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a b s t r a c t

Microbial electrorespiration harnesses bacteria to drive reductive dechlorination, offering a sustainable 
method to remediate environments contaminated with persistent chlorinated organic pollutants 
(COPs). However, aquifers' complex hydrogeological and hydrochemical conditions, combined with 
uneven COP distribution, create substantial spatial and temporal variability in biochemical reactions, 
environmental factors, and microbial communities. Traditional trial-and-error experiments are labor-
intensive and slow, impeding the quick identification of conditions that accelerate dechlorination 
rates. Here we show that a machine learning framework, integrating experimental design with cathodic 
biofilm data, uncovers key interrelationships among environmental variables, dechlorination kinetics, 
electrochemical properties, and functional microbes, enabling rapid optimization of bio-
electrodechlorination. Trained on literature-derived datasets using models such as extreme gradient 
boosting, random forest, and multilayer perceptron, this framework identifies temperature and cathode 
potential as primary drivers in experimental design while highlighting key biofilm genera, including 
Clostridium, Desulfovibrio, Dehalococcoides, Pseudomonas, Dehalobacter, Arcobacter, Lactococcus, and 
Geobacter. It supports inverse design to determine optimal parameters—such as cathode potential, 
temperature, and additives—for dechlorinating representative COPs, including tetrachloroethene, tri-
chloroethene, and 1,2-dichloroethane, achieving reaction rate predictions with errors below 6%. This 
approach surpasses conventional methods by increasing efficiency, cutting costs, and accelerating 
bioremediation without extensive laboratory testing. By incorporating microbial community insights 
into predictive models, our data-driven strategy advances the scalable application of microbial elec-
trorespiration for COP-contaminated water remediation and paves the way for broader bio-
electrochemical uses in environmental engineering.

© 2025 Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin 
Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access 

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Microbial electrode respiration is an effective approach for 
enhancing the microbial dechlorination process during bioreme-
diation of water bodies contaminated with chlorinated organic 
compounds (e.g., soil, groundwater) [1]. However, the complexity 
of the hydrological and hydrochemical environments in

groundwater, the heterogeneity of chlorinated organic pollutants 
(COPs), and the diversity of functional microorganisms signifi-
cantly increase the difficulty of regulating microbial remediation 
activity [2,3]. Obtaining optimal system design and operational 
features typically involves conducting exhaustive or orthogonal 
experiments in the laboratory [4], which is often expensive, labor-
intensive, and unsustainable [5]. In addition, finding similar sce-
narios with matching pollution characteristics, reaction condi-
tions, and hydrogeological environments based on existing 
research and experience is challenging, making the development 
of comprehensive reaction models difficult.
Fortunately, decades of research on microbial electrode respi-

ration for reductive dechlorination have laid a solid foundation for 
data-driven approaches, such as machine learning (ML). ML can
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analyze large volumes of data to extract insights and identify 
patterns and trends, thereby improving outcomes [6]. In the realm 

of organochloride migration and transformation, ML has demon-
strated reliable efficacy in various applications, including chloride 
ion diffusion analysis [7], ball milling for enhanced dechlorination 
efficiency [8], and in situ electrochemical dechlorination analysis 
[9]. Compared to mechanistic reaction kinetics models, such as 
quantitative structure–activity relationships and quantitative 
structure–property relationships, ML can achieve more satisfac-
tory outcomes by leveraging a broader spectrum of features, 
including environmental features and material structures. This 
ability provides support for the concept of goal-oriented opti-
mized design. An optimized design begins with the expected 
performance based on the predicted model. It works backward to 
derive the model inputs, allowing for the use of ML to predict 
outcomes using rich and complex input features without requiring 
highly specific and in-depth foundational research.
Currently, ML-based inverse design methods have been 

employed to optimize process flows based on operational char-
acteristics in areas such as electrochemical oxidation processes [5], 
membrane filtration [10], and biomass hydrogen production [11]. 
Although significant progress has been made in inverse design 
systems using ML, these systems rarely include microbial com-
munity data. In addition, when microbial communities are 
involved, bacterial communities are often used as a data-driven 
analytical tool rather than as features applied to inverse design 
[12,13]. Although Peng and Tan [7] made a preliminary attempt to 
apply inverse design for dechlorination adsorption in slag powder 
and fly ash concrete using the ultra-high lime aluminum method, 
no study has yet developed ML models to predict reaction rate 
constants incorporating microbial communities. Moreover, there 
is no research related to developing ML-based models for micro-
bial electrochemical dechlorination, limiting the advancement of 
bioremediation technology for COPs. In addition, developing 
models that integrate experimental manipulation characteristics 
and biological features, rather than just considering biological 
data, will further enhance the inverse design process. The lack of 
in-depth exploration of these data limits the guiding value and 
wide promotion potential of ML in the practical applications of 
microbial electrode respiration.
Herein, we introduce an inverse design strategy that leverages 

ML to optimize bioelectrical dechlorination. This approach estab-
lishes robust correlations among operating features, cathodic 
biofilm characteristics, and dechlorination efficacy, thereby facil-
itating the identification of optimal dechlorination conditions. We 
first use a dataset derived from the literature to evaluate the 
performance of the models both with and without incorporating 
operational and biological features. To interpret the models, we 
employed the Shapley additive explanations (SHAP) methodology. 
Subsequently, we used particle swarm optimization (PSO) for in-
verse design to pinpoint the optimal combination of dechlorina-
tion features. The identified conditions were then experimentally 
validated through microbial electrorespiration dechlorination tri-
als. This research provides valuable insights into the application of 
inverse design in microbial electrorespiration dechlorination and 
advocates for the advancement of inverse design models that 
incorporate biological data.

2. Materials and methods

2.1. Collection and processing of the dataset

The dataset was constructed from published studies on micro-
bial electrorespiration dechlorination using keywords such as 
“bioelectrochemical,” “chlorinated pollutant,” and “dechlorination.”

Through rigorous manual screening, 357 data points from 68 peer-
reviewed research papers were selected to build the dataset for ML 
analysis. The dataset was categorized into three groups: experi-
mental design, cathodic biofilm, and reaction rate data. Details of 
the feature categories, naming conventions, units, and additional 
information in the dataset are provided in Supplementary Text S1. 
Our datasets can be obtained in the Supplementary data (Database. 
xlsx).
Experimental design data describe the experimental operation 

characteristics and include 357 data entries. The key features 
include target pollutant, pollutant concentration (mmol kg − 1 ), 
strain, cathode chamber volume (mL), cathode electrode material, 
cathode electrode area (cm 2 ), anode chamber volume (mL), anode 
electrode material, anode electrode area (cm 2 ), electrode modifi-
cation material, additives for auxiliary reactions, additive dosage, 
cathode potential (mV; standardized to standard hydrogen elec-
trode [SHE]), ISBio, ISEle, and ambient temperature ( ◦ C). ISBio and 
ISEle are composed of 0 and 1, respectively, to distinguish whether 
an experiment includes bio-sludge or electrode stimulation. Target 
pollutant was represented by quantum descriptors [E gap , E HOMO ,
E LUMO , μ, f(− ) min/max , f(+) min/max , f(0) min/max , f(− ) Cl,min/max , f(+) Cl,
min/max , and f(0) Cl,min/max ], which are calculated using ORCA and 
Multiwfn (details in Supplementary Text S2).
Cathodic biofilm data include the relative abundances of bac-

teria at the genus and species levels after the experimental reactor 
had reached a stable operating state, with 88 entries at the phylum 

level and 95 at the genus level. Bacterial species with low relative 
abundances (<0.6%) are categorized as “Others,” and unidentified 
species are filled with a value of 0. The reaction rate data describe 
the reaction rate (k, s − 1 ) of pseudo-first-order kinetics, obtained by 
fitting the reaction data. Owing to the wide range of k, it is 
transformed into a base-2 logarithm to enhance model accuracy 
[5].

2.2. Model development and optimization

Discrete and nonnumerical features were encoded to facilitate 
the analysis. In the actual bioelectrochemical system (BES), the 
categories for features such as cathode electrode material, anode 
electrode material, electrode modification material, and the ad-
ditive of auxiliary reaction were more diverse than those described 
in the dataset. Using one-hot encoding can excessively expand 
feature dimensions, thereby reducing the performance of ML 
analysis. Therefore, in this study, nonnumerical features were 
described using target encoding. To prevent data leakage, encod-
ing methods were applied only to the subset of training data. 
Missing values in the dataset were estimated using the k-nearest 
neighbors algorithm (Supplementary Text S3).
All ML analyses were performed using Python 3.8.7. Commonly 

used ML models were employed for designing, including extreme 
gradient boosting (XGBoost), random forest (RF), support vector 
machines, multilayer perceptron (MLP), process, decision tree, 
least squares linear regression, ridge regression, and stochastic 
gradient descent. The dataset was randomly split into a training set 
and a test set in a 9:1 ratio. A grid search (details in Supplementary 
Text S4) with tenfold cross-validation was employed for hyper-
parameter tuning of the models. As reaction rate data can only be 
obtained experimentally, k is the output of the model.
To observe and compare the effects of different inputs on ML 

performance, the impacts of the experimental design and cathodic 
biofilm data on k were examined separately. In this study, we 
tested five types of ML models.

(1) e2k: Experimental design data as input and reaction rate 
data as output.
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(2) bP2k: Cathodic biofilm data (phylum level) as input and 
reaction rate data as output.

(3) bG2k: Cathodic biofilm data (genus level) as input and re-
action rate data as output.

(4) ebP2k: Combined experimental design and cathodic biofilm 

data (phylum level) as input and reaction rate data as 
output.

(5) ebG2k: Combined experimental design and cathodic biofilm 

data (genus level) as input and reaction rate data as output.

The approach of predicting cathodic biofilm data using exper-
imental design data was tested in advance (see Supplementary 
Text S5 for details). This method resulted in overfitting in the 
training set, with R 2 values < 0 in the test set. Predicting biological 
information through ML requires analyzing and providing a sig-
nificant number of output features, increasing the dimensionality 
and sparsity of data, which leads to decreased model generaliza-
tion ability and is the primary cause of underfitting [14]. Thus, 
predicting cathodic biofilm data using experimental design data 
was deemed infeasible for this dataset.
To interpret ML outputs with a black-box nature from both 

global and local perspectives, the SHAP method was used to 
calculate the marginal contributions of the features in the model 
outputs [15]. Input data were normalized to ensure consistency in 
the spatial range. Two common error analysis metrics, R 2 and root 
mean square error (RMSE), were used to evaluate ML performance. 
An ideal model typically exhibits a high R 2 value or a low RMSE 
[13]. Owing to differences in calculation methods, the best R 2 value 
and RMSE do not necessarily coincide with a set of model features. 
As RMSE is less sensitive to outliers, it was used as a metric for 
hyperparameter tuning. To further enhance model performance, 
methods such as principal component analysis (PCA), correlation 
analysis, and SHAP were employed to reevaluate the important 
features, followed by retraining to achieve the optimal model. 
Partial correlation analysis was used to further validate the SHAP 
results. A life cycle assessment (LCA; details in Supplementary Text 
S6) was conducted to analyze environmental impact during the 
model validation steps.

2.3. Construction and verification of an inverse design framework

To identify the optimal experimental features and biological 
distribution characteristics of the trained ML model, PSO was 
chosen based on its superior performance and faster convergence 
in continuous optimization problems [16,17]. This selection is 
supported by the comparative test results presented in Supple-
mentary Text S7, where it outperformed other algorithms, such as 
genetic algorithms and simulated annealing. The settings for PSO 
are detailed in Supplementary Text S8. Currently, there are no 
effective means to regulate the bacterial community in biofilms 
directly. The distribution of bacterial communities in reactors, 
particularly in large-scale facilities such as sewage treatment 
plants, is continuously influenced by unpredictable toxic sub-
stances, including antibiotics, heavy metals, and plastics [18,19]. To 
address this, we first determined preliminary experimental con-
ditions using the e2k model and PSO, as shown in the inverse 
design framework (Fig. 1). Subsequently, the eb2k model 
(including ebG2k and ebP2k) was constructed based on the cath-
ode biofilm data obtained from actual experiments. The search 
algorithm was then reapplied to refine the experimental condi-
tions. This iterative process continued until the ideal range of 
feature conditions was identified.
The inverse design was experimentally validated to enhance 

the credibility of the model predictions (Supplementary Text S9) 
using an H-type dual-chamber BES reactor. A saturated calomel

electrode was used as the reference electrode for monitoring 
electrode potential, which was converted to a SHE representation. 
Three chlorinated hydrocarbons were selected for reductive 
dechlorination experiments: tetrachloroethylene (PCE), trichloro-
ethylene (TCE), and 1,2-dichloroethane (1,2-DCA), due to their 
representative environmental hazards (Supplementary Text S10). 
The experiment was repeated three times, and the final data were 
reported as average values. Further details regarding the reactor, 
electrodes, contaminants, and monitoring methods can be found 
in Supplementary Text S11.

3. Results and discussion

3.1. Descriptive analysis of the dataset

The visualization of the experimental design data distribution 
based on log 2 k ranking results did not reveal any obvious mathe-
matical relationship between the features and k (Supplementary 
Fig. S1). This observation was quantitatively supported by the 
linear analysis results (Supplementary Text S12), which indicate 
that more complex mathematical variations exist in the data. As 
the dataset was compiled from various literature sources and most 
features did not conform to a normal distribution (p = 0.05, details 
in Supplementary Text S13), the Spearman coefficient was used for 
the correlation analysis. Each feature in the experimental design 
data showed a weak correlation with k (Supplementary Fig. S2), 
with absolute values < 0.350. Nevertheless, these features may still 
contribute differentially to the output, which means that the 
preliminary selection of these features is feasible.
The molecular orbital information reflected by E HOMO and 

E LOMO showed similar changes in value. Compared with the E HOMO 
and E LOMO values, E gap is more relevant because it reflects the 
numerical difference between E HOMO and E LOMO and is often used 
to measure the ease of excitation of a molecule. Therefore, E HOMO 
was removed from the input and replaced by E LOMO and E gap . As the
0 point in the cathodic potential represents no electrode stimu-
lation, the numerical jump of the cathodic potential near the
0 point showed a similar trend to ISEle. To avoid model blinding 
caused by highly homogeneous information, μ was removed from 

the input. In the PCA, the positions of the experimental design data

Fig. 1. Conceptual framework for the inverse design of microbial electrorespiration 
dechlorination using machine learning (ML). The process begins with the application 
of the e2k model in the absence of microorganisms. This initial step is necessary due 
to the inherent complexity of the microbial/sludge mixture, which hinders effective 
prediction. The objective is to identify a feasible, though not necessarily optimal, set of 
features. Subsequently, experiments are performed under these improved conditions 
to generate biological data. This data, combined with the corresponding experimental 
conditions, is then used to inform the next round of optimization using the eb2k 
model. The eb2k-guided search is iteratively repeated until a cost-effective and 
satisfactory outcome is achieved.
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features were far from each other (Fig. 2a), indicating a weak 
correlation among the features. The data points were primarily 
concentrated around features such as strain, cathode potential, 
pollutant concentration, material (anode), and the Fukui index, 
suggesting that these may be the primary factors influencing the 
dechlorination reaction. There were almost no clustered data 
points near f min [including f(+) min , f(− ) min , and f(0) min ]. A higher 
Fukui index indicates a greater likelihood of an atomic system 

being attacked, while f min , which represents the lowest value, 
might lack potential analytical value in dechlorination systems. As 
redundant data, f min could complicate the model and hinder 
interpretability; thus, it was removed from the input. Overall, 
E HOMO , μ, ISEle, and f min were considered potentially inappropriate 
traits and excluded from this study. The interactions between 
biological populations are complex, making it challenging to 
remove features from cathodic biofilm data reasonably. The dy-
namic changes in the ecological network framework suggest 
inseparable relationships among organisms. Hence, all features of 
the cathodic biofilm data were used as input.
Due to the availability of complete biological network infor-

mation at each data point, no strong correlations were observed 
between k and bacterial abundance, suggesting that the dechlo-
rination process is unlikely to be dominated by a single bacterial 
strain (Supplementary Text S14). The co-occurrence analysis 
(shown in Fig. 2c and d; Spearman's ρ > 0.40, p < 0.01) revealed 
that bacteria with larger node degrees exhibited lower co-
occurrence with other bacteria, whereas those with smaller node 
degrees tended to have higher co-occurrence. This suggests that 
bacteria with larger node degrees may crowd out other bacteria, 
forcing those with smaller node degrees to collaborate. At the 
phylum level, bacteria such as Bacteroidetes, Chloroflexi, and 
Actinobacteria, and at the genus level, bacteria such as Pseudo-
monas, Geobacter, Lactococcus, and Desulfovibrio exhibit higher 
node degrees and are potential dechlorinating bacteria [19,20]. 
The increased data dimension in cathodic biofilm data relatively 
reduces the explanation of the first two principal components in 
the PCA compared with the experimental design data (Fig. 2b and 
Supplementary Fig. S3). More features were clustered near the 
data points, and the feature distribution became more concen-
trated, highlighting the direct effect of organisms on the reaction 
system.
The highest log 2 k values of the different pollutants (Fig. 3) were 

mainly concentrated in the range of − 20 to − 10. Hexa-
chlorocyclohexane had the most significant dechlorination effect 
due to its unstable six-carbon ring and abundant chlorine sub-
stituents, followed by chloramphenicol, which had a larger mo-
lecular weight. The dechlorination rate was lowest for 
polychlorinated biphenyls (PCB 61), an organic matter that is 
extremely difficult to decompose, with a natural degradation time 
of approximately 50 years in soil [21]. It was better to consider 
using additives such as polysorbate 80, which had been reported to 
improve dechlorination efficiency [22,23]. Analysis of the log 2 k 
ranking revealed that compounds with more chlorine atoms and a 
more dispersed chlorine distribution tended to exhibit greater 
resistance to dechlorination. For example, compared with 2,4,6-
trichlorophenol, 2,3,4,5-tetrachlorobiphenyl had more chlorine 
atoms distributed in different positions, making dechlorination 
more difficult. Pollutants with ring structures, such as poly-
chlorinated biphenyls and hexachlorocyclohexane, are more 
challenging to dechlorinate because of their stability. In particular, 
compounds with greater polarity, such as trichloroacetic acid, 
although relatively simple in molecular structure, showed reduced 
dechlorination performance due to their high polarity.

3.2. Verification in ML

Preliminary tests using the ebG2k model (Supplementary 
Fig. S4) revealed that R 2 exceeds 0 when the dataset has more 
than 100 points and stabilizes at approximately 0.8 beyond 200 
points. Previous ML studies on degradation with similar datasets 
(e.g., 215 [24] and 315 [5] points) also fall within this range, indi-
cating that our dataset is likely sufficient to support reliable con-
clusions and performance. Supplementary Fig. S5 shows the 
performance differences of each model in the test and training sets 
based on the results of the hyperparameters (Supplementary Text 
S15). Ordinary multivariate linear estimators (e.g., ridge and least 
squares linear regressions) performed poorly because of the 
complex relationships within the data. The methods that per-
formed exceptionally well across the different modes were 
XGBoost, RF, and MLP, with RF and XGBoost being particularly 
notable. RF achieved the best results in the e2k and bG2k modes, 
while XGBoost excelled in the ebP2k and ebG2k modes, displaying 
similar performances in both the test and training sets. The bP2k 
mode, which contained narrow-space bacterial data at the phylum 

level, enhanced MLP's ability to learn sparse information. How-
ever, neural networks generally underperform compared with tree 
models in small-scale datasets (data <1000) [25], resulting in 
poorer performance for bP2k compared with other types. XGBoost 
enhances performance by iteratively training multiple weak 
learners and continuously optimizing their combination, making it 
well-suited for processing high-dimensional data in ebP2k and 
ebG2k [5]. RF captures linear relationships effectively by con-
structing multiple decision trees from training samples, which was 
particularly advantageous for the e2k and bG2k datasets with 
fewer features and samples, allowing it to extract useful infor-
mation more effectively. These best-performing models were used 
separately for training of different input frameworks.
The initial SHAP value analysis results (Supplementary Fig. S6) 

were used to optimize e2k. Owing to insufficient data on single 
bacterial strains in the dataset, strain was initially considered the 
least important feature. However, due to the differences in meta-
bolic pathways between mixed and single bacteria, strain 
remained an important discriminative label. Features were 
sequentially removed in order of increasing importance. A minor 
improvement in e2k was achieved when f(0) Cl,max was excluded, 
resulting an optimized RMSE (test set) from 1.762 to 1.750. When 
both f(0) max and f(0) Cl,max were excluded, the RMSE (test set) was 
1.756. Further feature deletion was not optimal. The exclusion of f 
(0) max yielded poor results in the ebP2k and ebG2k scenarios 
because of the changes in input. As the exclusion of f(0) max did not 
result in significant optimization and to maintain input consis-
tency as much as possible, the original input features were 
retained for analysis.
Among these models with different input and output (Fig. 4), 

bP2k produced noticeably poorer results due to the sparse and 
coarse-grained nature of microbial information at the phylum 

level. This is primarily due to the limited resolution of microbial 
information at the phylum level, which tends to obscure ecologi-
cally and functionally distinct taxa under the same broad classi-
fication. For instance, both Clostridium and Dehalobacter belong to 
the Firmicutes phylum and play vastly different ecological roles. 
Clostridium is commonly associated with fermentative meta-
bolism, whereas Dehalobacter is a known organohalide-respiring 
bacterium with strong dechlorination capabilities. Such key 
functional differences are masked when only phylum-level data 
are used, making it difficult for the model to capture essential 
biological mechanisms related to pollutant degradation. By
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contrast, the models that incorporated genus-level features 
demonstrated significantly improved performance. bG2k achieved 
an R 2 of 0.915, and ebG2k reached an R 2 of 0.873. Most data points 
clustered closely around the 1:1 line, indicating strong predictive 
capabilities. These results highlight the importance of finer taxo-
nomic resolution in capturing key ecological and functional dif-
ferences in microbial communities.
When quantum descriptors were not used (Supplementary 

Fig. S7), the average RMSE across all modes increased by 0.342, 
indicating that constructing pollutant features using quantum 

descriptors provides more accurate predictions. Limited by the 
data set, different inputs provide different numbers of data points

for the model. Rich databases generally led to excellent perfor-
mance, but bG2k, ebP2k, and ebG2k, which contained biological 
information, achieved better performance than e2k, with more 
data points. This suggests that microorganisms fundamentally 
mediate the bioelectric respiration system. In other words, the k 
value essentially depends on biological development and respi-
ratory conditions, with operating conditions, such as electrode 
potential, as auxiliary indirect regulatory means. In addition, the 
inclusion of experimental data alleviated the sparse spatial dis-
tribution issue of gate data, improving the previously poor RMSE of 
ebP2k from 2.671 to 1.776. This demonstrates that comprehensive 
consideration of experimental operations and biological

Fig. 2. Basic description of the dataset. a–b, Principal component analysis of experimental design data (a) and cathodic biofilm data at the phylum level (b). Due to the extensive 
characteristic information, only a subset of strains is labeled in panel b. c–d, Co-occurrence analysis for the frequently observed phylum (c) and genus (d) in the dataset 
(Spearman's ρ > 0.4, p < 0.01). Node size is scaled according to node degree.
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information contributes to a more robust ML learning system. 
Overall, we conclude that our ML training effect is acceptable, 
except for bP2k.

3.3. Feature importance analysis

SHAP value was calculated to comprehensively present feature-
importance for each mode (Fig. 5a–c [including e2k, bG2k, and 
ebG2k, respectively] and Supplementary Fig. S10 [including bP2k 
and ebP2k]). For the experimental operation characteristics in e2k, 
ISBio showed a bimodal SHAP value distribution, where the addi-
tion of biological elements (red data points) significantly promotes 
the dechlorination system. This is corroborated by correlation re-
sults (Supplementary Fig. S2). Temperature was identified as the 
most critical feature, with significant impacts on biological 
dechlorination efficacy [26,27]. This ranking also applies to ebP2k 
and ebG2k (Fig. 5c). In the e2k mode, the secondary experimental 
feature is the cathode potential. Electrodes are insoluble electron 
donors and can be provided sustainably and controllably to 
dechlorinating bacteria by applying an appropriate potential, 
effectively avoiding side reactions caused by organic matter 
addition and improving electron utilization efficiency. The SHAP 
data points were concentrated around the 0-axis, with a trailing 
effect in the negative region. High potential exhibited negative 
SHAP values, highlighting the bioactivation effect of low potential. 
Excessively low potential failed to provide sufficient electrons to 
microorganisms, while excessively high potential led to hydrogen-
driven side reactions that hindered electron utilization by micro-
organisms [28]. Thus, bioelectric respiratory dechlorination usu-
ally has an optimal potential range. Other experimental features, 
such as electrode surface area and additive dosage, gained 
importance in the eb2k model, indicating stronger interactions 
with microorganisms. For instance, increasing the electrode sur-
face area provides more space for biofilm attachment and has been 
shown to increase the proportion of electroactive microorganisms 
in the reaction system [29], as reflected in the SHAP distribution. 
As cathode materials are carriers for microbial growth, their SHAP 
values were generally positive (Supplementary Fig. S8a),

indicating a favorable contribution to system performance. Among 
these materials, carbon fiber was identified as the most influential, 
followed by graphite (Supplementary Fig. S8b). Both materials 
exhibit excellent electrical conductivity, facilitating electron 
transfer, and feature porous structures with large specific surface 
areas that promote microbial adhesion and growth. However, the 
marginal benefit of further increasing the electrode area on 
degradation performance tends to diminish (Supplementary 
Fig. S9), possibly due to factors such as microbial distribution 
saturation and limitations in optimizing electron transfer 
pathways.
Several reported dechlorinating respirators (at the genus level) 

were ranked highly in our SHAP analysis, including Clostridium, 
Desulfovibrio, Dehalococcoides, Pseudomonas, Dehalobacter, Arco-
bacter, Lactococcus, and Geobacter [30,31]. The category “Other” in 
genus was emphasized in the biological model (bP2k and bG2k) 
because each sample contained these feature data. Clostridium and 
Desulfovibrio had clear, two-headed SHAP distributions. Although 
both are electroactive bacteria that can use electrodes for respi-
ration, the average dechlorination capacity increase of the system 

tends toward low-abundance Clostridium and high-abundance 
Desulfovibrio, similar to the results reported by Lin et al. [32]. 
Geobacter was ranked higher in ebG2k, a classic dechlorinating 
genus that can use electrodes as the sole electron donor for 
reductive dichlorination [33]. Important quantum features that 
represent pollutant characteristics were identified as f(+) max and f 
(+) Cl, min , indicating that the Fukui index is more indicative of 
dechlorination reaction difficulty than E gap .
The SHAP heatmap (Fig. 5d, including e2k; Supplementary 

Fig. S10, including bP2k and ebP2k; and Supplementary Fig. S11, 
including ebG2k and bG2k) shows the comprehensive contribu-
tion of each feature to k. There were strong spatial contributions 
and short-lived features in the high-range k value interval, such as 
additive dosage (e2k), Desulfovibrio (bG2k/ebG2k), Geobacter 
(ebG2k), and material (cathode), which might be potential im-
provements for dechlorination systems. The total contribution of 
the experimental features surpassed that of the quantum de-
scriptors and biological features (Supplementary Fig. S12),

Fig. 3. The highest log 2 k for each pollutant based on the dataset, sorted in descending order.
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emphasizing the importance of experimental strategies and 
methods. The one-dimensional partial dependence and SHAP 
feature dependence plots for e2k (Supplementary Fig. S13–S14) 
and ebG2k (Supplementary Fig. S15–S16) illustrate the effects of 
variations in experimental features on log 2 k. Both analyses indi-
cate that these effects are not statistically significant. While some 
differences were observed, SHAP dependence plots provide more 
detailed insights into data concentration than the one-
dimensional partial dependence plots. Based on the SHAP value 
analysis results, we summarized the range of experimental fea-
tures that can achieve higher k values (Supplementary Table S1). 
The SHAP value analysis results also provided a joint analysis 
perspective with cathode potential, intuitively showing the impact 
of potential distribution. For example, weak electrical stimulation 
(0–400 mV) suits pollutants with f(+) max of approximately 0.150 
(e.g., 2-chlorophenol and 4-nitrochlorobenzene), while a stronger 
potential (>400 mV) was more conducive to the removal of pol-
lutants with an f(+) max of approximately 0.100 (e.g., chloram-
phenicol and triclocarban). These potential conclusions have been 
confirmed by previous studies [34,35]. SHAP interpretation is 
based on ML models rather than real substances, so SHAP analysis 
provides functional rather than substance-based conclusions, 
limiting these recommendations to laboratory environments 
based on our dataset.

3.4. Inverse design and experimental verification

Building upon the previously mentioned experimental

operating conditions (Supplementary Text S11) and the inverse 
design process (Fig. 1), we tested the inverse design effects of PCE, 
TCE, and 1,2-DCA using our trained ML model. We first fixed some 
basic features (Supplementary Table S2), such as the quantum 

description of pollutants. We then determined other features 
(Supplementary Table S3) to quickly narrow the adjustment range 
with e2k. Chamber volume tends to form a mutually reinforcing 
relationship with area (cathode/anode) [36], which makes the two 
features always converge at a larger value (chamber volume 
>300 mL, area of cathode/anode >200 mL). To prevent this phe-
nomenon, we fixed the chamber volume to 100 mL and the area 
(cathode/anode) to 42.41 cm 2 (diameter and height, both 3 cm). 
The search results (Table 1) were verified through parallel exper-
iments, with a relative error of less than 10%. Control experiments 
with 9 sets of random features configurations (Supplementary 
Table S4) prove that this result has local optimality. The rapid 
determination of the optimal preliminary operating factors 
without any preliminary experiments initially confirmed the ML-
based reverse design.
Owing to the large number of features to be further adjusted, 

given the significant impact of the cathode potential on bioelectric 
respiratory dechlorination [31,37,38] and the ease of temperature 
control, these two features were selected as primary regulatory 
factors for further optimization. To address other features as out-
lined in Supplementary Table S2, we employed PSO to optimize 
the results. The search results based on the e2k model for PCE, TCE, 
and 1,2-DCA yielded cathode potentials of − 510.8, − 456.0, 
and − 458.1 mV, respectively, with temperature results

Fig. 4. Prediction performance of ML models under different configurations: e2k (a), bP2k (b), bG2k (c), ebP2k (d), and ebG2k (e). The solid diagonal line represents perfect 
prediction, while the dashed lines denote the ± root mean square error on the test set. The distribution of actual and predicted output values is shown on the upper and right sides 
of each panel.
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concentrated at approximately 23.2 ◦ C. Dechlorination perfor-
mance tests at 23.0 ± 10.0 ◦ C under the same cathodic potential 
(Supplementary Fig. S17) showed a lower reaction rate, which 
indicates that the chosen temperature may be suitable for mi-
crobial development in this range. We then set the temperature of 
the experimental environment to 23.0 ± 3.0 ◦ C and the cathode 
potentials for PCE, TCE, and 1,2-DCA to − 510.0, − 450.0, 
and − 450.0 mV, respectively, for e2k experimental verification. 
These features were predicted using the e2k model, with an RMSE 
of 0.977 and a relative error of 5.032% (Fig. 6a).
For a unified comparison, temperature and other conditions 

were fixed, and cathode potential was reoptimized using the eb2k 
model based on acquired cathode biofilm data. The predictive 
performance of the ebP2k model was inferior to that of ebG2k 
(Supplementary Table S5), consistent with previous model evalu-
ations, indicating that genus-level data are more suitable for in-
verse design. According to the PSO results of ebG2k 
(Supplementary Table S6), cathode potentials were set 
to − 260.0, − 280.0, and − 270.0 mV, respectively. The log 2 k pre-
diction accuracy of ebG2k improved compared with e2k, with an 
RMSE of 0.843 and a relative error of 4.696% (Fig. 6b). The microbial 
abundance information at the phylum and genus levels under 
different potential conditions is shown in Supplementary Fig. S18 
and Fig. 6d, respectively. Further optimization using ebG2k 
(Supplementary Fig. S19) shows limited improvement in PCE and 
TCE reaction rates, and a relatively low reaction rate for 1,2-DCA. 
This may be due to the experimental errors within the narrow 
adjustment range or similar solutions from the PSO random step 
search. The initial ebG2k potential conditions seem sufficient for 
achieving satisfactory dechlorination effects. Therefore, we 
stopped further optimization at this point.
Additional experiments at − 100.0 and − 600.0 mV confirmed 

the reliability of these results. Among the four potential settings, 
the ebG2k-searched potential conditions showed the optimal k 
value, followed by e2k, indicating that our ML model had achieved 
a locally optimal solution. Using the bG2k model for k prediction 
yielded a relative error of 1.562% (Supplementary Table S7), which

suggests that preliminary inferences of k based on genus-level 
data are feasible. Among the five models, bG2k exhibited the 
best performance. However, owing to the lack of direct methods 
for effectively balancing suitable abundance systems, the regula-
tory process from e2k to eb2k remains practically significant. The 
relative error of bP2k was 17.923%, but the relative error of the 
ebP2k model, which combines experimental feature regulation, 
was reduced to 6.304%, which indicates that mixed data of bio-
logical and experimental conditions helped the ML model search 
for better results. The relative errors (Supplementary Text S16) in 
all experimental results for e2k and ebG2k were within 6%, com-
parable with the inverse design of the electrochemical oxidation 
process for water purification (<5%) [5] and anaerobic digestion 
for CH 4 -rich biogas production (<9%) [39]. From an application 
perspective, we thought this error was acceptable. We further 
tested the model on newer relevant literature [40] (data not 
included in our dataset). The relative error of the e2bGk model was 
4.553%, further demonstrating the operability of ML.
In the experimental results (Fig. 6c), the biodegradability of the 

three chlorinated hydrocarbons follows the order 1,2-DCA, TCE, 
and PCE. The numerical orders of E gap and bond dissociation en-
ergy also support this view (Supplementary Fig. S20). The 
increased difficulty of dechlorination for TCE and PCE may be due 
to their double bond structures and the limited types of bacteria 
capable of reducing trans-1,2-dichloroethene (the dechlorination 
product of TCE and PCE) [41]. While the e2k model learned this 
pollutant information, the ebG2k model (Supplementary Fig. S21) 
failed to capture similar patterns, which indicates that our data 
scale still limits the model's spatial differentiation of different 
pollutants. Moreover, the complex distribution of biological in-
formation also significantly impacted the model. For example, 
Geobacter is the dominant genus in 1,2-DCA, while Lactococcus and 
Bacillus mainly regulate PCE and TCE (Fig. 6d). Desulfovibrio 
showed some enrichment in all three pollutants. These relation-
ships between bacteria and cathode potential were similar to the 
SHAP dependency results of ebG2k (Supplementary Fig. S22). 
Unfortunately, the search for biological features was less

Fig. 5. Eigenvalue interpretation analysis based on Shapley additive explanations (SHAP). a–c, The distribution of SHAP values for each feature in the e2k (a), bG2k (b), and ebG2k 
(c) modes. The x-axis represents data points ordered by the total SHAP values of all features. d, The heat maps of SHAP values for each feature in the e2k mode. The learning mode 
of each panel highlighted the top 15 features. The bar plot adjacent to the y-axis indicates the mean absolute SHAP value (|SHAP|) for each feature, sorted in descending order. The 
value above the heatmap reflects the cumulative SHAP value for all features, indicating their overall contribution to the model's output magnitude.
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successful in our dataset. The ML results overemphasized the role 
of non-dehalogenating bacteria (Supplementary Fig. S23), such as 
Desulfovibrio and Carnobacterium, and the abundance distribution 
of the bacterial community was inconsistent with the findings of 
existing studies [32,42]. This was mainly attributed to the dataset 
being too small to support a drastic increase in search breadth. 
Conducting traditional experiments to identify optimal condi-

tions is economically, energetically, and time-consuming. Using 
ML-assisted inverse design, within the four potential ranges used, 
could reduce half waste with two potential experiments. The LCA 
results indicate that using ML in our experiments could help 
reduce global warming potential (GWP100) and non-renewable 
energy use (NREU) by 14.90 kg CO 2 eq and 29.40 kJ, respectively 
(Fig. 6e), representing the minimum resource savings. Next, we 
replaced the additive acetate with sodium bicarbonate 
(10.00 mmol kg − 1 ) and glucose (1.67 mmol kg − 1 ) in PCE and 
repeated the operations. The final search potential was similar to

that when acetate was the additive. When setting the cathode 
potential to − 270.0 mV, the relative error between the predicted 
results and experimental values (Supplementary Table S8) was 
3.954%, indicating the impact of ranking different additives. If ML 
had been used for inverse design from the start — targeting all 
three features simultaneously — the resource savings could have 
reached 83.333%, calculated as 1− 50% per feature divided across 
the three features.

4. Perspective

The ML-based inverse design method effectively overcomes the 
limitations of traditional trial-and-error approaches, utilizing 
bioinformatics to inform decision-making in experimental oper-
ations. This approach provides a novel method for rapid biore-
mediation of water bodies contaminated with COPs. The five 
inverse design frameworks (e.g., e2k and ebG2k) we constructed in

Table 1
The search results for starting the experiment.

Features PCE TCE 1,2-DCA

ISBio 1 1 1
ISEle 1 1 1
Cathode potential (mV) − 510.8 ± 13.3 − 456.0 ± 22.7 − 458.1 ± 18.1 
Temperature ( ◦ C) 21.4 ± 0.5 22.7 ± 0.7 21.7 ± 1.0 
Pollutant concentration (mmol kg − 1 ) 0.36 0.94 2.10
Additive Acetate Acetate Acetate
Additive dosage (mmol kg − 1 ) 3.40 4.90 4.50
Cathode material Graphite Graphite Graphite 
Anode material Carbon cloth Graphite Graphite 
Anode area (cm 2 ) 42.41 42.41 42.41
Ave. experimental log 2 k − 14.179 − 14.328 − 15.089
Ave. predicted log 2 k − 15.166 − 14.784 − 14.417

Note: Ave. represents the average value of multiple searches.

Fig. 6. Results of the inverse design and experiments. a–b, Comparison of experimental and predicted outcomes based on approximate values identified through particle swarm 

optimization under the e2k (a) and ebG2k (b) models. Experimental temperature was maintained at 23.0 ± 3.0 ◦ C. For tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,2-
dichloroethane (1,2-DCA), the cathode potentials applied in the e2k model are − 510.0, − 450.0, and − 450.0 mV, respectively, while those in the ebG2k model are − 260.0, − 280.0, 
and − 270.0 mV. c, Experimental log 2 k values of pollutants at different potentials. d, Relative abundance of microbial taxa in the cathodic biofilm at the genus level. e, Comparison 
of life-cycle assessment outcomes for inverse design experiments conducted with and without the application of machine learning (ML), comparative indicators include lobal 
warming potential (GWP100) and non-renewable energy use (NREU).
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Text 2.2 are suitable for different scenarios. e2k is applicable when 
the biological information necessary for the preliminary deter-
mination of the operating conditions of the initiation system 

(experimental design data) is unknown. After obtaining commu-
nity data through biological information tools, either ebP2k or 
ebG2k can be used to integrate biological results and perform 

iterative optimization on the experimental design data based on 
the workflow (Fig. 1). bP2k or bG2k directly connects community 
information with k. bP2k and bG2k reflect the essential operations 
in biological systems and provide better predictive performance 
(e.g., bG2k in Fig. 4). However, precise regulation of biological 
networks is currently expensive and time-consuming, making the 
combination of experimental design data as input with ebP2k or 
ebG2k the recommended method, which was used in this study. 
Our ML framework (Fig. 1) is adaptable and not limited to dech-
lorinated metabolites, as it can also be applied to other pollutants 
and bioelectric respiration processes. The differences are mainly 
reflected in the operational characteristics of each system, and 
these databases still need to be sorted out; the contribution of 
more researchers are necessary to promote the application and 
development of the framework in a broader range of scenarios. 
Despite these advancements, our study is limited by the quality 

and completeness of the dataset used, which may have affected 
the model's performance in certain cases. For example, when using 
e2k to predict the dataset from Chen et al. [40], the relative error 
reached 11.520% (Supplementary Fig. S24), which is likely due to 
the differences in experimental conditions, such as continuous 
flow and alternating open/closed circuits. Additionally, important 
features, such as agitation method and speed, are often not re-
ported in literature, making it challenging to incorporate them into 
the model.
Microbial community complexity is another major challenge. 

The use of 16S rRNA data provides limited taxonomic resolution and 
often fails to capture the contribution of low-abundance but func-
tionally critical taxa. Moreover, literature-derived datasets 
frequently lack detailed annotations for “Other” microbial groups, 
causing the model to rely overly on well-characterized species and 
miss interactions involving unknown taxa. To address these limi-
tations, we proposed the following strategies for future work (1) 
incorporating more “negative” samples (i.e., systems without 
dechlorination activity): to improve the ability of the model to 
distinguish relevant features and reduce overfitting; (2) integrating 
metagenomic data to identify functional genes (e.g., rdhA, pceA, and 
vcrA) and their distributions across samples, enabling high-
resolution mapping of species–enzyme–pathway relationships 
that supplement high-resolution mapping of community compo-
sition data; and (3) expanding the dataset through systematic data 
acquisition, including standardized experimental records and direct 
sequencing repositories (e.g., National Center for Biotechnology 
Information Sequence Read Archive [NCBI], the Kyoto Encyclopedia 
of Genes [KEGG] and Genomes, and the Gene Expression Omnibus 
[GEO]), to enrich the diversity and completeness of feature sets. This 
would enable the ML model to better generalize across systems and 
improve its capacity for inverse design under varying environ-
mental and operational conditions.
Moreover, incorporating electrodynamic systems into the ML 

framework would facilitate the development of a unified model for 
biodechlorination prediction. This integration would enable cross-
system comparisons between bioelectrochemical and electrody-
namic setups, thereby enhancing both the interpretability and 
optimization of dechlorination processes through ML. In addition, 
the inclusion of spatial and long-term temporal data supports the 
generation of persistent auxiliary predictions, further improving 
the applicability of the framework to real-world site restoration 
efforts.

5. Conclusion

This study developed ML models to address a critical gap in 
microbial electrorespiration dechlorination and propose a 
machine-driven bioelectrochemical framework that integrates 
biological data to analyze the interrelationships between envi-
ronmental factors, dechlorination efficiency, electrochemical 
properties, and functional microbial communities. We verified the 
inverse design function of the model through random experiments 
with three typical COPs. After iterative searches, the reaction rate 
prediction achieved a relative error within 6% and an RMSE of less 
than 1. This demonstrates that satisfactory operating features can 
be determined using ML without additional practical experiments. 
Furthermore, the ML framework proposed in this study is adapt-
able for designing and optimizing other BESs. It can also be applied 
to develop biosystem architectures tailored to specific needs or to 
lay the groundwork for creating more generalized bioinformatics 
metamodels.
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