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Microbial electrorespiration harnesses bacteria to drive reductive dechlorination, offering a sustainable
method to remediate environments contaminated with persistent chlorinated organic pollutants
(COPs). However, aquifers' complex hydrogeological and hydrochemical conditions, combined with
uneven COP distribution, create substantial spatial and temporal variability in biochemical reactions,
environmental factors, and microbial communities. Traditional trial-and-error experiments are labor-
intensive and slow, impeding the quick identification of conditions that accelerate dechlorination
rates. Here we show that a machine learning framework, integrating experimental design with cathodic
biofilm data, uncovers key interrelationships among environmental variables, dechlorination kinetics,
electrochemical properties, and functional microbes, enabling rapid optimization of bio-
electrodechlorination. Trained on literature-derived datasets using models such as extreme gradient
boosting, random forest, and multilayer perceptron, this framework identifies temperature and cathode
potential as primary drivers in experimental design while highlighting key biofilm genera, including
Clostridium, Desulfovibrio, Dehalococcoides, Pseudomonas, Dehalobacter, Arcobacter, Lactococcus, and
Geobacter. It supports inverse design to determine optimal parameters—such as cathode potential,
temperature, and additives—for dechlorinating representative COPs, including tetrachloroethene, tri-
chloroethene, and 1,2-dichloroethane, achieving reaction rate predictions with errors below 6%. This
approach surpasses conventional methods by increasing efficiency, cutting costs, and accelerating
bioremediation without extensive laboratory testing. By incorporating microbial community insights
into predictive models, our data-driven strategy advances the scalable application of microbial elec-
trorespiration for COP-contaminated water remediation and paves the way for broader bio-

electrochemical uses in environmental engineering.
© 2025 Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin
Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Microbial electrode respiration is an effective approach for
enhancing the microbial dechlorination process during bioreme-
diation of water bodies contaminated with chlorinated organic
compounds (e.g., soil, groundwater) [1]. However, the complexity
of the hydrological and hydrochemical environments in
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groundwater, the heterogeneity of chlorinated organic pollutants
(COPs), and the diversity of functional microorganisms signifi-
cantly increase the difficulty of regulating microbial remediation
activity [2,3]. Obtaining optimal system design and operational
features typically involves conducting exhaustive or orthogonal
experiments in the laboratory [4], which is often expensive, labor-
intensive, and unsustainable [5]. In addition, finding similar sce-
narios with matching pollution characteristics, reaction condi-
tions, and hydrogeological environments based on existing
research and experience is challenging, making the development
of comprehensive reaction models difficult.

Fortunately, decades of research on microbial electrode respi-
ration for reductive dechlorination have laid a solid foundation for
data-driven approaches, such as machine learning (ML). ML can
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analyze large volumes of data to extract insights and identify
patterns and trends, thereby improving outcomes [6]. In the realm
of organochloride migration and transformation, ML has demon-
strated reliable efficacy in various applications, including chloride
ion diffusion analysis [7], ball milling for enhanced dechlorination
efficiency [8], and in situ electrochemical dechlorination analysis
[9]. Compared to mechanistic reaction kinetics models, such as
quantitative structure-activity relationships and quantitative
structure—property relationships, ML can achieve more satisfac-
tory outcomes by leveraging a broader spectrum of features,
including environmental features and material structures. This
ability provides support for the concept of goal-oriented opti-
mized design. An optimized design begins with the expected
performance based on the predicted model. It works backward to
derive the model inputs, allowing for the use of ML to predict
outcomes using rich and complex input features without requiring
highly specific and in-depth foundational research.

Currently, ML-based inverse design methods have been
employed to optimize process flows based on operational char-
acteristics in areas such as electrochemical oxidation processes [5],
membrane filtration [10], and biomass hydrogen production [11].
Although significant progress has been made in inverse design
systems using ML, these systems rarely include microbial com-
munity data. In addition, when microbial communities are
involved, bacterial communities are often used as a data-driven
analytical tool rather than as features applied to inverse design
[12,13]. Although Peng and Tan [7] made a preliminary attempt to
apply inverse design for dechlorination adsorption in slag powder
and fly ash concrete using the ultra-high lime aluminum method,
no study has yet developed ML models to predict reaction rate
constants incorporating microbial communities. Moreover, there
is no research related to developing ML-based models for micro-
bial electrochemical dechlorination, limiting the advancement of
bioremediation technology for COPs. In addition, developing
models that integrate experimental manipulation characteristics
and biological features, rather than just considering biological
data, will further enhance the inverse design process. The lack of
in-depth exploration of these data limits the guiding value and
wide promotion potential of ML in the practical applications of
microbial electrode respiration.

Herein, we introduce an inverse design strategy that leverages
ML to optimize bioelectrical dechlorination. This approach estab-
lishes robust correlations among operating features, cathodic
biofilm characteristics, and dechlorination efficacy, thereby facil-
itating the identification of optimal dechlorination conditions. We
first use a dataset derived from the literature to evaluate the
performance of the models both with and without incorporating
operational and biological features. To interpret the models, we
employed the Shapley additive explanations (SHAP) methodology.
Subsequently, we used particle swarm optimization (PSO) for in-
verse design to pinpoint the optimal combination of dechlorina-
tion features. The identified conditions were then experimentally
validated through microbial electrorespiration dechlorination tri-
als. This research provides valuable insights into the application of
inverse design in microbial electrorespiration dechlorination and
advocates for the advancement of inverse design models that
incorporate biological data.

2. Materials and methods
2.1. Collection and processing of the dataset
The dataset was constructed from published studies on micro-

bial electrorespiration dechlorination using keywords such as
“bioelectrochemical,” “chlorinated pollutant,” and “dechlorination.”
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Through rigorous manual screening, 357 data points from 68 peer-
reviewed research papers were selected to build the dataset for ML
analysis. The dataset was categorized into three groups: experi-
mental design, cathodic biofilm, and reaction rate data. Details of
the feature categories, naming conventions, units, and additional
information in the dataset are provided in Supplementary Text S1.
Our datasets can be obtained in the Supplementary data (Database.
xIsx).

Experimental design data describe the experimental operation
characteristics and include 357 data entries. The key features
include target pollutant, pollutant concentration (mmol kg=1),
strain, cathode chamber volume (mL), cathode electrode material,
cathode electrode area (cm?), anode chamber volume (mL), anode
electrode material, anode electrode area (cm?), electrode modifi-
cation material, additives for auxiliary reactions, additive dosage,
cathode potential (mV; standardized to standard hydrogen elec-
trode [SHE])), ISBio, ISEle, and ambient temperature (°C). ISBio and
ISEle are composed of 0 and 1, respectively, to distinguish whether
an experiment includes bio-sludge or electrode stimulation. Target
pollutant was represented by quantum descriptors [Egap, EHomos
Erumo, #, fl—)min/max f4)min/max» fO)min/max» {—)cimin/max. f+)ay,
min/max» and f{0)cy,min/max], which are calculated using ORCA and
Multiwfn (details in Supplementary Text S2).

Cathodic biofilm data include the relative abundances of bac-
teria at the genus and species levels after the experimental reactor
had reached a stable operating state, with 88 entries at the phylum
level and 95 at the genus level. Bacterial species with low relative
abundances (<0.6%) are categorized as “Others,” and unidentified
species are filled with a value of 0. The reaction rate data describe
the reaction rate (k, s—!) of pseudo-first-order kinetics, obtained by
fitting the reaction data. Owing to the wide range of k, it is
transformed into a base-2 logarithm to enhance model accuracy
[5].

2.2. Model development and optimization

Discrete and nonnumerical features were encoded to facilitate
the analysis. In the actual bioelectrochemical system (BES), the
categories for features such as cathode electrode material, anode
electrode material, electrode modification material, and the ad-
ditive of auxiliary reaction were more diverse than those described
in the dataset. Using one-hot encoding can excessively expand
feature dimensions, thereby reducing the performance of ML
analysis. Therefore, in this study, nonnumerical features were
described using target encoding. To prevent data leakage, encod-
ing methods were applied only to the subset of training data.
Missing values in the dataset were estimated using the k-nearest
neighbors algorithm (Supplementary Text S3).

All ML analyses were performed using Python 3.8.7. Commonly
used ML models were employed for designing, including extreme
gradient boosting (XGBoost), random forest (RF), support vector
machines, multilayer perceptron (MLP), process, decision tree,
least squares linear regression, ridge regression, and stochastic
gradient descent. The dataset was randomly split into a training set
and a test set in a 9:1 ratio. A grid search (details in Supplementary
Text S4) with tenfold cross-validation was employed for hyper-
parameter tuning of the models. As reaction rate data can only be
obtained experimentally, k is the output of the model.

To observe and compare the effects of different inputs on ML
performance, the impacts of the experimental design and cathodic
biofilm data on k were examined separately. In this study, we
tested five types of ML models.

(1) e2k: Experimental design data as input and reaction rate
data as output.
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(2) bP2k: Cathodic biofilm data (phylum level) as input and
reaction rate data as output.

(3) bG2k: Cathodic biofilm data (genus level) as input and re-
action rate data as output.

(4) ebP2k: Combined experimental design and cathodic biofilm
data (phylum level) as input and reaction rate data as
output.

(5) ebG2k: Combined experimental design and cathodic biofilm
data (genus level) as input and reaction rate data as output.

The approach of predicting cathodic biofilm data using exper-
imental design data was tested in advance (see Supplementary
Text S5 for details). This method resulted in overfitting in the
training set, with R? values < 0 in the test set. Predicting biological
information through ML requires analyzing and providing a sig-
nificant number of output features, increasing the dimensionality
and sparsity of data, which leads to decreased model generaliza-
tion ability and is the primary cause of underfitting [14]. Thus,
predicting cathodic biofilm data using experimental design data
was deemed infeasible for this dataset.

To interpret ML outputs with a black-box nature from both
global and local perspectives, the SHAP method was used to
calculate the marginal contributions of the features in the model
outputs [15]. Input data were normalized to ensure consistency in
the spatial range. Two common error analysis metrics, R? and root
mean square error (RMSE), were used to evaluate ML performance.
An ideal model typically exhibits a high R? value or a low RMSE
[13]. Owing to differences in calculation methods, the best R? value
and RMSE do not necessarily coincide with a set of model features.
As RMSE is less sensitive to outliers, it was used as a metric for
hyperparameter tuning. To further enhance model performance,
methods such as principal component analysis (PCA), correlation
analysis, and SHAP were employed to reevaluate the important
features, followed by retraining to achieve the optimal model.
Partial correlation analysis was used to further validate the SHAP
results. A life cycle assessment (LCA; details in Supplementary Text
S6) was conducted to analyze environmental impact during the
model validation steps.

2.3. Construction and verification of an inverse design framework

To identify the optimal experimental features and biological
distribution characteristics of the trained ML model, PSO was
chosen based on its superior performance and faster convergence
in continuous optimization problems [16,17]. This selection is
supported by the comparative test results presented in Supple-
mentary Text S7, where it outperformed other algorithms, such as
genetic algorithms and simulated annealing. The settings for PSO
are detailed in Supplementary Text S8. Currently, there are no
effective means to regulate the bacterial community in biofilms
directly. The distribution of bacterial communities in reactors,
particularly in large-scale facilities such as sewage treatment
plants, is continuously influenced by unpredictable toxic sub-
stances, including antibiotics, heavy metals, and plastics [18,19]. To
address this, we first determined preliminary experimental con-
ditions using the e2k model and PSO, as shown in the inverse
design framework (Fig. 1). Subsequently, the eb2k model
(including ebG2k and ebP2k) was constructed based on the cath-
ode biofilm data obtained from actual experiments. The search
algorithm was then reapplied to refine the experimental condi-
tions. This iterative process continued until the ideal range of
feature conditions was identified.

The inverse design was experimentally validated to enhance
the credibility of the model predictions (Supplementary Text S9)
using an H-type dual-chamber BES reactor. A saturated calomel
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Fig. 1. Conceptual framework for the inverse design of microbial electrorespiration
dechlorination using machine learning (ML). The process begins with the application
of the e2k model in the absence of microorganisms. This initial step is necessary due
to the inherent complexity of the microbial/sludge mixture, which hinders effective
prediction. The objective is to identify a feasible, though not necessarily optimal, set of
features. Subsequently, experiments are performed under these improved conditions
to generate biological data. This data, combined with the corresponding experimental
conditions, is then used to inform the next round of optimization using the eb2k
model. The eb2k-guided search is iteratively repeated until a cost-effective and
satisfactory outcome is achieved.

electrode was used as the reference electrode for monitoring
electrode potential, which was converted to a SHE representation.
Three chlorinated hydrocarbons were selected for reductive
dechlorination experiments: tetrachloroethylene (PCE), trichloro-
ethylene (TCE), and 1,2-dichloroethane (1,2-DCA), due to their
representative environmental hazards (Supplementary Text S10).
The experiment was repeated three times, and the final data were
reported as average values. Further details regarding the reactor,
electrodes, contaminants, and monitoring methods can be found
in Supplementary Text S11.

3. Results and discussion
3.1. Descriptive analysis of the dataset

The visualization of the experimental design data distribution
based on logyk ranking results did not reveal any obvious mathe-
matical relationship between the features and k (Supplementary
Fig. S1). This observation was quantitatively supported by the
linear analysis results (Supplementary Text S12), which indicate
that more complex mathematical variations exist in the data. As
the dataset was compiled from various literature sources and most
features did not conform to a normal distribution (p = 0.05, details
in Supplementary Text S13), the Spearman coefficient was used for
the correlation analysis. Each feature in the experimental design
data showed a weak correlation with k (Supplementary Fig. S2),
with absolute values < 0.350. Nevertheless, these features may still
contribute differentially to the output, which means that the
preliminary selection of these features is feasible.

The molecular orbital information reflected by Egomo and
Eromo showed similar changes in value. Compared with the Egomo
and Eromo values, Egap is more relevant because it reflects the
numerical difference between Eyomo and Ej omo and is often used
to measure the ease of excitation of a molecule. Therefore, Enomo
was removed from the input and replaced by Ejomo and Eg,p. As the
0 point in the cathodic potential represents no electrode stimu-
lation, the numerical jump of the cathodic potential near the
0 point showed a similar trend to ISEle. To avoid model blinding
caused by highly homogeneous information, 4 was removed from
the input. In the PCA, the positions of the experimental design data
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features were far from each other (Fig. 2a), indicating a weak
correlation among the features. The data points were primarily
concentrated around features such as strain, cathode potential,
pollutant concentration, material (anode), and the Fukui index,
suggesting that these may be the primary factors influencing the
dechlorination reaction. There were almost no clustered data
points near fmin [including f{+) min, f{—) min, and f{0) min]- A higher
Fukui index indicates a greater likelihood of an atomic system
being attacked, while f min, Which represents the lowest value,
might lack potential analytical value in dechlorination systems. As
redundant data, fmin could complicate the model and hinder
interpretability; thus, it was removed from the input. Overall,
Eyowmos 1, ISEle, and f min were considered potentially inappropriate
traits and excluded from this study. The interactions between
biological populations are complex, making it challenging to
remove features from cathodic biofilm data reasonably. The dy-
namic changes in the ecological network framework suggest
inseparable relationships among organisms. Hence, all features of
the cathodic biofilm data were used as input.

Due to the availability of complete biological network infor-
mation at each data point, no strong correlations were observed
between k and bacterial abundance, suggesting that the dechlo-
rination process is unlikely to be dominated by a single bacterial
strain (Supplementary Text S14). The co-occurrence analysis
(shown in Fig. 2c and d; Spearman's p > 0.40, p < 0.01) revealed
that bacteria with larger node degrees exhibited lower co-
occurrence with other bacteria, whereas those with smaller node
degrees tended to have higher co-occurrence. This suggests that
bacteria with larger node degrees may crowd out other bacteria,
forcing those with smaller node degrees to collaborate. At the
phylum level, bacteria such as Bacteroidetes, Chloroflexi, and
Actinobacteria, and at the genus level, bacteria such as Pseudo-
monas, Geobacter, Lactococcus, and Desulfovibrio exhibit higher
node degrees and are potential dechlorinating bacteria [19,20].
The increased data dimension in cathodic biofilm data relatively
reduces the explanation of the first two principal components in
the PCA compared with the experimental design data (Fig. 2b and
Supplementary Fig. S3). More features were clustered near the
data points, and the feature distribution became more concen-
trated, highlighting the direct effect of organisms on the reaction
system.

The highest logak values of the different pollutants (Fig. 3) were
mainly concentrated in the range of -20 to —10. Hexa-
chlorocyclohexane had the most significant dechlorination effect
due to its unstable six-carbon ring and abundant chlorine sub-
stituents, followed by chloramphenicol, which had a larger mo-
lecular weight. The dechlorination rate was lowest for
polychlorinated biphenyls (PCB 61), an organic matter that is
extremely difficult to decompose, with a natural degradation time
of approximately 50 years in soil [21]. It was better to consider
using additives such as polysorbate 80, which had been reported to
improve dechlorination efficiency [22,23]. Analysis of the logyk
ranking revealed that compounds with more chlorine atoms and a
more dispersed chlorine distribution tended to exhibit greater
resistance to dechlorination. For example, compared with 2,4,6-
trichlorophenol, 2,3,4,5-tetrachlorobiphenyl had more chlorine
atoms distributed in different positions, making dechlorination
more difficult. Pollutants with ring structures, such as poly-
chlorinated biphenyls and hexachlorocyclohexane, are more
challenging to dechlorinate because of their stability. In particular,
compounds with greater polarity, such as trichloroacetic acid,
although relatively simple in molecular structure, showed reduced
dechlorination performance due to their high polarity.
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3.2. Verification in ML

Preliminary tests using the ebG2k model (Supplementary
Fig. S4) revealed that R? exceeds 0 when the dataset has more
than 100 points and stabilizes at approximately 0.8 beyond 200
points. Previous ML studies on degradation with similar datasets
(e.g., 215 [24] and 315 [5] points) also fall within this range, indi-
cating that our dataset is likely sufficient to support reliable con-
clusions and performance. Supplementary Fig. S5 shows the
performance differences of each model in the test and training sets
based on the results of the hyperparameters (Supplementary Text
$15). Ordinary multivariate linear estimators (e.g., ridge and least
squares linear regressions) performed poorly because of the
complex relationships within the data. The methods that per-
formed exceptionally well across the different modes were
XGBoost, RF, and MLP, with RF and XGBoost being particularly
notable. RF achieved the best results in the e2k and bG2k modes,
while XGBoost excelled in the ebP2k and ebG2k modes, displaying
similar performances in both the test and training sets. The bP2k
mode, which contained narrow-space bacterial data at the phylum
level, enhanced MLP's ability to learn sparse information. How-
ever, neural networks generally underperform compared with tree
models in small-scale datasets (data <1000) [25], resulting in
poorer performance for bP2k compared with other types. XGBoost
enhances performance by iteratively training multiple weak
learners and continuously optimizing their combination, making it
well-suited for processing high-dimensional data in ebP2k and
ebG2k [5]. RF captures linear relationships effectively by con-
structing multiple decision trees from training samples, which was
particularly advantageous for the e2k and bG2k datasets with
fewer features and samples, allowing it to extract useful infor-
mation more effectively. These best-performing models were used
separately for training of different input frameworks.

The initial SHAP value analysis results (Supplementary Fig. S6)
were used to optimize e2k. Owing to insufficient data on single
bacterial strains in the dataset, strain was initially considered the
least important feature. However, due to the differences in meta-
bolic pathways between mixed and single bacteria, strain
remained an important discriminative label. Features were
sequentially removed in order of increasing importance. A minor
improvement in e2k was achieved when f{0) ¢ max Was excluded,
resulting an optimized RMSE (test set) from 1.762 to 1.750. When
both f{0) max and f{0) ¢ max Were excluded, the RMSE (test set) was
1.756. Further feature deletion was not optimal. The exclusion of f
(0) max vielded poor results in the ebP2k and ebG2k scenarios
because of the changes in input. As the exclusion of f{0) nax did not
result in significant optimization and to maintain input consis-
tency as much as possible, the original input features were
retained for analysis.

Among these models with different input and output (Fig. 4),
bP2k produced noticeably poorer results due to the sparse and
coarse-grained nature of microbial information at the phylum
level. This is primarily due to the limited resolution of microbial
information at the phylum level, which tends to obscure ecologi-
cally and functionally distinct taxa under the same broad classi-
fication. For instance, both Clostridium and Dehalobacter belong to
the Firmicutes phylum and play vastly different ecological roles.
Clostridium is commonly associated with fermentative meta-
bolism, whereas Dehalobacter is a known organohalide-respiring
bacterium with strong dechlorination capabilities. Such key
functional differences are masked when only phylum-level data
are used, making it difficult for the model to capture essential
biological mechanisms related to pollutant degradation. By
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Fig. 2. Basic description of the dataset. a-b, Principal component analysis of experimental design data (a) and cathodic biofilm data at the phylum level (b). Due to the extensive
characteristic information, only a subset of strains is labeled in panel b. c¢-d, Co-occurrence analysis for the frequently observed phylum (c) and genus (d) in the dataset

(Spearman's p > 0.4, p < 0.01). Node size is scaled according to node degree.

contrast, the models that incorporated genus-level features
demonstrated significantly improved performance. bG2k achieved
an R? of 0.915, and ebG2k reached an R? of 0.873. Most data points
clustered closely around the 1:1 line, indicating strong predictive
capabilities. These results highlight the importance of finer taxo-
nomic resolution in capturing key ecological and functional dif-
ferences in microbial communities.

When quantum descriptors were not used (Supplementary
Fig. S7), the average RMSE across all modes increased by 0.342,
indicating that constructing pollutant features using quantum
descriptors provides more accurate predictions. Limited by the
data set, different inputs provide different numbers of data points

for the model. Rich databases generally led to excellent perfor-
mance, but bG2k, ebP2k, and ebG2k, which contained biological
information, achieved better performance than e2k, with more
data points. This suggests that microorganisms fundamentally
mediate the bioelectric respiration system. In other words, the k
value essentially depends on biological development and respi-
ratory conditions, with operating conditions, such as electrode
potential, as auxiliary indirect regulatory means. In addition, the
inclusion of experimental data alleviated the sparse spatial dis-
tribution issue of gate data, improving the previously poor RMSE of
ebP2k from 2.671 to 1.776. This demonstrates that comprehensive
consideration of experimental operations and biological
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Fig. 3. The highest log,k for each pollutant based on the dataset, sorted in descending order.

information contributes to a more robust ML learning system.
Overall, we conclude that our ML training effect is acceptable,
except for bP2k.

3.3. Feature importance analysis

SHAP value was calculated to comprehensively present feature-
importance for each mode (Fig. 5a—c [including e2k, bG2k, and
ebG2k, respectively] and Supplementary Fig. S10 [including bP2k
and ebP2k]). For the experimental operation characteristics in e2k,
ISBio showed a bimodal SHAP value distribution, where the addi-
tion of biological elements (red data points) significantly promotes
the dechlorination system. This is corroborated by correlation re-
sults (Supplementary Fig. S2). Temperature was identified as the
most critical feature, with significant impacts on biological
dechlorination efficacy [26,27]. This ranking also applies to ebP2k
and ebG2k (Fig. 5¢). In the e2k mode, the secondary experimental
feature is the cathode potential. Electrodes are insoluble electron
donors and can be provided sustainably and controllably to
dechlorinating bacteria by applying an appropriate potential,
effectively avoiding side reactions caused by organic matter
addition and improving electron utilization efficiency. The SHAP
data points were concentrated around the 0-axis, with a trailing
effect in the negative region. High potential exhibited negative
SHAP values, highlighting the bioactivation effect of low potential.
Excessively low potential failed to provide sufficient electrons to
microorganisms, while excessively high potential led to hydrogen-
driven side reactions that hindered electron utilization by micro-
organisms [28]. Thus, bioelectric respiratory dechlorination usu-
ally has an optimal potential range. Other experimental features,
such as electrode surface area and additive dosage, gained
importance in the eb2k model, indicating stronger interactions
with microorganisms. For instance, increasing the electrode sur-
face area provides more space for biofilm attachment and has been
shown to increase the proportion of electroactive microorganisms
in the reaction system [29], as reflected in the SHAP distribution.
As cathode materials are carriers for microbial growth, their SHAP
values were generally positive (Supplementary Fig. S8a),

indicating a favorable contribution to system performance. Among
these materials, carbon fiber was identified as the most influential,
followed by graphite (Supplementary Fig. S8b). Both materials
exhibit excellent electrical conductivity, facilitating electron
transfer, and feature porous structures with large specific surface
areas that promote microbial adhesion and growth. However, the
marginal benefit of further increasing the electrode area on
degradation performance tends to diminish (Supplementary
Fig. S9), possibly due to factors such as microbial distribution
saturation and limitations in optimizing electron transfer
pathways.

Several reported dechlorinating respirators (at the genus level)
were ranked highly in our SHAP analysis, including Clostridium,
Desulfovibrio, Dehalococcoides, Pseudomonas, Dehalobacter, Arco-
bacter, Lactococcus, and Geobacter [30,31]. The category “Other” in
genus was emphasized in the biological model (bP2k and bG2k)
because each sample contained these feature data. Clostridium and
Desulfovibrio had clear, two-headed SHAP distributions. Although
both are electroactive bacteria that can use electrodes for respi-
ration, the average dechlorination capacity increase of the system
tends toward low-abundance Clostridium and high-abundance
Desulfovibrio, similar to the results reported by Lin et al. [32].
Geobacter was ranked higher in ebG2k, a classic dechlorinating
genus that can use electrodes as the sole electron donor for
reductive dichlorination [33]. Important quantum features that
represent pollutant characteristics were identified as f{+) max and f
(+) c1, min, indicating that the Fukui index is more indicative of
dechlorination reaction difficulty than Egap.

The SHAP heatmap (Fig. 5d, including e2k; Supplementary
Fig. S10, including bP2k and ebP2k; and Supplementary Fig. S11,
including ebG2k and bG2k) shows the comprehensive contribu-
tion of each feature to k. There were strong spatial contributions
and short-lived features in the high-range k value interval, such as
additive dosage (e2k), Desulfovibrio (bG2k/ebG2k), Geobacter
(ebG2k), and material (cathode), which might be potential im-
provements for dechlorination systems. The total contribution of
the experimental features surpassed that of the quantum de-
scriptors and biological features (Supplementary Fig. S12),
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Fig. 4. Prediction performance of ML models under different configurations: e2k (a), bP2k (b), bG2k (c), ebP2k (d), and ebG2k (e). The solid diagonal line represents perfect
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of each panel.

emphasizing the importance of experimental strategies and
methods. The one-dimensional partial dependence and SHAP
feature dependence plots for e2k (Supplementary Fig. S13-S14)
and ebG2k (Supplementary Fig. S15-S16) illustrate the effects of
variations in experimental features on log,k. Both analyses indi-
cate that these effects are not statistically significant. While some
differences were observed, SHAP dependence plots provide more
detailed insights into data concentration than the one-
dimensional partial dependence plots. Based on the SHAP value
analysis results, we summarized the range of experimental fea-
tures that can achieve higher k values (Supplementary Table S1).
The SHAP value analysis results also provided a joint analysis
perspective with cathode potential, intuitively showing the impact
of potential distribution. For example, weak electrical stimulation
(0-400 mV) suits pollutants with f{+) max of approximately 0.150
(e.g., 2-chlorophenol and 4-nitrochlorobenzene), while a stronger
potential (>400 mV) was more conducive to the removal of pol-
lutants with an f{+) max of approximately 0.100 (e.g., chloram-
phenicol and triclocarban). These potential conclusions have been
confirmed by previous studies [34,35]. SHAP interpretation is
based on ML models rather than real substances, so SHAP analysis
provides functional rather than substance-based conclusions,
limiting these recommendations to laboratory environments
based on our dataset.

3.4. Inverse design and experimental verification

Building upon the previously mentioned experimental

operating conditions (Supplementary Text S11) and the inverse
design process (Fig. 1), we tested the inverse design effects of PCE,
TCE, and 1,2-DCA using our trained ML model. We first fixed some
basic features (Supplementary Table S2), such as the quantum
description of pollutants. We then determined other features
(Supplementary Table S3) to quickly narrow the adjustment range
with e2k. Chamber volume tends to form a mutually reinforcing
relationship with area (cathode/anode) [36], which makes the two
features always converge at a larger value (chamber volume
>300 mL, area of cathode/anode >200 mL). To prevent this phe-
nomenon, we fixed the chamber volume to 100 mL and the area
(cathode/anode) to 42.41 cm? (diameter and height, both 3 cm).
The search results (Table 1) were verified through parallel exper-
iments, with a relative error of less than 10%. Control experiments
with 9 sets of random features configurations (Supplementary
Table S4) prove that this result has local optimality. The rapid
determination of the optimal preliminary operating factors
without any preliminary experiments initially confirmed the ML-
based reverse design.

Owing to the large number of features to be further adjusted,
given the significant impact of the cathode potential on bioelectric
respiratory dechlorination [31,37,38] and the ease of temperature
control, these two features were selected as primary regulatory
factors for further optimization. To address other features as out-
lined in Supplementary Table S2, we employed PSO to optimize
the results. The search results based on the e2k model for PCE, TCE,
and 1,2-DCA yielded cathode potentials of —510.8, —456.0,
and -4581 mV, respectively, with temperature results
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concentrated at approximately 23.2 °C. Dechlorination perfor-
mance tests at 23.0 &+ 10.0 °C under the same cathodic potential
(Supplementary Fig. S17) showed a lower reaction rate, which
indicates that the chosen temperature may be suitable for mi-
crobial development in this range. We then set the temperature of
the experimental environment to 23.0 4+ 3.0 °C and the cathode
potentials for PCE, TCE, and 1,2-DCA to -510.0, —450.0,
and —450.0 mV, respectively, for e2k experimental verification.
These features were predicted using the e2k model, with an RMSE
of 0.977 and a relative error of 5.032% (Fig. 6a).

For a unified comparison, temperature and other conditions
were fixed, and cathode potential was reoptimized using the eb2k
model based on acquired cathode biofilm data. The predictive
performance of the ebP2k model was inferior to that of ebG2k
(Supplementary Table S5), consistent with previous model evalu-
ations, indicating that genus-level data are more suitable for in-
verse design. According to the PSO results of ebG2k
(Supplementary Table S6), cathode potentials were set
to —260.0, —280.0, and —270.0 mV, respectively. The logyk pre-
diction accuracy of ebG2k improved compared with e2k, with an
RMSE of 0.843 and a relative error of 4.696% (Fig. 6b). The microbial
abundance information at the phylum and genus levels under
different potential conditions is shown in Supplementary Fig. S18
and Fig. 6d, respectively. Further optimization using ebG2k
(Supplementary Fig. S19) shows limited improvement in PCE and
TCE reaction rates, and a relatively low reaction rate for 1,2-DCA.
This may be due to the experimental errors within the narrow
adjustment range or similar solutions from the PSO random step
search. The initial ebG2k potential conditions seem sufficient for
achieving satisfactory dechlorination effects. Therefore, we
stopped further optimization at this point.

Additional experiments at —100.0 and —600.0 mV confirmed
the reliability of these results. Among the four potential settings,
the ebG2k-searched potential conditions showed the optimal k
value, followed by e2k, indicating that our ML model had achieved
a locally optimal solution. Using the bG2k model for k prediction
yielded a relative error of 1.562% (Supplementary Table S7), which

Environmental Science and Ecotechnology 28 (2025) 100625

suggests that preliminary inferences of k based on genus-level
data are feasible. Among the five models, bG2k exhibited the
best performance. However, owing to the lack of direct methods
for effectively balancing suitable abundance systems, the regula-
tory process from e2k to eb2k remains practically significant. The
relative error of bP2k was 17.923%, but the relative error of the
ebP2k model, which combines experimental feature regulation,
was reduced to 6.304%, which indicates that mixed data of bio-
logical and experimental conditions helped the ML model search
for better results. The relative errors (Supplementary Text S16) in
all experimental results for e2k and ebG2k were within 6%, com-
parable with the inverse design of the electrochemical oxidation
process for water purification (<5%) [5] and anaerobic digestion
for CHy-rich biogas production (<9%) [39]. From an application
perspective, we thought this error was acceptable. We further
tested the model on newer relevant literature [40] (data not
included in our dataset). The relative error of the e2bGk model was
4.553%, further demonstrating the operability of ML.

In the experimental results (Fig. 6¢), the biodegradability of the
three chlorinated hydrocarbons follows the order 1,2-DCA, TCE,
and PCE. The numerical orders of Egap and bond dissociation en-
ergy also support this view (Supplementary Fig. S20). The
increased difficulty of dechlorination for TCE and PCE may be due
to their double bond structures and the limited types of bacteria
capable of reducing trans-1,2-dichloroethene (the dechlorination
product of TCE and PCE) [41]. While the e2k model learned this
pollutant information, the ebG2k model (Supplementary Fig. S21)
failed to capture similar patterns, which indicates that our data
scale still limits the model's spatial differentiation of different
pollutants. Moreover, the complex distribution of biological in-
formation also significantly impacted the model. For example,
Geobacter is the dominant genus in 1,2-DCA, while Lactococcus and
Bacillus mainly regulate PCE and TCE (Fig. 6d). Desulfovibrio
showed some enrichment in all three pollutants. These relation-
ships between bacteria and cathode potential were similar to the
SHAP dependency results of ebG2k (Supplementary Fig. S22).
Unfortunately, the search for biological features was less
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Fig. 5. Eigenvalue interpretation analysis based on Shapley additive explanations (SHAP). a-c, The distribution of SHAP values for each feature in the e2k (a), bG2k (b), and ebG2k
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Table 1

The search results for starting the experiment.
Features PCE TCE 1,2-DCA
ISBio 1 1 1
ISEle 1 1 1
Cathode potential (mV) —-510.8 £ 13.3 —456.0 + 22.7 —458.1 + 18.1
Temperature (°C) 214+ 0.5 227 £0.7 217 +£1.0
Pollutant concentration (mmol kg~') 0.36 0.94 2.10
Additive Acetate Acetate Acetate
Additive dosage (mmol kg~ ') 3.40 4.90 4.50
Cathode material Graphite Graphite Graphite
Anode material Carbon cloth Graphite Graphite
Anode area (cm?) 42.41 42.41 42.41
Ave. experimental log,k —-14.179 —14.328 —15.089
Ave. predicted log,k —15.166 -14.784 —14.417

Note: Ave. represents the average value of multiple searches.

successful in our dataset. The ML results overemphasized the role
of non-dehalogenating bacteria (Supplementary Fig. S23), such as
Desulfovibrio and Carnobacterium, and the abundance distribution
of the bacterial community was inconsistent with the findings of
existing studies [32,42]. This was mainly attributed to the dataset
being too small to support a drastic increase in search breadth.
Conducting traditional experiments to identify optimal condi-
tions is economically, energetically, and time-consuming. Using
ML-assisted inverse design, within the four potential ranges used,
could reduce half waste with two potential experiments. The LCA
results indicate that using ML in our experiments could help
reduce global warming potential (GWP100) and non-renewable
energy use (NREU) by 14.90 kg CO, eq and 29.40 k], respectively
(Fig. 6e), representing the minimum resource savings. Next, we
replaced the additive acetate with sodium bicarbonate
(10.00 mmol kg~!) and glucose (1.67 mmol kg~ !) in PCE and
repeated the operations. The final search potential was similar to

that when acetate was the additive. When setting the cathode
potential to —270.0 mV, the relative error between the predicted
results and experimental values (Supplementary Table S8) was
3.954%, indicating the impact of ranking different additives. If ML
had been used for inverse design from the start — targeting all
three features simultaneously — the resource savings could have
reached 83.333%, calculated as 1-50% per feature divided across
the three features.

4. Perspective

The ML-based inverse design method effectively overcomes the
limitations of traditional trial-and-error approaches, utilizing
bioinformatics to inform decision-making in experimental oper-
ations. This approach provides a novel method for rapid biore-
mediation of water bodies contaminated with COPs. The five
inverse design frameworks (e.g., e2k and ebG2k) we constructed in
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Fig. 6. Results of the inverse design and experiments. a-b, Comparison of experimental and predicted outcomes based on approximate values identified through particle swarm
optimization under the e2k (a) and ebG2k (b) models. Experimental temperature was maintained at 23.0 4 3.0 °C. For tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,2-
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warming potential (GWP100) and non-renewable energy use (NREU).
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Text 2.2 are suitable for different scenarios. e2k is applicable when
the biological information necessary for the preliminary deter-
mination of the operating conditions of the initiation system
(experimental design data) is unknown. After obtaining commu-
nity data through biological information tools, either ebP2k or
ebG2k can be used to integrate biological results and perform
iterative optimization on the experimental design data based on
the workflow (Fig. 1). bP2k or bG2k directly connects community
information with k. bP2k and bG2k reflect the essential operations
in biological systems and provide better predictive performance
(e.g., bG2k in Fig. 4). However, precise regulation of biological
networks is currently expensive and time-consuming, making the
combination of experimental design data as input with ebP2k or
ebG2k the recommended method, which was used in this study.
Our ML framework (Fig. 1) is adaptable and not limited to dech-
lorinated metabolites, as it can also be applied to other pollutants
and bioelectric respiration processes. The differences are mainly
reflected in the operational characteristics of each system, and
these databases still need to be sorted out; the contribution of
more researchers are necessary to promote the application and
development of the framework in a broader range of scenarios.

Despite these advancements, our study is limited by the quality
and completeness of the dataset used, which may have affected
the model's performance in certain cases. For example, when using
e2k to predict the dataset from Chen et al. [40], the relative error
reached 11.520% (Supplementary Fig. S24), which is likely due to
the differences in experimental conditions, such as continuous
flow and alternating open/closed circuits. Additionally, important
features, such as agitation method and speed, are often not re-
ported in literature, making it challenging to incorporate them into
the model.

Microbial community complexity is another major challenge.
The use of 16S rRNA data provides limited taxonomic resolution and
often fails to capture the contribution of low-abundance but func-
tionally critical taxa. Moreover, literature-derived datasets
frequently lack detailed annotations for “Other” microbial groups,
causing the model to rely overly on well-characterized species and
miss interactions involving unknown taxa. To address these limi-
tations, we proposed the following strategies for future work (1)
incorporating more “negative” samples (i.e., systems without
dechlorination activity): to improve the ability of the model to
distinguish relevant features and reduce overfitting; (2) integrating
metagenomic data to identify functional genes (e.g., rdhA, pceA, and
vcrA) and their distributions across samples, enabling high-
resolution mapping of species—enzyme-pathway relationships
that supplement high-resolution mapping of community compo-
sition data; and (3) expanding the dataset through systematic data
acquisition, including standardized experimental records and direct
sequencing repositories (e.g., National Center for Biotechnology
Information Sequence Read Archive [NCBI], the Kyoto Encyclopedia
of Genes [KEGG] and Genomes, and the Gene Expression Omnibus
[GEQ])), to enrich the diversity and completeness of feature sets. This
would enable the ML model to better generalize across systems and
improve its capacity for inverse design under varying environ-
mental and operational conditions.

Moreover, incorporating electrodynamic systems into the ML
framework would facilitate the development of a unified model for
biodechlorination prediction. This integration would enable cross-
system comparisons between bioelectrochemical and electrody-
namic setups, thereby enhancing both the interpretability and
optimization of dechlorination processes through ML. In addition,
the inclusion of spatial and long-term temporal data supports the
generation of persistent auxiliary predictions, further improving
the applicability of the framework to real-world site restoration
efforts.
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5. Conclusion

This study developed ML models to address a critical gap in
microbial electrorespiration dechlorination and propose a
machine-driven bioelectrochemical framework that integrates
biological data to analyze the interrelationships between envi-
ronmental factors, dechlorination efficiency, electrochemical
properties, and functional microbial communities. We verified the
inverse design function of the model through random experiments
with three typical COPs. After iterative searches, the reaction rate
prediction achieved a relative error within 6% and an RMSE of less
than 1. This demonstrates that satisfactory operating features can
be determined using ML without additional practical experiments.
Furthermore, the ML framework proposed in this study is adapt-
able for designing and optimizing other BESs. It can also be applied
to develop biosystem architectures tailored to specific needs or to
lay the groundwork for creating more generalized bioinformatics
metamodels.
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