by 6.48%, and cost by 1.77%, while also
improving overall thermal comfort. These results demonstrate the
framework's effectiveness in reducing resource consumption and
enhancing comfort while optimizing multiple objectives in green
building design. This framework complements Ghalandari et al.
[67] by integrating material and design optimization into a pre-
dictive and multi-objective platform, and it aligns with Xiang et al.
[61] and Mahmood et al. [56] by using Al for predictive energy
efficiency and comfort optimization.

Feng et al. [57] investigate how Al can enhance energy man-
agement in green buildings by enabling precise forecasting,
advanced environmental analysis, and the integration of renew-
able energy. The results reveal that Al applications can reduce
energy consumption by about 8% and CO, emissions by 19% in
typical mid-size office buildings by 2050 compared to conven-
tional approaches. Moreover, when combined with energy effi-
ciency policies and low-emission energy production, reductions of
up to 40% in energy use and 90% in CO, emissions are projected.
The study offers a systematic framework for quantifying Al's en-
ergy and carbon-saving potential across building types and cli-
mates, providing evidence of its long-term value in achieving
sustainability goals. This study is complementary to Xiang et al.
[61], Mahmood et al. [56], and Shahsavar et al. [59], as all explore
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Al for energy efficiency, predictive modeling, and integration with
renewable or recovered energy to achieve broader sustainability
goals.

In summary, these studies reveal that Al applications in green
buildings are evolving from isolated predictive tools to integrated
optimization systems that simultaneously enhance energy effi-
ciency, manage waste, improve thermal comfort, and reduce
environmental impact. Al enables more sustainable, efficient, and
adaptable building practices by linking predictive accuracy with
multi-objective decision-making, while also reinforcing the
importance of balancing technological performance with occupant
needs and environmental goals.

5.2.2.3. Artificial intelligence-driven cost estimation and risk man-
agement: enhancing financial accuracy, risk mitigation, and sus-
tainable  decision-making. Recent advances in Al are
revolutionizing the planning, execution, and management of green
building projects. Al applications in this domain enhance the ac-
curacy of cost estimation and provide robust tools for risk
assessment, supporting more informed decision-making and
sustainable resource allocation throughout the construction
lifecycle.

Exploring cost estimation and control in sustainable construc-
tion, Zhang [65] introduces the Al-driven comprehensive cost
dynamics model (AICD-CDM) to address the complexity of green
building projects. The framework integrates multiple ML tech-
niques, including linear regression (LR), ANN, RF, XGBoost, light
gradient boosting (LGBoost), and natural gradient boosting
(NGBoost), to provide both point predictions and probabilistic
forecasts for cost management. Findings demonstrate that the
model effectively captures nonlinear relationships among diverse
cost-influencing factors, offering enhanced accuracy, adaptability,
and computational efficiency. The study demonstrates that the
AICD-CDM framework can significantly enhance resource alloca-
tion and cost optimization, providing decision-makers with a
powerful tool for sustainable project management. This study
complements Alshboul et al. [63], who also explore ML approaches
for green building cost prediction, by introducing a broader multi-
algorithmic framework with probabilistic forecasting capabilities.

In addressing safety considerations, Xu [64] examines fire risk
assessment in green intelligent buildings using Al. Leveraging loT
data and expert input, a deep neural network model is developed
to predict and assess fire risks. The model is continuously trained
and refined, enabling more precise risk predictions for individual
building units. Results highlight the potential of Al to integrate
real-time data and expert knowledge, providing robust early-
warning systems and supporting proactive fire risk management
in smart green buildings. This work relates to Zhu et al. [66], as
both studies utilize Al for risk assessment in green buildings.
Specifically, Xu [64] emphasizes fire safety, while Zhu et al. [66]
develop a broader, multi-risk predictive framework.

Focusing on risk management, Zhu et al. [66] propose a hybrid
ML approach combining the fuzzy analytic hierarchy process
(FAHP), multilayer perceptron neural networks (MLPNNs), and
PSO to quantify and predict risks in green building projects.
Through structured input from 30 experts, ten risk categories are
prioritized, with economic, market, and functional risks identified
as the most critical. The model forecasts the impact of the top five
risks on project cost, time, quality, and scope, achieving RMSE
values between 0.06 and 0.09 and R? values up to 0.95. These re-
sults indicate the framework's strong predictive capability and its
utility for actionable, data-driven risk management in sustainable
construction. This study expands on concepts similar to Xu [64] by
applying Al for multi-risk prediction beyond fire safety, and it
provides a methodological complement to Zhang [65] by
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quantifying risk impacts that can inform cost and project man-
agement decisions.

Addressing cost prediction from a machine learning perspec-
tive, Alshboul et al. [63] develop models for forecasting con-
struction costs in green buildings, which present unique
challenges due to new technologies and limited stakeholder
experience. Using XGBOOST, deep neural networks (DNN), and RF,
the study evaluates model performance across soft and hard cost
attributes. XGBOOST achieved the highest accuracy of 0.96, fol-
lowed by DNN at 0.91 and RF at 0.87. The findings demonstrate
that Al-based models can provide reliable benchmarks for con-
struction costs, supporting informed decision-making and
enhancing automation in green building project management.
This study complements Zhang [65], which also addresses Al-
based cost estimation, but Zhang extends the approach with a
multi-algorithmic framework and probabilistic forecasting for
enhanced uncertainty management.

Wau et al. [62] propose a two-stage integrated ML framework for
predicting cost reasonableness in green building projects (GBPs).
Their approach uses principal component analysis (PCA) inte-
grated with an SVM algorithm for cost prediction and least squares
SVM (LSSVM) for determining the cost deviation range. The re-
sults, based on 126 project samples, demonstrate that the PCA-
SVM model outperforms traditional models, such as SVM and
multiple regression analysis, with significantly lower prediction
errors. Only 17% of the projects deviated beyond the reasonable
cost range. This framework addresses dimensionality challenges
and ensures accurate, project-specific cost predictions, supporting
sustainable investment in green buildings. This study comple-
ments Zhang [65] and Alshboul et al. [63], as all three focus on Al-
driven cost estimation. Wu et al. [62] advance the discussion by
refining prediction accuracy and tackling dimensionality chal-
lenges that others only partially address.

In summary, these studies demonstrate that Al can significantly
enhance both the financial and operational management of green
buildings. Decision-makers are better equipped to predict costs,
manage uncertainties, and mitigate project risks by integrating ML
techniques, probabilistic forecasting, and hybrid risk assessment
frameworks, thereby advancing the sustainability and efficiency of
green building development.

5.2.3. Harnessing artificial intelligence for zero-energy, net-zero-
energy, nearly-zero-energy, and positive energy building
optimization, real-time control, and transparency

The global surge in energy demand, particularly from the
building sector, has intensified the urgency to rethink how build-
ing structures are designed, operated, and integrated into broader
energy ecosystems. In response, ZEBs, nZEBs, and NZEBs have
emerged as key solutions for advancing environmental goals.
These building paradigms aim to drastically reduce carbon emis-
sions by balancing or minimizing energy consumption through a
blend of energy-efficient designs, renewable energy sources, and
advanced management systems. Central to accelerating the reali-
zation of these sustainable buildings is the integration of Al, which
offers new pathways for optimizing energy performance, fore-
casting consumption patterns, managing renewable energy flows,
and enhancing occupant comfort, all with a level of precision and
adaptability previously unattainable. Recent research reflects a
growing convergence between Al techniques, such as ML, DL,
optimization algorithms, and predictive control systems, and the
objectives of ZEBs, nZEBs, and NZEBs constructions.

5.2.3.1. Zero-energy, nearly-zero, and positive energy buildings.
The pursuit of zero-energy, nearly-zero, and positive-energy
Buildings has intensified in recent years, with Al emerging as a
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transformative enabler for energy efficiency, renewable integra-
tion, and intelligent building management. Wang et al. [81] review
the latest advancements in ZEBs, focusing on the growing role of Al
to improve energy efficiency. The study highlights three main
technological areas: energy-efficient measures (EEMs), renewable
energy technologies (RETs), and building energy management
systems (BEMS). It emphasizes how EEMs reduce energy demand
by enhancing building design, using phase change materials,
optimizing HVAC systems, and influencing occupant behavior. It
also highlights how renewable sources, such as solar, wind,
biomass, and geothermal energy, can be integrated through
distributed energy systems. Lastly, it underscores the role of BEMS
in managing energy use, detecting faults, and optimizing perfor-
mance, all while leveraging Al to further improve system effi-
ciency. This work provides a foundation for subsequent studies by
demonstrating how Al-driven technologies can integrate energy
management and renewable energy, a perspective that is further
developed and applied in the works of Yao et al. [183], Megahed
et al. [72], and Rocha et al. [33]. The focus on the role of Al and
BEMS builds upon previous research by introducing a technology-
driven dimension to renewable energy integration in ZEBs.

Examining the evolving trajectory of ZEB research, Jin and Bae
[79] apply Al and NLP to analyze public research and development
grant data. The study provides a detailed analysis of trends within
ZEB research, focusing on the entire energy continuum, which
encompasses energy supply, demand, distribution, and realization
within architectural frameworks. It highlights emerging areas of
interest, theoretical gaps, and provides practical recommendations
for practitioners and policymakers. It presents both academic in-
sights and practical guidance for the implementation of sustain-
able strategies in the development of ZEBs. Their use of Al and NLP
offers a novel perspective on understanding ZEB research trends,
contributing to the academic foundation by providing a data-
driven exploration of energy supply, demand, and distribution.
This study provides a contextual foundation that complements the
application-oriented research of Megahed et al. [72] and Rocha
et al. [33], reinforcing the growing role of Al in energy manage-
ment and guiding future technological interventions in ZEBs.

A novel energy management technique for ZEBs using neural
network predictive control (NNPC) is proposed by Megahed et al.
[72]. This technique combines two methodologies: neural net-
works and model predictive control, to optimize energy usage in
ZEBs. The key features of NNPC include its real-time operation,
ability to connect to the Internet, simple controls, and disturbance
reduction. Notably, the system is designed to learn from human
behavior, making it more adaptive and efficient. Furthermore, the
study introduces a forecasting technique using an ANN to predict
renewable energy sources, specifically wind and photovoltaic, to
maximize energy utilization without relying on the electrical grid.
This study was conducted on a building with a hybrid system and
energy storage units, using data from wind and solar measure-
ments over seven months, focusing on a high-energy consumption
day. It connects to several key studies in the ZEB field, particularly
in the areas of energy management and renewable energy inte-
gration. It builds on and complements the work by Wang et al. [81]
regarding the integration of renewable energy sources in ZEBs.

Rocha et al. [33] introduce a solution to energy planning in
buildings by introducing the concept of nZEcB, buildings with zero
or nearly zero annual energy costs. The study employs a range of Al
techniques, including bidirectional LSTM, ordinary least squares
linear regression, K-means, Pearson's correlation, decision tree,
and binary gravitational search algorithm, to design an optimal
distributed generation system. This system incorporates renew-
able energy sources such as wind and photovoltaic, along with a
battery bank and an automated capacitor bank for power factor



S.E. Bibri and J. Huang

compensation. A case study on a real public building showed that
the distributed generation system produced 2.805 GWh annually,
which met 160.5% of the building's electrical demand and nearly
eliminated energy costs. Despite an excess production of energy,
which could not be fully exported due to lower feed-in tariffs, the
system proved to be cost-effective with a payback period of 6.79
years. This study extends the work of Megahed et al. [72] by
applying Al techniques to optimize distributed generation systems
in ZEBs, offering a more comprehensive, Al-driven solution. It
advances the understanding of energy management in ZEBs,
particularly by incorporating renewable energy sources with Al-
based optimization techniques. It also supports the findings of
Wang et al. [81], who identified Al and BEMS as key components
for enhancing energy efficiency and integrating renewable energy
in ZEBs. Furthermore, it corroborates the insights from Jin and Bae
[79], reinforcing the growing role of Al in energy management in
ZEBs.

Focusing on data-driven approaches for achieving net-zero and
positive-energy buildings (PEBs), Mousavi et al. [80] explore how
ML, Al, and building modeling simulations can predict energy
production and optimize building systems to achieve PEB goals.
The authors highlight key factors, including occupant comfort,
building efficiency, economic benefits, and clean energy provision,
as critical to achieving PEB targets. They categorize data-driven
techniques used in PEBs, including renewable energy supply pre-
diction, optimizing building envelope design, and improving
comfort control with IoT. They outline a framework for applying
these techniques, focusing on reducing energy demand, enhancing
energy efficiency, and enabling effective energy management in
various building types. Their approach to optimizing renewable
energy supply and demand, as well as reducing energy con-
sumption through building envelope design, aligns with the ob-
jectives explored by Rocha et al. [33] regarding the use of Al for
optimizing energy management in buildings. In addition, this
study reinforces the importance of ML and Al for achieving effi-
cient and effective PEB and net-zero building outcomes, com-
plementing Jin and Bae [79], who highlight the growing role of Al
in shaping ZEB research trends and future directions.

These advances demonstrate how Al-driven approaches are
shifting buildings towards adaptive, self-sufficient systems that
meet energy targets and strengthen the foundations for sustain-
able and resilient built environments. Importantly, they highlight
the transition from isolated energy-efficient measures to inte-
grated, data-driven frameworks that align with broader climate
goals and the future of smart urban ecosystems.

5.2.3.2. Net-zero-energy  buildings. NZEBs are increasingly
leveraging Al and data-driven strategies to optimize energy per-
formance, integrate renewable energy sources, and enhance
occupant comfort and building autonomy. Focusing on their
development and optimization, Ibrahim et al. [76] explore design
strategies, technological innovations, and their impact on energy
efficiency. The authors highlight the role of Al in enhancing NZEB
performance, particularly in predictive energy analytics, intelli-
gent HVAC systems, and real-time energy management. They also
address significant barriers to NZEB implementation, such as high
costs, regulatory limitations, and inadequate stakeholder partici-
pation. They suggest region-specific solutions, such as integrating
renewable energy systems and optimizing building envelopes, to
overcome the challenges of diverse climates and varying regula-
tory frameworks. The study advocates for enhanced cooperation
and tailored approaches to promote the adoption of NZEB, offering
valuable insights for researchers, policymakers, and industry
stakeholders seeking to promote sustainable building practices.
This study builds upon the work of Wang et al. [81] and Rocha et al.
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[33] by expanding the role of Al in optimizing energy performance
in NZEBs. The focus on renewable energy integration and opti-
mizing building envelopes in regional contexts complements the
work of Megahed et al. [72] and Mousavi et al. [80], who also
investigate strategies for integrating renewable energy sources
and improving energy performance through data-driven
approaches.

An ExplainerX is proposed by Kermiche et al. [78] as an inte-
grated XAI framework designed to improve the prediction of en-
ergy usage in NZEBs. This framework addresses common
shortcomings in current Al solutions, such as the lack of trans-
parency in data and results, issues with model drift, and the use of
disparate tools during model development. ExplainerX stream-
lines the prediction process by providing transparency at each
stage, ensuring both performance and interpretability. The
framework incorporates components of the CRISP-DM methodol-
ogy, providing detailed explanations of decision-making pro-
cesses. A case study using real datasets from the European Union
Improvement Project demonstrates the practical application of
ExplainerX, showcasing its potential to enhance energy manage-
ment in NZEBs. This study builds upon the work of Wang et al. [81]
and Megahed et al. [72] by addressing the transparency and
interpretability issues commonly associated with Al models in the
context of ZEBs. Their focus on XAI solutions complements and
enhances these studies by adding a layer of transparency that
improves trust in the Al-driven energy management systems. This
study contributes to the growing body of work on Al applications
in NZEBs by providing a clear methodology for developing trans-
parent and XAI models that can enhance both operational per-
formance and stakeholder confidence.

Yu et al. [77] focus on the design and implementation of an Al-
based control strategy for NZEBs within a smart microgrid
framework. The authors propose integrating a supervisory control
and data acquisition (SCADA) system for online monitoring of
energy consumption and environmental parameters. The control
strategy aims to optimize power management and heat recovery
efficiency. The study demonstrates the practical application of this
strategy in several NZEBs, showcasing its ability to manage energy
more effectively within the context of a smart microgrid. This
study extends previous research by integrating Al with SCADA
systems for dynamic monitoring, providing a more comprehensive
solution for managing energy within NZEBs. The practical imple-
mentation in real-world projects enhances the applicability of Al
solutions discussed by Wang et al. [81], who emphasize the inte-
gration of energy management systems in ZEBs.

A hybrid optimization strategy aimed at enhancing the auton-
omy of NZEBs by minimizing grid energy dependency is presented
by Georgiou et al. [74]. Their approach combines linear program-
ming (LP) for real-time optimization of battery dispatch, ANNs for
forecasting energy demand and PV generation, and genetic algo-
rithms (GA) to refine the dispatch process. Moreover, the system
advisor model (SAM) from the national renewable energy labo-
ratory (NREL) was integrated to better capture battery behavior.
Applied to a real building case study, the method successfully
reduced annual grid energy usage by 53% and achieved 60%
renewable energy coverage, showing that this integrated method
significantly advances NZEB autonomy. This study contributes a
comprehensive, real-time, hybrid solution for improving energy
self-sufficiency in NZEBs.

Wu et al. [75] develop an intelligent optimization framework
aimed at enhancing the performance of NZEBs. The framework
integrates BIM with DesignBuilder and a hybrid ML approach
combining RF and NSGA-III. The model optimizes multiple objec-
tives (e.g., energy efficiency, comfort, environmental impact, and
cost) through NSGA-III by simulating building design scenarios
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and predicting their performance with RF A case study of a
building validates the method, demonstrating significant energy
savings (21.25%) and high model accuracy (R? values between 0.91
and 0.93). This integrated approach offers a powerful tool for the
multi-objective design optimization of NZEBs.This study extends
the work of Georgiou et al. [74] by introducing a hybrid ML and
optimization framework that targets multiple performance goals
simultaneously, not just energy management. The use of RFand GA
also aligns with the predictive and optimization techniques dis-
cussed in Mousavi et al. [80] and Ibrahim et al. [76].

Qin et al. [71] aim to enhance energy efficiency in NZEBs by
improving the accuracy of heating and cooling load predictions,
which are crucial for optimal control of HVAC systems. The authors
apply four ML methods—multivariate polynomial regression, SVR,
multilayer perceptron, and XGBoost—to build datasets. The study
highlights the significance of feature selection in enhancing model
accuracy and simplifying input complexity. Real-world factors
such as occupancy changes and weather uncertainties are also
considered. Results indicate that proper feature selection signifi-
cantly enhances model performance, while deployment chal-
lenges, such as thermal inertia effects, must be addressed to
achieve consistent prediction accuracy. This study advances the
predictive modeling strand found in Georgiou et al. [74] by con-
ducting a direct comparative analysis of multiple ML models
tailored for NZEB load forecasting. Its detailed attention to feature
selection and real-world deployment challenges resonates with
the transparent Al modeling concerns raised by Kermiche et al.
[78]. In addition, its focus on HVAC load forecasting aligns with the
smart grid and energy management applications presented in Yu
etal.[77], while diverging in its emphasis on predictive rather than
control strategies.

Chegari et al. [73] develop a multi-objective optimization
approach for NZEBs that balances minimizing energy consump-
tion, maximizing thermal comfort, and enhancing energy self-
sufficiency. Their method uses a surrogate model based on ANNs
and optimizes it through multi-objective particle swarm optimi-
zation (MOPSO). Applied to residential buildings across different
climate zones, their approach significantly improves building
performance metrics, achieving average reductions of 75% in en-
ergy consumption, 50% in thermal comfort, and 85% in self-
sufficiency. The study highlights the practicality and adaptability
of their surrogate-model-based optimization framework for ar-
chitects, engineers, and designers aiming to create energy-
resilient and comfortable NZEBs. This study expands on the opti-
mization strategies explored by Georgiou et al. [74] and Wu et al.
[75], particularly by integrating surrogate modeling to streamline
the optimization process for NZEBs. Their use of ANNs and MOPSO
aligns with broader Al-driven optimization trends seen in Mousavi
et al. [80], but Chegari et al. [73] specifically differentiate them-
selves by focusing on balancing energy, comfort, and self-
sufficiency simultaneously rather than prioritizing a single
objective. Furthermore, their emphasis on practical, climate-
adapted solutions echoes the regional adaptability concerns
raised by Ibrahim et al. [76].

Alden et al. [70] introduce a novel deep learning-based method
for separating HVAC energy consumption from total residential
loads, aiming to enhance home energy management systems
(HEMS) in smart and NZE homes. The authors develop LSTM
encoder-decoder models that utilize future weather data instead
of standard weather forecasts to accurately predict both HVAC and
PV energy usage. Utilizing the extensive SHINES dataset, the pro-
posed method achieves low prediction errors well within recog-
nized academic and ASHRAE standards. In addition to improving
energy monitoring, their approach also demonstrates the ability of
smart homes to act as dispatchable loads or energy generators
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within a virtual energy operation framework. This study enhances
the forecasting capabilities essential for smart NZE home man-
agement, closely paralleling the goals outlined by Qin et al. [71],
who also emphasized accurate HVAC load predictions using
diverse ML models. Their integration of LSTM networks aligns with
the Al-driven predictive frameworks presented in Kermiche et al.
[78] and Wu et al. [75]. However, Alden et al. [70] focus on real-
time energy separation and management, extending these prior
works by offering actionable solutions for existing residential in-
frastructures without specialized HVAC submetering.

Overall, the reviewed studies in the two subsections demon-
strate the growing sophistication and diversity of Al and ML ap-
plications in the pursuit of ZEBs, nZEBs, NZEBs, and PEBs. From
predictive load forecasting and energy optimization to explainable
frameworks and smart control strategies, these works expand,
diversify, and deepen the understanding of the field as to how
intelligent systems can transform building performance. While
each study offers distinct methodological advancements and fo-
cuses on different aspects, such as transparency, optimization, or
real-time control, they all converge on the critical goal of
enhancing energy efficiency, autonomy, and occupant comfort.
These insights underscore the importance of integrated, data-
driven solutions in overcoming current technical and practical
barriers, thereby establishing a robust foundation for future
research and real-world deployment in sustainable building
development, which advances environmental goals.

5.2.4. Artificial intelligence-powered digital twins in building
systems: applications for advancing smart, green, and zero-energy
building environments

The integration of Al and DT technologies within building
systems is reshaping the landscape of sustainable smart built en-
vironments. These technologies enable the optimization of build-
ing operations through real-time data analysis, predictive
modeling, and intelligent decision-making, which are essential for
advancing environmental goals. They play a key role in enhancing
energy efficiency, resource management, and performance opti-
mization in buildings, making them more sustainable and intelli-
gent by reducing energy consumption, improving comfort, and
meeting environmental targets. The reviewed studies explore the
key contributions and implications of Al and DT applications
across diverse building typologies, highlighting their potential to
drive sustainability and foster adaptive built environments.

Deena et al. [82] and Agostinelli et al. [25] both explore Al-
driven DT applications in energy management, specifically in
residential buildings. Agostinelli et al. [25] investigate DT ap-
proaches for residential districts, analyzing energy efficiency in-
terventions and how DTs help assess energy production from
renewable sources to meet nZEB criteria. Similarly, Deena et al.
[82] focus on neighborhoods, showcasing how Al, combined with
IoT and DT technologies, can optimize energy consumption in
buildings, with a particular emphasis on achieving NZEB stan-
dards. They model various energy-efficient scenarios to ensure
optimal comfort levels while minimizing energy consumption.
Shen et al. [34] take a step further, focusing on how DT can opti-
mize PEDs, which integrate energy systems across entire neigh-
borhoods or districts. The authors highlight the role of DTs in
coordinating multiple systems (e.g., energy, transportation) and
improving urban sustainability. This study aligns with Arowoiya
et al.’s work [26] by demonstrating how DT can be scaled up from
individual buildings to entire districts, thereby driving sustainable
urban development. It emphasizes the role of Al and big data in
optimizing PEDs, with applications in real-time analysis and sus-
tainability goals.

De Wilde [84] presents a comprehensive review of building
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performance simulation in the context of Al and DTs. This study
critiques and synthesizes emerging trends in building simulation,
identifying conceptual overlaps and distinctions between DT
technology and traditional simulation methods. This work bridges
the gap between simulation and real-world applications of Al in
building performance, particularly in the context of energy and
sustainability. It complements the more specific case studies
mentioned earlier, such as those by Deena et al. [82] and Agosti-
nelli et al. [25], by providing a theoretical foundation for inte-
grating Al and DTs into building performance modeling. The study
underscores the role of these technologies in enhancing building
energy management and sustainability at both the building and
district levels.

Seen from a different perspective, EI-Gohary et al. [29] extend
the application of DTs into energy consumption prediction in
residential buildings, specifically under the influence of climate
change. The authors employ an ANN in the DT model to predict
energy use, highlighting the role of Al in understanding energy
patterns across different materials and designs. This is particularly
important in the context of green building design, where mini-
mizing energy consumption is crucial to reducing environmental
impact. This study expands the scope of earlier works by focusing
on predictive modeling, enabling engineers and architects to select
materials that optimize energy use. In a recent systematic review,
Semeraro et al. [184] address the role of DT technology in
advancing smart and green buildings, focusing on its potential to
enhance sustainability, energy efficiency, performance moni-
toring, and occupant well-being. The study shows that DT appli-
cations in green and smart buildings are primarily supported by
BIM, Al, and IoT, which enable real-time data integration, auto-
mation, and system optimization. DTs are being applied across
various areas, including energy management, predictive mainte-
nance, occupant-centered control, and environmental monitoring.
The findings also reveal that while DTs hold strong promise for
achieving net-zero energy performance and waste reduction goals,
most current studies remain conceptual or simulation-based, with
limited large-scale empirical validation. This study aligns with De
Wilde [84], who highlights the conceptual gaps between DTs and
traditional simulation methods, and complements El-Gohary et al.
[29], who demonstrate the predictive potential of Al-powered DTs
in addressing energy consumption under climate change
scenarios.

Arsiwala et al. [27] explore the application of DT and ML to
monitor CO, emissions in existing buildings. Their study empha-
sizes the importance of monitoring carbon emissions and opti-
mizing the operational energy performance of buildings to meet
net-zero goals. It adds a new dimension to the discussion by
highlighting the use of Al not only for energy optimization but also
for reducing the environmental footprint of buildings. It comple-
ments the findings of the study by Alnaser et al. [5], who focus on
the use of Al-powered DTs in smart cities, by introducing a prac-
tical application for carbon footprint management in existing
building stock, reinforcing the broader goal of carbon neutrality
and sustainability in the built environment. Alnaser et al. [5]
discuss how DTs are being used in construction, facility manage-
ment, and energy optimization for ZEBs, further supporting the
shift towards more resilient and sustainable urban ecosystems.
Their study ties together the findings from previous studies by
focusing on the intersection of DTs, Al, and IoT, emphasizing the
need for smart city frameworks to achieve urban sustainability.

Dinmohammadi and Shafiee [28] expand on the application of
Al and DT by addressing thermal comfort and energy consumption
in residential buildings under varying indoor and outdoor condi-
tions. Their study extends beyond energy prediction by incorpo-
rating real-time data from sensors and IoT devices to optimize
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both thermal comfort and energy consumption. This contributes to
the sustainability discussion by emphasizing the occupant expe-
rience in energy-efficient building designs, while also using DTs
for monitoring and predicting building performance. Likewise,
Arowoiya et al. [26] focus on thermal comfort and energy effi-
ciency, performing a comprehensive review of DT technology in
buildings. The authors identify the need for more research on
human-centered approaches, such as occupant perceptions of
comfort, and advocate for more refined algorithms to improve
predictive accuracy. Their work complements the findings of
Dinmohammadi and Shafiee [28] by emphasizing the importance
of occupant well-being in smart building designs, particularly in
the context of thermal comfort and energy management.

Jafari et al. [83] propose a novel DT architecture integrated with
asset management and building simulation technology to opti-
mize building performance and energy usage. Their approach
aligns with the broader theme of integrating real-time data and Al
algorithms to improve the operational control of buildings, similar
to the DT and Al-driven systems explored in earlier studies. The
study focuses on asset performance and maintenance strategies
for both new and existing buildings, contributing to the under-
standing of how DT technologies can enable predictive mainte-
nance, energy efficiency, and cost savings in buildings. This work
also complements the study by Alnaser et al. [5], who advocate for
smart city applications of DTs, by focusing specifically on how the
latter can be used in asset management and building operations.

Al-driven DTs play an important role in enhancing the envi-
ronmental goals of SGZEBs. In the context of smart buildings, they
offer real-time monitoring and optimization capabilities, enabling
adaptive energy management and operational efficiency. Smart
buildings can automate responses to environmental variables,
enhance occupant comfort, and optimize resource usage, inte-
grating Al with DTs, aligning with the core principles of smart
building design. For green buildings, these technologies enable
precise environmental monitoring, allowing for more efficient use
of renewable resources and a reduced environmental footprint.
They provide data-driven insights that help in achieving sustain-
ability benchmarks, such as lower carbon emissions and improved
energy usage. In ZEBs, Al-powered DTs help track energy pro-
duction and consumption to ensure that energy produced from
renewable sources meets or exceeds the building's consumption.
This integration enables continuous optimization, allowing
buildings to remain self-sufficient while contributing to broader
environmental sustainability efforts. DTs push these building ty-
pologies towards more adaptive, efficient, and resilient futures by
supporting data-driven, dynamic decision-making.

5.3. Artificial intelligence-digital twin integration for
environmentally sustainable smart built environments and cities

This subsection presents a unified framework that integrates Al
and DT technologies to advance environmental goals in smart
buildings. It also explores the broader implications of this frame-
work for sustainable urban development and environmentally
sustainable smart cities.

5.3.1. A framework for environmentally sustainable smart built and
urban environments as enabled by artificial intelligence-digital
twin integration across smart, green, and zero-energy buildings
The proposed framework (Fig. 6) is developed based on insights
gained from the analysis and synthesis of recent interdisciplinary
literature presented in the two parts of the results section. It is
grounded in the application and integration of Al and DTs as
foundational technologies to advance the development of envi-
ronmentally sustainable smart built environments. Both Al and
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Fig. 6. A framework for environmentally sustainable smart built and urban envi-
ronments, as enabled by artificial intelligence-digital twin integration across smart,
green, and zero-energy buildings.

«—| Zero energy buildings

DTs serve as critical enablers in terms of enhancing the intelli-
gence, adaptability, and operational efficiency of built assets
within urban ecosystems.

At the foundation of the framework lies Al, which provides the
essential computational capacity for perceiving, learning,
reasoning, and decision-making. Building on this base, the next
layer comprises Al subdomains, such as ML, DL, and NLP, that
supply the methodological tools and algorithmic models for
extracting patterns, generating predictions, performing classifi-
cations, and enabling intelligent interactions from the diverse
datasets collected through sensors, IoT devices, and BMS. In the
subsequent layer, DTs establish dynamic, real-time virtual repre-
sentations of physical buildings and infrastructure, continuously
synchronized with real-world conditions. Operating in unison, Al
and DTs drive predictive analytics, real-time monitoring, anomaly
detection, scenario simulation, adaptive optimization, and stra-
tegic planning, thereby forming the intelligence backbone of the
framework.

These technologies are deployed across three key building ty-
pologies: smart buildings, where Al and DTs enable intelligent
control over energy consumption, HVAC systems, lighting, occu-
pant comfort, and security; green buildings, where sustainability-
oriented performance metrics, such as water conservation, indoor
air quality, material circularity, and waste minimization, are
continuously monitored, analyzed, and improved; and ZEBs,
where Al and DT simulations balance renewable energy generation
and energy consumption, dynamically adjusting operations to
maintain a net-zero or positive energy balance. The principles
underlying each typology reinforce one another («): the data-
driven, adaptive control of smart buildings supports the sustain-
ability objectives of green buildings; the resource efficiency and
circularity principles of green buildings inform the energy self-
sufficiency and balancing strategies in ZEBs; and the renewable
energy integration and dynamic optimization of ZEBs feed back to
enhance operational intelligence and occupant-centered strate-
gies in smart buildings. Together, these interactions create a
continuous loop of principle-based improvement that strengthens
both performance and sustainability across building systems.

Through these applications, Al and DTs directly influence and
improve critical environmental indicators, including energy effi-
ciency and demand reduction, renewable energy integration and
storage optimization, carbon footprint reduction and net-zero
strategies, water efficiency and resource management, indoor
environmental quality and thermal comfort, as well as predictive
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maintenance and lifecycle optimization. These technologies
enable buildings to meet and adaptively exceed established envi-
ronmental benchmarks and certification standards (e.g., see
Ref. [69] for a systematic review) by facilitating continuous
monitoring, predictive interventions, and evidence-based deci-
sion-making.

The framework operates through a dynamic feedback loop,
wherein Al learns from continuously updated DT data, simulations
inform future planning and operational strategies, and real-world
building performance feeds back into refining Al models. This self-
improving cycle ensures that buildings and urban spaces are not
static achievements but living systems that evolve in response to
environmental conditions and shifts. Overall, the framework pro-
vides a transformative pathway towards achieving broader envi-
ronmental goals in urban environments, promoting climate action,
and fostering sustainable development by leveraging the synergies
among Al, DTs, and SGZEB practices.

The ultimate contribution of this integrated system is the
realization of environmentally sustainable smart built environ-
ments characterized by interconnected, adaptive, and self-
optimizing assets that operate within a larger urban ecosystem
committed to sustainability, resilience, and human well-being.
Buildings are no longer isolated entities but active nodes within
a responsive, data-driven network that collectively advances
resource efficiency, climate resilience, and the quality of life.

This framework does not operate in isolation but is integral to
the broader vision of environmentally sustainable smart cities. Al
and DT technologies enable cities to be both technologically
advanced and ecologically responsible by integrating intelligent,
self-adaptive buildings into a cohesive urban ecosystem. They
enable a systemic transition from fragmented sustainability efforts
towards fully integrated, city-wide environmental management
strategies. SGZEBs thus act as foundational components of a larger,
interconnected urban fabric, one that actively enables carbon
neutrality, promotes circular resource flows, supports climate
resilience, enhances biodiversity, and contributes meaningfully to
global environmental and climate goals. Through continuous
innovation, data-driven adaptability, and human-centered design,
the framework envisions smart cities as living systems that can
thrive in harmony with both people and the planet. Inter-
connected, adaptive building systems actively contribute to ho-
listic urban sustainability objectives. By ensuring that built
environments dynamically interact with and support broader ur-
ban flows, such as energy grids, mobility systems, material usage,
and water networks, Al and DT technologies enable the emergence
of regenerative urban ecosystems. Thus, the proposed framework
offers not only a micro-level roadmap for sustainable building
performance but also a macro-level strategy for reshaping cities as
integrated, intelligent, and environmentally restorative entities.

5.3.2. Connecting the framework to environmental sustainability,
sustainable development, and sustainable smart cities

The proposed framework, centered on the integration of Al and
DTs across SGZEBs, directly advances the broader goals of envi-
ronmental sustainability, sustainable development, and the crea-
tion of smart cities. Recent scholarly contributions reinforce and
contextualize the framework's relevance in these domains.

Bibri [9] explores how Al and AloT technologies drive the
development of smarter eco-cities by embedding circular econ-
omy principles, metabolic circularity, and tripartite sustainability
into urban systems. These technologies are shown to enable
resource optimization, waste minimization, and reduced envi-
ronmental impacts, fostering resource-efficient urban environ-
ments. These principles are central to the framework's building-
level and city-scale environmental integration. Building on this,
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Bibri [8] investigate the role of both Al and AloT in advancing the
environmental performance of emerging smarter eco-cities. The
study highlights how Al and AloT solutions can optimize resource
use, enhance infrastructure efficiency, monitor environmental
parameters, reduce carbon footprints, and foster climate resil-
ience. This study aligns with the framework's dynamic environ-
mental monitoring and operational optimization of SGZEBs by
enabling real-time emission reductions and enhancing urban
resilience. Bibri et al. [1] extend this perspective by emphasizing
the synergistic interplay of Al, AloT, and UDTs in data-driven
environmental planning in sustainable smart cities. They demon-
strate how the integration of these technologies reshapes sus-
tainable urban development by enabling adaptive planning,
enhanced environmental monitoring, and dynamic decision-
making. This underscores the transformative role of Al- and
AloT-driven DT in aligning smart city functions and domains with
environmental goals, directly supporting the core foundation of
the proposed framework.

In a more focused study, Alnaser et al. [5] provide further evi-
dence for the role of Al-powered DT in sustainable buildings and
smart cities. They highlight how the integration of Al, IoT, and DTs
enables energy optimization, enhances building resilience, and
supports sustainability in urban environments. These insights
contribute directly to the framework's emphasis on energy effi-
ciency and resource management across different spatial scales.
Kumar et al. [185] add to this perspective by illustrating how Al-
driven DT can simulate and optimize resource use and energy
consumption in real time, among others. This strengthens the
framework's operational foundation for urban efficiency and
climate-responsive infrastructure.

In addition, Matei and Cocosatu [12] complement these find-
ings by examining the role of sensor-based DT systems and their
integration with AloT, intelligent decision-making algorithms, and
cloud networks in environmentally sustainable urban manage-
ment. Their study highlights how data-driven urban computing
frameworks facilitate real-time environmental monitoring, pre-
dictive analytics, and decentralized control, which are essential to
the framework's AI-DT integration layer. While also acknowl-
edging participatory dimensions, it primarily highlights how
interconnected sensor networks and digital ecosystems support
environmentally informed governance, aligning with the frame-
work's emphasis on adaptive and ecologically responsive smart
city operations. Supporting these insights, Thamik et al. [18]
further discuss AloT's role in advancing environmental protection,
renewable energy systems, and smart community development,
thus aligning with the framework's focus on interconnected,
adaptive urban environments. Expanding on this, Mishra et al. [17]
demonstrate how AloT technologies enhance energy efficiency,
promote renewable energy transitions, and support circular
economy models. This complements the established role of IoT and
big data analytics in advancing environmental solutions for sus-
tainable smart cities, including buildings, particularly in
enhancing energy efficiency and reducing carbon emissions [186].
IoT and big data analytics are complementary and integrated, with
IoT generating data and analytics extracting actionable insights in
a continuous loop that supports real-time, predictive, and adaptive
decision-making. They provide a holistic, system-level under-
standing of sustainable urban development paradigms, making
complex city systems measurable, knowable, and tractable in
terms of their operations and management, thereby enhancing
resilience, efficiency, and livability [187,188]. Applying this same
data-driven, integrative approach to building-scale, Al-driven DT
frameworks enables coordinated optimization of building perfor-
mance, energy management, and environmental outcomes across
different scales in smart cities (see, e.g., Ref. [5]).
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From a broader perspective, Shaamala et al. [189] emphasize
Al's capacity to enhance green infrastructure, with applications in
air quality monitoring, biodiversity preservation, urban heat island
mitigation, and energy-efficient design. Their proposed environ-
mental planning framework complements the optimization stra-
tegies embedded within the AI-DT dynamic feedback loops of the
framework. Extending these applications, Nti et al. [190] examine
Al's role in sustainable resource management, specifically water
conservation, energy optimization, and transportation efficiency.
Their focus on Al-based decision support systems strengthens the
framework’'s predictive, adaptive management capabilities.
Further, Yadav and Singh [191] stress the need for advanced Al
decision-making tools for climate change mitigation and disaster
resilience—challenges that the framework's continuous learning
and predictive analytics aim to address.

Chaudhary [192] highlights Al's broad applications across clean
energy and pollution control, emphasizing its critical role in
achieving the SDGs. This perspective aligns with the framework's
integrated and continuously adaptive approach, which addresses
environmental objectives of sustainable development across
multiple spatial scales. Kumari and Pandey [193] also focus on Al's
potential in pollution control and clean energy, as well as natural
resource management, within the SDGs framework. Thamik et al.
[18] and Mishra et al. [17], as discussed earlier, contribute further
to the role of AloT in fulfilling SDGs through urban sustainability
innovations, including buildings and smart grids. Together, these
studies provide empirical and conceptual support for the frame-
work, demonstrating how Al and AloT can operationalize sus-
tainable development objectives across urban systems and
building scales.

Several other recent studies highlight the innovative role of Al
in advancing sustainable energy systems and reinforcing key ob-
jectives of the framework. Wan et al. [194] demonstrate Al's
application in improving the environmental sustainability of
large-scale solar energy systems. Their findings align with the
framework's emphasis on renewable energy integration within
zero-energy and green building typologies. Anbarasu et al. [195]
similarly examine Al's significant impact on bioenergy systems,
feedstock management, and energy optimization, supporting the
framework’s vision for clean, efficient, and low-impact energy
systems across the built environment. Rasheed et al. [196]
examine how Al can balance industrial development with envi-
ronmental responsibility, particularly by enhancing energy effi-
ciency and promoting renewable energy. These two studies
reinforce the framework's integrated approach, demonstrating
how Al applications can advance sustainable energy management
and environmental performance across multiple sectors of the
built environment.

On the whole, these diverse yet interconnected studies affirm
the relevance and potential of the proposed framework. The
framework provides a strategic pathway for realizing environ-
mentally sustainable smart cities by operationalizing Al- and Al-
driven DT optimization across both building and urban scales. It
enhances micro-level building performance and facilitates broader
systemic transformations towards resource efficiency, climate
resilience, circularity, and urban ecological restoration, ultimately
advancing the global agenda for environmentally sustainable ur-
ban development.

6. Discussion

The increasing urgency to mitigate climate change impacts,
promote environmental sustainability, and enhance urban resil-
ience has positioned the building sector at the forefront of global
sustainability efforts. In this context, this study systematically
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examined how Al and Al-driven DT technologies are advancing
environmental goals across SGZEBs. By analyzing and synthesizing
diverse research streames, it offers an integrated understanding of
the transformative role of these technologies in optimizing
building performance, enhancing resource efficiency, and sup-
porting broader SDGs. This discussion elaborates on the key
findings, interprets their significance, compares them with previ-
ous research, as well as outlines their implications for research,
practice, and policymaking. It also reflects on the challenges and
limitations identified and proposes directions for future research
in this rapidly evolving field.

6.1. Summary of the key findings and their interpretation

This study revealed key patterns, trends, and areas of techno-
logical convergence, providing insights into how Al-driven stra-
tegies are shaping more adaptive, efficient, and low-impact
building systems. The findings also highlight the interconnected
role of Al and DTs in operationalizing broader environmental goals
at the building and urban scales. A detailed discussion of the
findings and their interpretation follows.

As for RQ1, the study found that Al and ML play a critical role in
enhancing the environmental performance of smart buildings. Al
technologies support optimized energy management through
adaptive control strategies that respond dynamically to environ-
mental conditions and occupant behaviors, leading to more effi-
cient and self-regulating building operations. Al also facilitates the
integration of renewable energy by improving supply-demand
forecasting and optimizing storage systems, thus promoting
cleaner energy use. Furthermore, Al enables occupant-centered
design by personalizing environmental controls to balance com-
fort with sustainability goals. Lastly, predictive system control
powered by Al allows smart buildings to anticipate operational
needs and proactively maintain efficiency, highlighting Al's ca-
pacity to future-proof building performance in dynamic settings.
This collected evidence suggests that Al fundamentally transforms
smart buildings from reactive infrastructures into proactive, self-
optimizing systems capable of contributing to achieving environ-
mental goals. Al empowers smart buildings to continuously align
with sustainability objectives in dynamic and complex environ-
ments. This positions Al as both a support tool and a core driver of
systemic change towards low-carbon, energy-efficient, and resil-
ient built environments.

Regarding RQ2, the study highlighted that Al is increasingly
integrated into green building practices, spanning diverse do-
mains. Concerning Subsection 5.2.2.1, recent studies show that Al
applications in green building design span predictive modeling,
compliance support, optimization frameworks, and critical re-
flections on creativity. Al can streamline sustainability compliance,
improve certification outcomes, reduce emissions, and lower
operational costs through predictive analytics and optimization.
ML models accelerate the design process and enhance perfor-
mance prediction, while BIM-integrated frameworks achieve
multi-objective optimization across energy use, cost, carbon
emissions, and thermal comfort. Advanced DL models outperform
conventional approaches in improving environmental perfor-
mance and occupant comfort. At the same time, Al adoption may
reduce creativity and professional agency, highlighting the need
for careful, human-centered implementation. These findings
indicate that Al in green buildings is evolving from isolated pre-
dictive tools into integrated decision-support and optimization
systems capable of balancing multiple sustainability goals. How-
ever, technological efficiency must be paired with human crea-
tivity, judgment, and professional integrity. The future of Al in
sustainable architecture likely lies in hybrid approaches that
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combine advanced optimization with human-centered design,
ensuring both environmental performance and cultural richness in
the built environment.

In connection with Subsection 5.2.2.2, recent research dem-
onstrates that Al significantly enhances energy efficiency, waste
management, thermal comfort, and sustainability in green build-
ings. Al-based energy management models improve the efficiency
of heating, cooling, and HVAC systems while reducing overall en-
ergy consumption and maintaining high predictive accuracy. Pre-
dictive frameworks for biogas production using Al and dynamic
control systems optimize energy recovery from organic waste,
supporting both sustainability and resource efficiency. Al-driven
waste management strategies show that composting is the most
environmentally friendly option, while incineration and landfilling
can better meet social and economic goals, ultimately reducing
landfill use and overall energy demand. ML optimization of
advanced insulation materials greatly improves thermal perfor-
mance, leading to substantial energy savings and reductions in
carbon emissions. Active learning models for predicting heating
and cooling demand enable more efficient building operation,
lower energy consumption, and decreased carbon footprints.
Multi-objective optimization frameworks help balance energy
efficiency, cost-effectiveness, emissions reduction, and occupant
comfort, while Al integration with renewable energy and sup-
portive policies can further enhance long-term sustainability
outcomes.

These findings indicate that Al has a transformative role in
making green buildings more sustainable and efficient. Al enables
these buildings to operate at their optimal performance, thereby
reducing waste and unnecessary energy use. The integration of Al
in waste management and energy recovery demonstrates that
technology can simultaneously address environmental, social, and
economic objectives (see Ref. [9]). Optimization of materials and
design parameters through ML improves energy efficiency and
supports reductions in carbon emissions, contributing to climate
goals. Active learning and multi-objective frameworks demon-
strate that Al can effectively balance competing priorities, thereby
providing a holistic approach to building design and operation. In
essence, Al is a strategic enabler for sustainable, resource-efficient,
and human-centered green buildings.

In relation to Subsection 5.2.2.3, recent research shows that Al
can greatly improve green building project outcomes by improving
cost estimation accuracy, providing probabilistic forecasts, and
optimizing cost control. Al-based frameworks effectively manage
complex, non-linear relationships between numerous cost-
influencing factors, achieving high prediction accuracy across
different algorithms, including neural networks, gradient boost-
ing, and RF. In addition, Al facilitates comprehensive risk assess-
ment by identifying and quantifying critical project risks such as
economic, market, functional, and fire-related hazards. Hybrid
approaches that combine expert judgment with ML further in-
crease predictive reliability by enabling the prioritization of key
risks and the optimization of mitigation strategies. As a whole, Al
applications demonstrate strong potential for reducing un-
certainties, improving decision-making, and supporting sustain-
able construction practices.

These findings suggest that Al is no longer merely a supportive
tool but a strategic enabler in sustainable green building man-
agement. Project managers can proactively address both cost and
safety challenges by integrating predictive analytics with risk
assessment, thereby reducing resource waste and enhancing
project efficiency. The convergence of multiple Al techniques un-
derscores the importance of tailored, context-specific applications,
where models are selected based on project needs and available
data. Furthermore, the evidence points towards a shift in
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professional practice: reliance on Al can enhance human decision-
making without replacing critical judgment, ultimately fostering a
more robust, data-driven approach to green building design and
construction.

As regards RQ3, the study demonstrated that Al has become
central to the optimization and management of ZEBs, nZEBs, PEBs,
and NZEBs. As to Subsection 5.1.3.1, recent research underscores
the central role of Al-driven technologies in advancing energy ef-
ficiency, renewable energy integration, and intelligent energy
management. EEMs are shown to reduce building demand through
advanced design strategies, material innovations, and HVAC opti-
mization, while RETs such as solar, wind, biomass, and geothermal
are increasingly integrated through distributed generation sys-
tems. BEMS enhanced by Al play a critical role in monitoring, fault
detection, and performance optimization. Advanced predictive
models, including neural networks, model predictive control, and
ML algorithms, enable real-time optimization of energy con-
sumption, accurate forecasting of renewable production, and
occupant-aware adaptation. Case studies demonstrate cost-
effectiveness, with systems producing more energy than
consumed, reducing or eliminating energy costs, and achieving
favorable payback periods. In addition, data-driven frameworks
emphasize balancing energy demand reduction, renewable supply
optimization, occupant comfort, and economic performance to
achieve net-zero or positive energy outcomes at both building and
district scales.

These findings underscore the transition from static, efficiency-
focused strategies towards dynamic, Al-enhanced building eco-
systems capable of self-learning, adapting, and optimizing energy
use in real time. The integration of Al with BEMS and distributed
renewable systems demonstrates that ZEBs are no longer only
about minimizing consumption, but also about intelligently
managing generation, storage, and distribution to create resilient,
cost-effective, and environmentally aligned buildings. The
emphasis on predictive modeling and adaptive control points to a
model where buildings function as active participants in energy
networks, capable of balancing supply and demand, anticipating
environmental conditions, and enhancing user comfort. This
convergence pushes ZEBs and PEBs beyond compliance-oriented
sustainability, positioning them as key enablers of future smart
cities and carbon-neutral energy systems.

In regard to Subsection 5.1.3.2, research shows that Al and ML
are key to optimizing NZEB performance across multiple di-
mensions, including predictive energy analytics, intelligent HVAC
systems, and real-time energy management. Hybrid optimization
methods, surrogate models, and predictive frameworks enhance
energy efficiency, renewable energy integration, and building au-
tonomy. XAl frameworks and advanced forecasting models
improve transparency, trust, and deployment accuracy in real-
world contexts. Multi-objective optimization approaches balance
energy consumption, thermal comfort, and self-sufficiency, while
smart home management systems enable buildings to act as
flexible energy resources. Region-specific strategies, load fore-
casting improvements, and integration with smart grids and
microgrids further demonstrate the practical applicability of Al in
achieving net-zero and positive-energy objectives.

These findings indicate that NZEBs are evolving into adaptive,
data-driven systems that leverage Al and ML for operational effi-
ciency, occupant comfort, and environmental performance. The
convergence of various techniques allows buildings to actively
manage energy flows, integrate renewable sources, and minimize
grid dependence. The inclusion of XAI frameworks and climate-
adapted solutions emphasizes that technical performance must
be paired with transparency, stakeholder trust, and contextual
adaptability. Overall, these studies illustrate a shift from isolated
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energy-efficiency measures towards comprehensive, intelligent,
and resilient building systems, setting a strong foundation for
large-scale deployment of sustainable buildings.

With respect to RQ4, the study revealed that Al-driven DTs in
smart buildings drive performance optimization through auto-
mation, predictive maintenance, and occupant-centered control.
Applications include thermal comfort optimization, environ-
mental monitoring, and system integration via IoT and BIM, which
enable adaptive decision-making and resilience in building oper-
ations. Although promising, most studies remain simulation-
based, pointing to a need for large-scale empirical validation. In
green buildings, AI-DT integration enhances energy efficiency,
reduces carbon emissions, and improves occupant comfort by
enabling predictive modeling, real-time monitoring, and intelli-
gent material selection. Studies highlight applications in energy
consumption prediction under climate change, CO, emissions
tracking, and resource optimization, while also emphasizing the
importance of occupant well-being and human-centered design.
For ZEBs and PEDs, AI-DT integration provides advanced energy
management and strategic planning by balancing renewable en-
ergy production with demand across both buildings and neigh-
borhoods. Case studies show how AI-DT models optimize district-
scale systems, integrating energy, transportation, and resource
flows to achieve net-zero or positive energy goals.

These findings suggest that the integration of Al and DTs offers
innovative potential for advancing sustainability in the built
environment. They allow buildings to minimize consumption and
actively contribute to net-zero and positive energy goals. At larger
scales, they provide the infrastructure for smart cities and sus-
tainable districts, where multiple systems can be integrated for
improved resilience and efficiency. The emphasis on occupant
comfort and carbon reduction shows that DTs are not limited to
technical performance but extend to human-centered and envi-
ronmental priorities. However, the predominance of simulation-
based evidence indicates that more large-scale, real-world appli-
cations are necessary to validate their potential. Taken together,
Al-powered DTs represent a key step towards adaptive, efficient,
and sustainable building ecosystems.

Concerning RQ5, the proposed framework demonstrates that
Al- and DT-enabled SGZEBs can advance the goals of environ-
mental sustainability, sustainable development, and sustainable
smart cities. Al and AloT technologies are shown to optimize
resource use, minimize waste, integrate renewable energy, and
enhance energy efficiency at both building and urban scales. Al
supports circular economy integration, real-time emissions
reduction, climate resilience, and green infrastructure. At the ur-
ban scale, interconnected Al- and DT-enabled SGZEBs facilitate the
creation of energy-positive districts, support climate-resilient
infrastructure, and enable sustainable resource management.
They also align operational building performance with broader
sustainability and SDG objectives. By combining Al and DT capa-
bilities, SGZEBs serve as both local and networked sustainability
enablers. At the building level, they reduce environmental impacts
and operational costs. When integrated across neighborhoods or
cities, they provide aggregated benefits, including grid stabiliza-
tion, reduced emissions, and enhanced urban resilience. This dual
impact demonstrates that Al-DT-enabled SGZEBs are a practical
pathway for advancing sustainable smart cities: they translate
real-time data and predictive intelligence into actionable strate-
gies that connect micro-level efficiency with macro-level sus-
tainability goals.

The framework was designed to address critical sustainability
challenges such as resource efficiency, climate change mitigation,
energy resilience, and ecological health. It supports the transition
to sustainable smart cities by operationalizing sustainable energy
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integration, fostering circular economy practices, and enabling
real-time environmental responsiveness. This cross-scale, dy-
namic approach ensures that buildings and urban spaces evolve
from static entities into intelligent, self-optimizing systems that
contribute proactively to sustainable development objectives. The
framework provides a transformative pathway towards building
energy-efficient, resilient, and ecologically restorative cities by
embedding Al and DTs at the core of urban systems.

6.2. Comparative analysis: advancing beyond fragmented Al
applications towards a holistic framework for sustainable smart
built and urban environments

While numerous studies have explored the role of Al and DTs in
smart and sustainable buildings, the majority adopt a fragmented
or domain-specific approach by focusing narrowly on applications,
such as energy management, HVAC optimization, building auto-
mation, Al-IoT integration, and/or DT simulations, in isolation.

While Sleem and Elhenawy [42] primarily emphasize AloT-
driven operational efficiency, predictive analytics, and security
optimization, they do not examine Al's systemic potential to ach-
ieve broader environmental or net-zero energy goals. This study
extends these findings by demonstrating how Al-driven automa-
tion can simultaneously optimize building performance, renew-
able energy integration, and support carbon-neutral objectives.
Similarly, Qolomany et al. [87] highlight ML and big data appli-
cations in building automation, showing predictive analytics for
real-time decision-making, but they do not integrate these capa-
bilities with sustainability and cross-building typology optimiza-
tion. In contrast, this study explicitly connects Al-driven
automation with energy efficiency, occupant comfort, and broader
environmental goals.

In energy management, Alanne and Sierla [53] explore ML
applications enabling adaptive energy management and using DTs
as Al-powered optimization environments. Wang et al. [43] focus
on DTs for carbon peak management in terms of monitoring
emissions and modeling net-zero strategies. Although these
studies recognize Al's role in energy efficiency and carbon reduc-
tion, they primarily approach these aspects from an energy man-
agement perspective and do not fully explore Al's broader impact
on sustainable building performance. This study builds upon these
studies by combining Al and DT-based optimization with a holistic
sustainability perspective, coordinating energy management,
renewable integration, and occupant comfort across multiple
building typologies.

Regarding green and sustainable buildings, Rodriguez-Gracia
et al. [89] provide a bibliometric mapping of Al applications, and
Debrah et al. [55] combine bibliometric and systematic analyses to
identify trends, gaps, and future directions, including DTs, AloT,
blockchain, robotics, and ethical considerations. Wu et al. [90]
further position Al as a driver of GBTI, while Hua et al. [91]
demonstrate Al's role in reducing carbon emissions and improving
operational efficiency. Although these studies highlight Al's po-
tential in green buildings, they primarily focus on predictive
modeling and thematic analyses, without fully synthesizing Al
applications across environmental indicators or in relation to
other building typologies. This study advances these findings by
providing a comprehensive framework that integrates Al-driven
strategies for emission reduction, energy optimization, waste
minimization, sustainable materials, adaptive design, cost esti-
mation, and risk assessment simultaneously, thereby operation-
alizing systemic sustainability objectives.

For net-zero and positive energy buildings, Mousavi et al. [80]
show that data-driven prediction and optimization can greatly
enhance energy efficiency and renewable energy integration.
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However, while their findings demonstrate energy savings at the
building scale, they do not address how such gains translate into
systemic sustainability outcomes across diverse building typol-
ogies. In contrast, this study extends these results by demon-
strating how Al-enabled prediction and optimization can be
embedded within a holistic SGZEB framework that aligns energy
efficiency with carbon reduction, lifecycle sustainability, and
cross-scale integration. Similarly, Bibri et al. [2] find that DT-based
frameworks strengthen ZEB assessment in smart cities by
improving energy management, enabling real-time monitoring,
and facilitating renewable energy integration through Al, IoT, and
CPS convergence. Yet, their results remain confined to perfor-
mance assessments of ZEBs. This study builds on these insights by
integrating Al-DT-enabled monitoring and predictive mechanisms
into a broader sustainability framework that links ZEB optimiza-
tion to built and urban goals, thereby achieving cumulative envi-
ronmental benefits beyond isolated building-level improvements.

In sum, the existing literature predominantly analyzes indi-
vidual Al technologies and isolated building functions, missing the
opportunity to explore their holistic role in fostering environ-
mentally sustainable smart built environments. Our study ad-
vances beyond these fragmented approaches by synthesizing Al
applications across multiple building typologies and environ-
mental sustainability indicators, integrating predictive, adaptive,
and DT-driven mechanisms into a comprehensive framework that
links micro-level building performance with macro-level urban
sustainability goals. This framework addresses the fragmented
nature of previous research by emphasizing the synergistic role of
Al and DTs in optimizing resource use, reducing carbon footprints,
enhancing adaptive operations, and enabling real-time environ-
mental monitoring and circularity. Furthermore, it extends the
discourse beyond individual building performance to the creation
of interconnected urban ecosystems, contributing a fresh
perspective that aligns with broader SDGs and provides a strategic
roadmap for the realization of environmentally sustainable smart
urban environments.

6.3. Implications of the proposed framework for research, practice,
and policy-making

The proposed framework carries significant implications for
advancing research, guiding practical implementation, and
informing policy-making towards the realization of an environ-
mentally sustainable smart built environment. In terms of
research, the framework establishes a structured foundation for
future interdisciplinary studies that further explore the integration
of Al, DT, environmental science, and sustainable development
across building and urban scales. It emphasizes the importance of
developing dynamic, cross-scale models capable of capturing the
complex interactions between intelligent building systems, urban
ecosystems, and environmental outcomes. Researchers should
also focus on designing new metrics, simulation environments,
and performance evaluation tools that can assess the long-term
ecological impacts of Al- and DT-enabled building systems in
broader urban contexts.

From a practical perspective, the framework provides archi-
tects, urban planners, engineers, sustainability consultants, and
facility managers with actionable guidance for designing, oper-
ating, and optimizing SGZEBs. It provides a roadmap for inte-
grating Al and DT technologies into building management
systems, enabling real-time, predictive, and adaptive optimization
of energy consumption, environmental quality, resource flows,
occupant comfort, and carbon emissions. Practitioners can
leverage the framework to support operational resilience, enhance
building lifecycle performance, and contribute more effectively to
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broader urban sustainability agendas. In addition, the framework
supports the development of industry standards, certification
schemes, and best practices that integrate intelligent and sus-
tainable technologies into the planning, design, construction, and
retrofitting of urban infrastructure.

For policy-making, the framework highlights the necessity of
creating supportive regulatory environments, incentives, and in-
vestment strategies that promote the large-scale deployment of
Al- and DT-enabled SGZEBs. It advocates for policies that ensure
interoperability, ethical Al use, data transparency, and the align-
ment of digital innovation with global climate goals. Moreover, the
framework underscores the importance of integrating intelligent
building systems into municipal and national sustainable devel-
opment strategies, climate action plans, and urban resilience
frameworks. Policy-makers can enable the systemic transition
towards dynamic, adaptive, and regenerative urban ecosystems
that meet current sustainability targets by operationalizing the
transformative and synergistic capabilities of Al and DTs.

6.4. Challenges, barriers, and limitations

While the proposed framework offers significant potential,
several challenges, barriers, and methodological limitations need
to be addressed to fully realize its impact. This subsection dis-
cusses these key issues from both a theoretical and practical
standpoint, providing a comprehensive understanding of the ob-
stacles researchers, practitioners, and policy-makers may
encounter in the adoption and implementation of AI-DT technol-
ogies in the built environment.

6.4.1. Technological and operational challenges

One of the primary challenges associated with the integration
of Al and DTs in SGZEBs is the technological complexity involved in
deploying these systems at scale. Al and DTs require substantial
computational power, sophisticated algorithms, and vast amounts
of high-quality, real-time data to function effectively. Collecting,
processing, and integrating data from diverse sources, such as
sensors, IoT devices, and BMS, presents significant operational
difficulties. The integration of Al models with DTs must account for
the diversity of building typologies, varying levels of data avail-
ability, and potential interoperability issues across different tech-
nologies and platforms. In addition, Al models used in these
systems must be continually trained and updated to adapt to dy-
namic environmental conditions, building behaviors, and evolving
energy demands. Ensuring that Al-driven systems remain effective
and responsive to these changes in real-time is a major challenge,
particularly when dealing with the large-scale, multi-functional
nature of sustainable smart cities.

Furthermore, the adoption of Al and DT technologies requires a
robust technical infrastructure that may not be available in exist-
ing buildings or urban settings. The need for significant in-
vestments in retrofitting existing infrastructure to integrate
intelligent systems poses both financial and logistical challenges.
Moreover, the complexity of operating these technologies across
multiple scales, ranging from individual buildings and neighbor-
hoods to entire city systems, demands an advanced level of coor-
dination and synchronization. Ensuring seamless interaction
between Al and DT systems across various building types and ur-
ban scales is a complex, ongoing challenge.

6.4.2. Environmental risks and costs

While Al and DT technologies offer transformative potential for
enhancing the environmental performance of buildings, they also
introduce significant environmental risks and costs that must be
carefully considered. The development, training, and operation of
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Al models, especially large-scale DL Systems, require substantial
computational power, leading to high energy consumption and
increased carbon emissions [197-200]. Similarly, maintaining DT
systems necessitates continuous data collection, transmission,
storage, and processing, all of which contribute to considerable
resource and energy demands over their lifecycle [1,201-203]. The
production and disposal of sensors, IoT devices, servers, and other
hardware components associated with DT ecosystems also raise
concerns related to electronic waste (e-waste) and the depletion of
critical raw materials. If left unmanaged, these hidden environ-
mental costs could offset the environmental gains achieved
through smarter and more sustainable building operations.
Therefore, a paradox emerges: technologies intended to promote
environmental sustainability may, without responsible lifecycle
management and renewable energy sourcing, create additional
burdens. To mitigate these risks, it is crucial to implement stra-
tegies such as green Al or computing practices (e.g., model effi-
ciency optimization), sustainable DT design, renewable-powered
data centers, e-waste recycling initiatives, and full lifecycle as-
sessments for Al and DT deployments in the built environment.

6.4.3. Data privacy and security and other ethical concerns

Data privacy and security are among the most pressing con-
cerns in the integration of Al and DTs in the built environment. The
collection and analysis of vast amounts of real-time data from
sensors, 10T devices, and other monitoring systems pose signifi-
cant risks to data protection, particularly due to the sensitive na-
ture of information on occupants’ behaviors, energy consumption,
and environmental conditions. There is an inherent challenge in
safeguarding this data against potential breaches, unauthorized
access, or misuse. In addition, the integration of Al and DTs often
involves sharing data across different stakeholders, including
building owners and operators, service providers, and government
agencies, which may raise concerns about data ownership,
accountability, and compliance with privacy regulations.

In addition to data privacy, there are concerns regarding the
ethical use of Al. As Al systems are designed to make decisions
based on large datasets, questions arise about the transparency
and fairness of these algorithms. It is crucial to ensure that Al
systems do not inadvertently perpetuate biases, leading to unfair
or discriminatory outcomes, particularly in relation to energy
distribution, resource allocation, and occupant comfort. To address
these challenges, the study critically analyzes current mitigation
strategies, including algorithmic transparency, bias detection
protocols, ethical Al frameworks, and stakeholder accountability
mechanisms. By systematically reviewing these approaches, the
framework provides actionable guidance for researchers, practi-
tioners, and policymakers to implement Al and DT systems
responsibly, balancing technological advancement with privacy,
fairness, and equity considerations. Addressing these ethical con-
cerns requires the development of transparent and accountable Al
systems, along with robust data governance frameworks that
prioritize privacy, security, and fairness.

6.4.4. Standardization and interoperability barriers

Another significant barrier is the lack of standardization and
interoperability across the various technologies involved in Al and
DT systems. The success of integrated sustainable smart building
solutions relies on the seamless communication and data ex-
change between different hardware and software components,
including sensors, IoT devices, BMS, Al models, and DT platforms.
However, the lack of a universal set of standards for integrating
these technologies can lead to compatibility issues between sys-
tems, hindering the scalability of Al and DT applications across
various building typologies and urban environments. This lack of
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standardization also makes it difficult for stakeholders, such as
building owners, developers, service providers, and regulatory
bodies, to adopt and implement these technologies in a consistent
and coordinated manner.

Efforts to establish industry-wide standards for Al and DTs in
sustainable smart cities are still in the early stages, and their
development is often fragmented. Without standardized protocols
and frameworks for data exchange, system integration, and per-
formance evaluation, the potential for Al and DT technologies to
drive meaningful change in environmental sustainability remains
constrained. To overcome these barriers, efforts must be made to
develop standardized guidelines and best practices for the design,
implementation, and evaluation of Al systems and Al-driven DT
frameworks in sustainable smart built environments.

6.4.5. Financial and institutional barriers

Financial and institutional barriers pose real challenges to the
widespread adoption of Al and DT technologies for enhancing
environmental practices in the built environment. The initial in-
vestment required to implement these technologies can be pro-
hibitive, particularly for small- and medium-sized enterprises or
property owners with limited financial resources. The interplay of
financial and institutional factors with economic and industrial
structures highlights the complexity of adoption rates and envi-
ronmental outcomes [204]. In addition, many organizations lack the
expertise or infrastructure necessary to integrate Al and DT systems
into existing building operations. There is also a lack of financial
incentives, subsidies, or support programs from governments and
industry bodies to encourage the adoption of these technologies.

Institutional barriers, including resistance to change and the
slow pace of regulatory approval processes, can further delay the
implementation of Al and DT-driven solutions. As these technol-
ogies evolve rapidly, it is crucial for policy-makers and regulatory
bodies to create a supportive environment that facilitates inno-
vation while ensuring safety, fairness, and accountability. This
includes creating policies that promote collaboration between
public and private sectors, provide financial incentives, and sup-
port workforce development initiatives to build the necessary
skills and expertise.

6.4.6. Methodological and framework limitations

From a research perspective, there are several methodological
limitations associated with the systematic review process
employed in this study. Despite its comprehensive scope, this
study faced several constraints. The review was limited to peer-
reviewed articles published in English and retrieved from two
major academic databases, which may have excluded relevant
insights from non-English sources, region-specific studies, or non-
indexed academic work. In addition, by concentrating on literature
published between 2020 and 2025, earlier foundational studies
that continue to shape the evolution of Al applications in SGZEBs
may have been overlooked. The thematic synthesis and categori-
zation of studies required interpretive judgment, which, despite
methodological rigor, may have introduced subjectivity, particu-
larly in classifying research spanning multiple building typologies
or environmental sustainability dimensions.

Moreover, the exclusion of grey literature, including industry
reports, technical standards, and professional white papers, may
have omitted practical innovations and real-world applications
that could further contextualize the academic findings. While the
comparative analysis illuminated differences, synergies, and
complementarities across building typologies and Al applications,
the uneven availability and quality of metadata in some studies
limited the granularity of the analysis, potentially leaving nuanced
dynamics underexplored.
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In terms of the framework, while the review has been
comprehensive in its scope, the availability and quality of studies
on the integration of Al and DTs in SGZEBs remain uneven. Many
studies focus on isolated technologies or specific building typol-
ogies, and there is a lack of comprehensive, cross-cutting research
that addresses the holistic integration of Al and DTs across
different environmental metrics. As a result, the framework pre-
sented in this study is based on a synthesis of available literature
that may be fragmented in terms of scope.

Furthermore, there is a lack of consensus on the most appro-
priate methodologies for evaluating the performance of Al and DT
systems in the context of sustainability. Different studies employ
various metrics and performance indicators, making it difficult to
compare results across studies and draw definitive conclusions
about the effectiveness of these technologies in achieving envi-
ronmental targets. Developing standardized evaluation frame-
works that can be consistently applied across different research
contexts is essential for advancing the field and enabling more
robust comparative analyses.

In conclusion, significant challenges, barriers, and limitations
must be addressed to ensure the effective integration and wide-
spread adoption of AI-DT integration in SGZEBs. These challenges
require coordinated efforts from researchers, practitioners, poli-
cymakers, and industry stakeholders to overcome. Addressing
these challenges can unlock the full potential of Al and DTs in
building future sustainable smart urban environments.

6.5. Suggestions for future directions

The integration of Al and DT technologies in the development
of environmentally sustainable smart built environments offers
fascinating opportunities, but also poses several unresolved issues.
While this study presents a comprehensive framework for
leveraging these technologies, it is clear that further research and
practical innovations are needed to overcome current barriers and
unlock their full potential. This subsection outlines several key
areas for future research, technological development, and policy
advancement that will shape the evolution of SGZEBs in the years
to come.

6.5.1. Expanding real-world case studies, pilot projects, and
inclusion criteria

One of the key recommendations for future research is the
expansion of real-world case studies and large-scale pilot projects
that test the effectiveness and scalability of Al and DT technologies
in diverse building systems and urban contexts. Existing studies
largely focus on theoretical models or small-scale applications that
may not fully capture the complexities and challenges of imple-
menting Al and DT systems in real-world settings, so there is a
need for research that investigates how these technologies
perform in real-world environments, across different climate
zones, building typologies, and urban infrastructures. Longitudinal
studies tracking the performance of Al- and DT-driven buildings
over extended periods will provide invaluable insights into their
long-term sustainability impacts, including energy savings, emis-
sions reduction, resource optimization, and operational efficiency.
These case studies will also help identify practical challenges
related to system integration, data management, and performance
evaluation, which can inform the development of more robust
implementation strategies. Future endeavors should also prioritize
large-scale implementations to better understand the practical
implications of integrating these technologies at a city-wide level.

Prospective studies could benefit from broadening the inclu-
sion criteria to encompass non-peer-reviewed and grey literature,
earlier influential studies, and a range of indexed databases, while
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also adopting mixed-methods approaches to mitigate classifica-
tion ambiguities. Such steps would offer a richer, more nuanced
understanding of the evolving role of Al and DTs in advancing
environmental goals across the built environment and support
more actionable strategies for researchers, practitioners, and pol-
icymakers working towards sustainable smart built environments.

6.5.2. Standardization of Al and DT integration

As highlighted in the challenges section, a lack of standardi-
zation and interoperability remains a significant barrier to the
widespread adoption of Al and DT technologies. Continued
research should prioritize the development of universal standards
and protocols for the integration of Al, DTs, and other smart
technologies in the built environment. This includes developing
guidelines for data exchange, system interoperability, and perfor-
mance measurement, which will facilitate collaboration between
stakeholders across different sectors. Establishing these standards
will both simplify the implementation process as well as promote
the scalability of Al and DT systems across diverse building ty-
pologies and urban environments.

6.5.3. Development of advanced Al models for environmental
sustainability

Al plays a critical role in driving environmental sustainability
through resource optimization, emissions control, and energy
management. However, current Al models are often limited by
their ability to account for the complexity and dynamic nature of
urban environments. Future research is recommended to focus on
the development of more advanced Al models that are capable of
incorporating a broader range of environmental factors and socio-
economic conditions. These models should be designed to opti-
mize energy use while also supporting the broader goals of urban
ecological restoration, circular economy integration, and social
equity. Future models can play a more active role in advancing
sustainable smart city agendas by enhancing the ability of Al or Al-
driven DT to predict, adapt, and optimize across multiple sus-
tainability dimensions.

6.5.4. Integration of social and behavioral data

Another area for future exploration is the integration of social
and behavioral data into Al and DT systems. While much of the
current focus has been on technical optimization (e.g., energy use,
emissions control), understanding human behavior and its impact
on building performance is crucial for achieving the status of
sustainable smart cities. For instance, occupant behavior, such as
energy consumption patterns, waste management practices, and
comfort preferences, can significantly influence the performance
of Al and DT systems. Future research should explore how Al
models can incorporate behavioral data, along with environmental
sensors, to more accurately predict and optimize building opera-
tions. In addition, incorporating human-centered design principles
into the development of sustainable and smart buildings can
ensure that these technologies are user-friendly, promote sus-
tainable lifestyles, and enhance occupant satisfaction.

6.5.5. Ethical and governance frameworks for artificial intelligence
in sustainability

As Al and AloT systems become more integrated into sustain-
able smart cities [3,8,205,11,13,14,206], ensuring their ethical use
and alignment with sustainability goals will be increasingly
important. Additional investigations must focus on developing
ethical and governance frameworks that guide the responsible
deployment of Al technologies in the built environment. This in-
cludes addressing issues such as data privacy, algorithmic trans-
parency, fairness, accountability, and equity. Al systems must be
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designed to avoid biases that could lead to unequal access to re-
sources or unfair outcomes in energy distribution, urban man-
agement, and planning. Moreover, governance frameworks should
facilitate collaboration between public and private stakeholders by
ensuring that Al and Al-driven solutions are developed and
deployed in a way that supports the broader social, environmental,
and economic goals of sustainability.

6.5.6. Policy development and incentive structures

To accelerate the adoption of Al and DT technologies in the built
environment, there is a need for supportive policy development
and incentive structures. Further research is encouraged to
examine the role of government policies in promoting the inte-
gration of Al and DTs in sustainable smart building practices. This
could include financial incentives, tax credits, subsidies for retro-
fitting existing buildings, and funding for pilot projects. Moreover,
policy-makers should collaborate with industry stakeholders to
create regulatory frameworks that promote innovation while
ensuring environmental standards, safety, and fairness. In addi-
tion, policies that encourage the development of green infra-
structure, renewable energy integration, and circular economy
practices will further align Al and DT technologies with the global
agenda for sustainable development.

6.5.7. Education, training, and capacity building

The successful implementation of Al and DT technologies in the
built environment requires a highly skilled workforce capable of
developing, managing, and optimizing these systems. Upcoming
investigations should examine the role of education and training
in preparing professionals for the integration of Al and DTs in
sustainable smart buildings. This includes the development of
interdisciplinary programs that combine expertise in Al, environ-
mental science, urban development, design, and engineering.
Moreover, capacity-building initiatives aimed at upskilling exist-
ing professionals, such as building managers, architects, engineers,
and policy-makers, will be essential for ensuring the widespread
adoption of these technologies. Collaboration between academic
institutions, industry leaders, and government bodies will be
crucial for creating a pipeline of talent and fostering innovation in
Al-driven sustainability solutions.

7. Conclusion

This study conducts a comprehensive systematic review of Al
and Al-driven DT applications across SGZEBs. The aim is to provide
a holistic understanding of how these advanced technologies
enhance the environmental performance of SGZEBs by analyzing
key related sustainability indicators. The study explores the extent
to which Al and Al-driven DTs enable integrated, system-level
strategies for enhancing environmentally sustainable smart prac-
tices in the built environment by synthesizing, comparing, and
evaluating recent research studies. By addressing five research
questions, the study provides comprehensive insights into how
these technologies contribute to the broader goals of sustainable
urban development by enhancing the environmental performance
of SGZEBs.

7.1. Key findings and implications

Table 6 summarizes the key findings of the study across
building typologies, highlighting how Al and AI-DT integration
enhance environmental performance and sustainability outcomes.

With respect to RQ5, the novel integrated framework demon-
strates that Al- and DT-enabled SGZEBs contribute to environ-
mental sustainability, sustainable development, and sustainable
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Table 6

Environmental Science and Ecotechnology 28 (2025) 100628

Key findings and implications of environmental solutions of Al and Al-driven DT in sustainable smart buildings.

RQs Typology Key findings

Implications

RQ1 SBs - Al and ML optimize energy management and resource use.

- Adaptive control strategies respond to environmental conditions and occupant behavior.
- Al facilitates renewable energy integration through forecasting and storage optimization.
- Occupant-centered designs balance comfort with sustainability goals.

- Predictive system control anticipates operational needs.
RQ2 GBs
techniques.

- Improves energy efficiency, reduces carbon emissions, lowers costs, and improves occupant comfort.
- Accurate forecasting of heating, cooling, and energy demands minimizes inefficiencies.

- Optimizes material and insulation use and guides resource-efficient decisions.

- Strengthens project delivery via cost estimation, risk assessment, and hybrid expert-Al approaches.
- Al optimizes building design, HVAC, and smart materials for energy efficiency.

- Facilitates integration of renewable energy sources (solar, wind) into distributed networks.

RQ3 ZEBs

- Enhances forecasting, real-time control, and fault detection.

- Supports occupant comfort through neural network predictive control and data-driven optimization.
- Improves NZEB performance with predictive energy analytics, smart-home systems, hybrid

- Enhances building operational efficiency and
self-regulation.

- Supports cleaner energy consumption and
reduced environmental impact.

- Ensures future-proof, sustainable performance.

- Al enhances design and performance via predictive modeling, multi-objective optimization, and ML - Promotes resource-efficient, low-emission

building practices.

- Accelerates design and compliance with
sustainability standards.

- Enhances cost management, risk mitigation, and
reliable project delivery.

- Ensures reliable, energy-efficient, and cost-
effective high-performance buildings.

- Supports net-zero and positive-energy goals.

- Balances occupant comfort with sustainability
targets.

optimization, XAl transparency, multi-objective optimization, and smart grid/microgrid coordination.

RQ4 SGZEBs
optimization.

- Enhances energy efficiency, reduces emissions, and supports occupant-centered design.
- Balances energy production and consumption at building and district scales.
- Continuous monitoring and predictive interventions improve energy efficiency, reduce carbon

footprint, and enhance indoor environmental quality.

- AI-DT integration enables adaptive control, predictive maintenance, and real-time performance

- Promotes systemic sustainability across
building types.

- Facilitates district- and city-scale energy
optimization.

- Strengthens urban resilience and
environmental performance benchmarks.

smart cities across diverse domains. It positions Al and DTs as
systemic enablers of environmentally sustainable smart built en-
vironments, emphasizing their cross-scale convergence in pro-
moting carbon neutrality, circular economy principles, climate
resilience, and environmentally regenerative urban strategies. The
findings confirm that SGZEBs, guided by Al and DT frameworks,
can align building-level performance with city-wide sustainability
objectives, driving systemic transformations towards resource-
efficient, climate-resilient, and ecologically adaptive urban envi-
ronments. These insights complement Table 6 by highlighting the
broader systemic impact of Al and AI-DT integration in advancing
environmentally sustainable urban development.

7.2. Significance of the proposed framework for environmentally
sustainable smart built and urban environments as enabled by
artificial intelligence-digital twin integration

The proposed AI-DT framework carries significant implications
for the transition towards environmentally sustainable smart built
environments and cities:

Principle-based reinforcement across building typologies: The
framework establishes a cycle of reciprocal reinforcement among
SGZEBs. Data-driven control in smart buildings enhances the
sustainability metrics of green buildings by enabling precise
monitoring, adaptive system management, and performance
optimization. In turn, the circularity and resource-efficiency
principles of green buildings provide the foundation for self-
sufficiency and closed-loop strategies in ZEBs. Meanwhile,
renewable energy integration and balancing mechanisms in ZEBs
feed back into smart buildings by strengthening adaptive intelli-
gence, occupant-centered optimization, and system resilience.
This continuous principle-based feedback loop ensures that
progress in one typology directly amplifies performance and sus-
tainability outcomes in the others.

Advancement of environmental performance benchmarks: The
framework enables ongoing monitoring, predictive interventions,
and evidence-based decision-making by embedding AI-DT intel-
ligence into the core of building operations. This moves buildings
beyond static compliance with environmental standards towards a
dynamic capacity to meet evolving benchmarks in energy
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efficiency, resource conservation, and occupant well-being.

Transition from isolated assets to systemic urban actors:
Buildings are no longer standalone entities but interconnected
nodes within a larger urban environmental network. Their oper-
ations feed into broader urban flows, including energy grids, waste
systems, water systems, and material cycles, which enable
regenerative urban ecosystems that are both adaptive and
resource-efficient.

Continuous learning and adaptation through AI-DT feedback
loops: The iterative cycle of Al learning from DT data, refining
models through simulations, and reapplying insights to real-world
systems ensures that the built environment becomes a self-
improving system. This adaptability is critical for addressing dy-
namic environmental pressures, such as ecological degradation,
resource scarcity, climate change, and urbanization.

Contribution to broader sustainability and climate agendas: At
the macro scale, the framework provides a strategic pathway for
advancing global goals, including carbon neutrality, climate resil-
ience, circular economy adoption, and SDGs. Its ability to integrate
micro-level performance optimization with systemic urban plan-
ning positions it as a transformative model for the future of sus-
tainable smart cities.

In conclusion, this study underscores the significant impact and
innovative role of Al and DT technologies in advancing environ-
mental sustainability in the context of SGZEBs by providing an
integrated framework. The findings highlight the importance of
adopting a systemic approach that encompasses both micro-level
building performance and macro-level city-scale sustainability
outcomes. Al and DTs represent a promising pathway for creating
more energy-efficient, resilient, and ecologically responsible cities,
ultimately contributing to the realization of global sustainability
goals. With continued research, innovation, and collaboration
across sectors, these technologies have the potential to reshape the
future of environmentally sustainable smart built and urban
environments.
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