Optimal Key Consensus in Presence of Noise
Or, A Modular and Systematic Approach to KEM/KEX
Based on LWE and Its Variants*

Abstract

In this work, we abstract some key ingredients in previous key exchange protocols based
on LWE and its variants, by introducing and formalizing the building tool, referred to as key
consensus (KC) and its asymmetric variant AKC. KC and AKC allow two communicating
parties to reach consensus from close values obtained by some secure information exchange.
We then discover upper bounds on parameters for any KC and AKC. KC and AKC are
fundamental to lattice based cryptography, in the sense that a list of cryptographic primitives
based on LWE and its variants (including key exchange, public-key encryption, and more)
can be modularly constructed from them. As a conceptual contribution, this much simplifies
the design and analysis of these cryptosystems in the future.

We then design and analyze both general and highly practical KC and AKC schemes,
which are referred to as OKCN and AKCN respectively for presentation simplicity. Based on
KC and AKC, we present generic constructions of key exchange (KE), public-key encryption
(PKE), and authenticated key exchange (AKE) from LWR, LWE, RLWE and MLWE. The
generic constructions allow versatile instantiations with our OKCN and AKCN schemes, for
which we elaborate on evaluating and choosing the concrete parameters in order to achieve a
well-balanced performance among security, computational cost, bandwidth efficiency, error
rate, and operation simplicity.

*Preliminary version appears at arXiv: https://arxiv.org/abs/1611.06150.

https://arxiv.org/abs/1611.06150

Contents

1

Introduction

1.1 Our Contributions e
1.2 Applications to KEM, PKE and AKE
1.3 Advantages and Disadvantages of OKCN vs. AKCN
1.4 On Novelty of OKCN and AKCN
1.5 Recommended Algorithms L
1.6 Other Algorithms for Considerations
1.7 Concurrent and Subsequent Work

Preliminaries

2.1 Authenticated Encryption with Associated Data
2.2 Key Encapsulation Mechanism (KEM)
2.3 Public-Key Encryption (PKE) 0 000000000
2.4 The LWE, LWR, and RLWE problems

Key Consensus with Noise

3.1 Efficiency Upper Bound of KC

3.2 Construction and Analysis of OKCN
3.2.1 Special Parameters, and Performance Speeding-Up

Asymmetric Key Consensus with Noise
4.1 Construction and Analysis of AKCN
4.1.1 Simplified Variants of AKCN for Special Parameters

LWR-Based Key Exchange from KC and AKC

5.1 Security Proof of LWR-Based Key Exchange

5.2 Analysis of Correctness and Error Rate

5.3 Parameter Selection and Evaluation
5.3.1 Proposed Parameters. e
5.3.2 Security Estimation

LWE-Based Key Exchange from KC and AKC

6.1 Noise Distributions and Correctness
6.1.1 Discrete Distributions oL

6.2 Instantiations, and Comparisons with Frodo
6.2.1 Benchmark

Hybrid Construction of Key Exchange from LWE and LWR
7.1 Security and Error Rate Analysis o o L
7.2 Parameter Selection

RLWE-Based Key Exchange from KC and AKC

8.1 Combining AKCN with Lattice Code in Dy

8.2 On the Independence of Errors in Different Positions

8.3 Reducing Error Rate with Single-Error Correction Code
8.3.1 Single-Error Correction Code

13
13
14
14
15

17
17
18
21

22
23
24

26
27
31
33
34
34

35
35
37
38
39

39
40
41

T Q92 " O aQ =®w »

I

J

8.3.2 AKC and KC with SEC code
8.3.3 KEM Specification of AKCN-SEC in the Public-Key Settiing
8.3.4 KEM Specification of OKCN-SEC in the Public-Key Setting
8.4 Reducing Error Rate with Lattice Codein Fg
8.4.1 Combining AKCN with Lattice Codein Fg
8.5 On the Desirability of OKCN/AKCN-SEC and OKCN/AKCN-E8
8.6 Extension to RLWR-Based KE

MLWE-Based Key Exchange from KC and AKC
9.1 Generic Construction of MLWE-Based KE
9.1.1 KEM Specificiation of OKCN-MLWE in Public-Key Setting
9.1.2 KEM Specificiation of AKCN-MLWE in Public-Key Setting
9.2 Error Rate Analysis and Parameter Selection
9.3 Parameter Selection and Comparison
9.3.1 Comparison with Kyber 0000,
9.4 Tmplementation oL
9.4.1 Generation of Noise Polynomials
9.4.2 The Keys and Ciphertext
9.4.3 Encoding/Decoding of Objects,
9.4.4 NTT Technique s
9.5 Applications to CCA-Secure PKE,
9.6 Applications to Privacy-Preserving AKE,
9.6.1 Abstraction of Key-Exchange and Key-Transport
9.6.2 Basic Construction of CNKE
9.6.3 Design Rationale of CNKE, and the Actual Design
9.6.4 Instantiation of CNKE from AKCN-MLWE
9.7 Extension to MLWR-Based KE o000

Consensus Mechanism of Frodo

Consensus Mechanism of NewHope

Proof of Corollary 3.2

On KC/AKC vs. Fuzzy Extractor

Overview of the Primal and Dual Attacks
Security Estimation of the Parameters of Frodo
Security Analysis of LWE-Based Key Exchange

Construction and Analysis of AKCN-4:1
H.1 Overview of NewHope
H.2 Construction and Analysis of AKCN-4:1

Implementing Hx” in SEC with Simple Bit Operations

CCA-Secure KEM from OKCN-MLWE

56
o7
58
59
59
60
61
62
62
63
63
63
63
66
66
67
68
70
74

79

79

79

79

81

82

82

85
85
86

87

88

K More Variants of CNKE

L More Parameters of OKCN-MLWE and AKCN-MLWE

89

90

1 Introduction

Most public-key cryptosystems currently in use, based on the hardness of solving (elliptic curve)
discrete logarithm or factoring large integers, will be broken, if large-scale quantum computers
are ever built. The arrival of such quantum computers is now believed by many scientists to be
merely a significant engineering challenge, and is estimated by engineers at IBM to be within
the next two decades or so. Historically, it has taken almost two decades to deploy the modern
public key cryptography infrastructure. Therefore, regardless of whether we can estimate the
exact time of the arrival of the quantum computing era, we must begin now to prepare our
information security systems to be able to resist quantum computing. In addition, for the
content we want to protect over a period of 15 years or longer, it becomes necessary to switch
to post-quantum cryptography today. This has been recognized not only by the cryptography
research community, but also by standardization bodies and leading information companies. As
noted in | ,], in the majority of contexts the most critical asymmetric primitive
to upgrade to post-quantum security is ephemeral key exchange (KE).

Lattice-based cryptography is among the major mathematical approaches to achieving se-
curity resistant to quantum attacks. For cryptographic usage, compared with the classic hard
lattice problems such as SVP and CVP, the learning with errors (LWE) problem is proven to
be much more versatile []. Nevertheless, LWE-based cryptosystems are usually less effi-
cient, which was then resolved by the introduction of the ring-LWE (RLWE) problem |]-
In recent years, large numbers of impressive works are developed from LWE and RLWE,
with (ephemeral) key exchange and public-key encryption being the study focus of this work
[, , , , , , , , , ,]. For an
excellent survey of lattice-based cryptography, the reader is referred to [].

Some celebrating progresses on achieving practical LWE- and RLWE-based ephemeral key ex-
change are made in recent years. The performance of RLWE-based key exchange is significantly
improved with NewHope [], which achieves 256-bit shared-key with error rate about
2761 The negligible error rate of NewHope is achieved by decoding the four-dimensional lattice
Dy4. Compared to LWE, the additional ring structure of RLWE helps to improve the efficiency
of cryptosystems, but the concrete hardness of RLWE remains less clear. The work |]
proposes a key exchange protocol Frodo only based on LWE, and demonstrates that LWE-based
key exchange can be practical as well. Nevertheless, bandwidth of Frodo is relatively large, as
Frodo uses about 22kB bandwidth for its recommended parameter set. In addition, Frodo has
relatively large error rates, and cannot be directly used for PKE. Whether further improve-
ments on LWE- and RLWE-based key exchange can be achieved remains an interesting question
of practical significance.

One of the main technical contributions in the works | , , |, among oth-
ers, is the improvement and generalization of the key reconciliation mechanisms | , I
But the key reconciliation mechanisms were only previously used and analyzed, for both KE
and PKE, in a non-black-box way. This means, for new key reconciliation mechanisms devel-
oped in the future to be used for constructing lattice-based cryptosystems, we need to analyze
the security from scratch. Also, for the various parameters involved in key reconciliation, the
bounds on what could or couldn’t be achieved are unclear.

'To our knowledge, the key reconciliation mechanism in [] is the first that fits our KC definition (the
mechanism in |] requires the distance be of special types).

1.1 Owur Contributions

In this work, we abstract some key ingredients in previous LWE- and RLWE-based key exchange
protocols, by introducing and formalizing the building tool, referred to as key consensus (KC)
and its asymmetric variant AKC. KC and AKC allow two communicating parties to reach
consensus from close values obtained by some secure information exchange, such as exchanging
their LWE/RLWE samples. KC and AKC are fundamental to lattice based cryptography, in the
sense that a list of cryptographic primitives based on LWE or RLWE (including authenticated
key exchange, public-key encryption, and more) can be modularly constructed from them. As
a conceptual contribution, this much simplifies the design and analysis of these cryptosystems
in the future, by allowing for modular and black-box design and analysis with KC and AKC.

Abstracting KC and AKC also allows us to study and prove the inherent upper-bounds
among the parameters. In particular, we discover the upper bounds on parameters for any KC
and AKC. This allows us to understand what can or cannot be achieved with any KC and AKC,
and guides our actual protocol design. These upper-bounds also guide parameter choosing for
various trade-offs, and are insightful in comparing the performance of KC vs. AKC.

Guided by, and motivated for reaching, these proved upper-bounds, we then design and
analyze both general and highly practical KC and AKC schemes, which are referred to as
OKCN and AKCN respectively for presentation simplicity.

Based on KC and AKC, we present generic constructions of key exchange from LWR, LWE,
RLWE and MLWE with delicate analysis of error rates. Then, for the instantiations of these
generic constructions with our OKCN and AKCN schemes, we elaborate on evaluating and
choosing the concrete parameters in order to achieve a well-balanced performance among secu-
rity, computational efficiency, bandwidth efficiency, error rate, and operation simplicity.

e We propose the first construction of key exchange merely based on the LWR problem with
concrete analysis and evaluation, to the best of our knowledge. In particular, we provide
a delicate approach to calculating its error rate.

Specifically, for the LWR-based KE protocol, the main difficulty here is the error prob-
ability analysis: the rounding operation in LWR brings new noises, yet these noises are
deterministic, because they are completely determined by the public matrix A and the
secret vector S. In the formula calculating the error probability, the deterministic noises
will multiply the secret S. However they are correlated. This correlation prevents us from
calculating the error probability efficiently. Note that, in the LWE-based KE, the noises
are independent of A and the secret vector S. So this is a new difficulty we encounter in
LWR-based KE. Our contribution is to provide an analysis breaking the correlation, and
design an algorithm to calculate the error probability numerically.

A salient feature of LWR-based key exchange protocols is their bandwidth efficiency, for
instance, about 16.19kB at the level of at least 128-bit quantum security (in the sense of
resistance against the best known quantum attacks).

e When applied to LWE-based cryptosystems, OKCN can directly result in more practical
or well-balanced schemes of key exchange. To further save bandwidth, we make a thorough
analysis of the variant where some least significant bits of LWE samples are chopped off,
which results in, for instance, 18.58kB bandwidth at the level of at least 128-bit quantum
security. Chopping off some least bits of LWE samples can only improve the actual security
guarantee in reality, but complicates the analysis of error rates.

|IK| bw.(kB) err. pg-sec

OKCN-LWR | 256 16.19 230 130

OKCN-LWE | 256 18.58 239 134
Frodo 256 22.57 27389 130

Table 1: Brief comparison between OKCN-LWE/LWR and Frodo. |K]| refers to the size in bits
of the shared key; “bw.(kB)” refers to bandwidth in kilo bytes; “err.” refers to the error rate,
and “pg-sec” refers to the best known quantum attack against the underlying lattice problem.

e When applied to RLWE-based cryptosystems, to the best of our knowledge, AKCN can
lead to the most efficient KE protocols with shared-key of size of at least 512 bits (which
may be prudent for ensuring 256-bit post-quantum security in reality). We first use the
technique of NewHope to further lower the error rate, by decoding the four-dimensional
lattice Dy, but at the price of achieving only 256-bit shared key.

We then develop new approaches to lower the error rate of RLWE-based KE for achieving
shared key of size at least 512 bits. Firstly, we make a key observation on RLWE-based key
exchange, by proving that the errors in different positions in the shared-key are almost
independent. Here, the main problem prevent us from using Central Limit Theorem
(CLT) is that any two different coefficients of the product of two Gaussian polynomials are
correlated. Note that the classical CLT requires the random variables to be independent.
While some variants of CLT allow the random variables to be correlated (such as CLT
extended to a stochastic process), but these variants cannot fit into our situation as far as
we know. We are unaware of any existing techniques in dealing with this problem precisely.
But we do need a result to deal with arbitrary two different coefficients, because when using
error correcting code any two different coordinates may have errors. We prove that, even
when coefficients are correlated, we can still have result similar to CLT. Though it is only
an asymptotic result, it at least provides an indication or justification for the reasonability,
and can play a fundamental basis for the approach to lower error rate of RLWE-based KE
with error-correction codes. We note that, in some related (concurrent and subsequent)
works on RLWE-based KE using error-correction codes, it is simply assumed the errors
are independent without any argument. Also, for some related works on KE from RLWE
and MLWE where some least significant bits of RLWE/MLWE samples are cut off, it is
also similarly assumed that these least significant bits are uniform at random.

Then, based upon this observation, we present a super simple and fast code, referred to
as single-error correction (SEC) code, to correct at least one bit error. By equipping
OKCN/AKCN with the SEC code, we achieve the simplest (up to now) RLWE-based
key exchange, from both OKCN and AKCN, with negligible error rate for much longer
shared-key size; for instance, OKCN-based implementation for 765-bit shared-key with
bandwidth of 3136 bytes at error rate 274 and about 250-bit post-quantum security,
and AKCN-based implementation for 765-bit shared-key with bandwidth of 3392 bytes at
error rate 27°%4 and about 258-bit post-quantum security.

To further improve the bandwidth, error rate and post-quantum security simultaneously,
we develop new lattice code in FEg, based on which we achieve AKCN-based KE for 512-
bit shared-key with bandwidth of 3360 bytes at error rate 2733 and about 262-bit post-
quantum security. Note that sphere packing is optimal with the lattice Ej.

e Finally, when applying OKCN/AKCN to MLWE-based KE, they result in the (up-to-
date) most efficient lattice-based key exchange protocols for 256-bit shared-key. Moreover,
as noted in [], MLWE-based implementations are very flexible and versatile, for
instance, the recommended (resp., light) implementation of KE has bandwidth 1856 (resp.,
1312) bytes at error rate 2°°! (resp., 2736-2) and 183-bit (resp., 116) post-quantum security.

We then present applications to CCA-secure PKE, and to privacy-preserving authenticated
key-exchange (AKE). In particular, we design a new AKE scheme, referred to as concealed
non-malleable key-exchange (CNKE).

|IK| bw.(B) err. pg-sec
OKCN-RLWE-SEC-1 | 765 3136 27684 250
OKCN-RLWE-SEC-2 | 765 3392 2761 258
NewHope 256 3872 2761 255
AKCN-RLWE-SEC-1 | 765 3264 27684 250
AKCN-RLWE-SEC-2 | 765 3520 2761 258
AKCN-RLWE-E8 | 512 3360 27633 262
NewHope-Simple 256 4000 2761 255

Table 2: Brief comparison between OKCN/AKCN-RLWE and NewHope.

K| bw.(B) erT. pg-sec
OKCN-MLWE-KE 256 1856 27001 183
OKCN-MLWE-PKE-1 256 1952 27803 183
OKCN-MLWE-PKE-2 256 2048 271664 171
AKCN-MLWE-PKE (Kyber) | 256 ~ 2272 27127 171

Table 3: Brief comparison between OKCN/AKCN-MLWE and Kyber.

All the main protocols developed in this work are implemented. The code and scripts,
together with those for evaluating concrete security and error rates, for protocols based on LWE,
LWR and RLWE are also available from Github http://github.com/0KCN. Besides theoretical
analysis, much efforts in this work were also put on implementation and concrete evaluation.

1.2 Applications to KEM, PKE and AKE

KC-based KE protocol can be viewed as the equivalent of traditional Diffie-Hellman. It means
that, as discussed in |], it can be transformed into an authenticated key exchange (AKE)
protocol via the SIGMA mechanism |], and is well suitable to be integrated into more
advanced protocols like IKE and TLS. As discussed in | |, KC-based KE protocol can
in turn be transformed into a CCA-secure key-encapsulation mechanism (KEM) via the FO-
transformation and its variants | , ,]. In this work, we also explicitly
present CCA-secure KEM construction based on OKCN-MLWE, which is instantiated from
[HHK17].

AKC-based KE protocol is actually a key transport protocol, which directly yields CPA-
secure KEM (and CCA-secure KEM via the FO-transformation). A concrete MLWE-based
CCA-secure KEM from our AKCN is presented in [|, by using a specific variant of

http://github.com/OKCN

the FO-transformation proposed in | |. Following the generic paradigm for achieving
AKE from public-key encryption, a concrete AKE protocol based on KEM is also proposed
in [. In this work, we present a CCA-secure PKE scheme, with instantiation from
AKCN-MLWE, by combining the techniques in | , , , |, which aims for: (1)
compatibility with existing standards; (2) flexibility when being used for AKE; (3) resistance to
side-channel attacks.

We then design a new AKE scheem, referred to as concealed non-malleable key-exchange
(CNKE). CNKE does not use signatures as the underlying authentication mechanism, and is
carefully designed to enjoy the following advantages:

e Computational efficiency: By replacing CCA-secure KEM in existing constructions with
an ephemeral key exchange/transport protocol, it is computationally more efficient, and
is more applicable to client/server setting with low-power clients.

e Robust resistance to man-in-the-middle (MIM) malleating attacks, to secrecy exposure,
and to side-channel attacks.

e Privacy protection: Client’s identity information, as well as the components of the un-
derlying ephemeral key exchange/transport protocol, are encrypted. Identity privacy is
deemed to be an important privacy issue, and is mandated by some prominent standards
like TLS1.3, EMV, etc. Concealing the components of the ephemeral key exchange/trans-
port protocol not only strengthens security, but is also useful for privacy protection.

e Well compatibility with with TLS1.3. CNKE explicitly uses authenticated encryption
(that is mandated by TLS1.3), and uses the Finish mechanism of TLS1.3 for mutual au-
thentications.

For all the OKCN/AKCN-based KE protocols developed in this work, when they are used
for KEM or PKE, the first-round message from the initiator corresponds to the public key.

1.3 Advantages and Disadvantages of OKCN vs. AKCN

Above all, with OKCN and AKCN, we provide a general framework for achieving key ex-
change and public-key encryption from lattice (specifically, LWE and its variants: LWR, RLWE,
MLWE), in a systemized and modular way. Secondly, we provide a set of practical yet pow-
erful tools for dealing with noise: OKCN, AKCN, single-error correction code and lattice code
in Eg, which we suggest may play a basic role in the future design and analysis of crypto-
graphic schemes from LWE and its variants. Also, to the best of our knowledge, AKC-based
key exchange (actually, key transport) was firstly formalized in this work.

But cryptosystems based upon OKCN and AKCN have different performances and features
in different settings.

e OKCN-based KE can be viewed as the equivalent of Diffie-Hellman in the lattice world,
while AKCN-based KE is not. Specifically, with AKCN, the responder can predetermine
and set the shared-key at its wish. But AKCN can be directly used for CPA-secure KEM.

e It is well recognized that monoculture is bad for security, and that AKE protocol via
the SIGMA mechanism takes advantages over PKE-based AKE (e.g., symmetry, post-ID,
privacy, modular and diversified deployments, etc). For instance, the first generation of
IKE is based on PKE, but the second generation moves to SIGMA-based AKE.

e OKCN-based KE is more versatile, and is more appropriate for incorporating into the
existing standards like IKE and TLS that are based on Diffie-Hellman via the SIGMA
mechanism. In view that OKCN is better suitable for incorporating into IKE and TLS, it
should be more desirable to employ the same OKCN mechanism for public-key encryption,
for the sake of system simplicity and easy deployment.

e On the same parameters (¢, m, g) as specified in Section 3 and 4 (which implies the same
bandwidth), OKCN-based KE has lower error rate than AKCN-based KE. Or, on the same
parameters (g, m,d) (which implies the same error rate), OKCN-based KE has smaller
bandwidth than AKCN-based KE. This comparison is enabled by the upper-bounds on
these parameters developed in Section 3 and 4.

e Similarly, on the same parameters (g, m,g) (which implies the same bandwidth), OKCN-
based KEM has lower error rate than AKCN-based KEM. On the same parameters (g, m, d)
(which implies the same error rate), the bandwidth of OKCN-based KEM is at least as
good as that of AKCN-based KEM.?

e For KE of 256-bit shared-key, OKCN/AKCN-MLWE is the most efficient. But for KE
with shared-key of size 512 bits or more (which might be necessary for ensuring 256-bit
post-quantum security in reality), OKCN/AKCN-RLWE is the most efficient.

e Compared to RLWE and MLWE, the LWE and LWR problems have fewer algebraic struc-
tures that can be exploited by attacks. As noise sampling is relatively cumbersome for
lattice-based cryptography, LWR-based KE may be more desirable in this sense.

1.4 On Novelty of OKCN and AKCN

To the best of our knowledge, the formulations of KC and AKC, their necessary properties
for CPA-secure KEM, and their upper-bounds on the various parameters, are first (explicitly)
presented in this work, which much simplify the future design and analysis of KE and PKE
based on LWE and its variants. Indeed, both the design of OKCN and that of AKCN were
guided by, and motivated for reaching, the upper-bounds for KC and AKC proved in this work.

To the best of our knowledge, OKCN is the first multi-bit reconciliation mechanism, and
the first that can be instantiated to tightly match the upper-bound, which is the source for
essentially outperforming Frodo.

The design of AKCN was guided by, and motivated for, the upper-bound for AKC proved
in this work. In designing AKCN, we combine all existing optimizations in the literature in
order to almost meet the proved upper-bound. AKCN is clearly a generalization of the basic
reconciliation mechanisms proposed in [, |, and its design was also inspired by the
design of our OKCN and the works |)].3 In particular, the reconciliation mechanisms
proposed in [, | correspond to the special case of AKCN when g = g and m = 2. Note
that, with AKCN, we use Equation 1 described in Section 2.4, which was explicitly proposed
in | | for forming LWR samples and may also be derived implicitly from [].

2Specifically, as shown in this work, for KEM with 256-bit shared-key, the bandwidth of OKCN-based KEM
is at least as good as that of AKCN-based KEM. But if the shared-key is of size 512 bits or more (e.g., to ensure
256-bit post-quantum security targeting the underlying shared-key in reality), OKCN-based KEM can have a
smaller bandwidth.

3But AKCN and the underlying reconciliation mechanism of |] could be viewed as incomparable in
general.

10

Briefly speaking, the novelty of AKCN lies in two aspects: (1) the combination of the basic
reconciliation mechanism from | , | and the rounding technique from | ,]
in the Con procedure is first explicitly presented in this work, where the Rec procedure is
less straightforward in this case; (2) multi-bit reconciliation with generalized m. Here, the
bottom line is that the exact formula of AKCN;, even for the special case of m = 2 (that is just
the underlying reconciliation mechanism of CPA-secure Kyber | 1), couldn’t be directly
instantiated from any existing single work.

1.5 Recommended Algorithms

Our work can serve as a general framework for understanding and evaluating the various propos-
als for KEM schemes from LWE and its variants. With this submission, due to time limitation
and intellectual property issues of implementation codes,” we only implemented the following
five algorithms that are recommended for standardization considerations.

AKCN-SEC: It is an RLWE-based ephemeral KEM, which is specified in Section 8.3.3. AKCN-
SEC uses AKCN equipped with the single-error correction (SEC) code. Its security lies in
Category-5.

OKCN-SEC: It is an ephemeral KEM scheme based on RLWE, which is specified in Section
8.3.4. OKCN-SEC uses OKCN equipped with the SEC code. Its security lies in Category-
5.

OKCN-MLWE: It is an OKCN-based ephemeral KEM from MLWE, which is specified in
Section 9.1.1. Its security lies in Category-4.

AKCN-MLWE: It is an AKCN-based ephemeral KEM from MLWE, which is specified in
Section 9.1.2. Its security lies in Category-4.

AKCN-MLWE-CCA: It is an AKCN-based CCA-secure public-key encryption from MLWE,
which is specified in Section 9.5. Its security lies in Category-4.

1.6 Other Algorithms for Considerations

As KEM schemes from LWE and its variants are reduced to the corresponding KC and AKC
mechanisms, and as our OKCN and AKCN are almost optimal, the following KEM algorithms
are also of competitive performance or can serve as the benchmarks for evaluation and compar-
isons.

OKCN/AKCN-LWR: Specifically, the ephemeral KEM schemes based on OKCN and AKCN
from LWR, as specified in Section 5. Their security lies in Category-3.

OKCN/AKCN-LWE: Specifically, the ephemeral KEM schemes based on OKCN and AKCN
from LWE, as specified in Section 6. Their security lies in Category-3.

OKCN/AKCN-RLWE: Specifically, the ephemeral KEM schemes based on OKCN and AKCN
from RLWE, as specified in Figure 10 and 11 in Section 8. Their security lies in Category-5.

4We understand that, according to the call-for-proposals of NIST, the submitters should have full intellectual
properties for the implementation codes they submit.

11

All the above protocols are also implemented, and their codes and scripts are available from
Github http://github.com/0KCN. As these implementations share some codes from Frodo and
NewHope, we did not submit them to NIST.

In addition, the following two algorithms have special desirable features and performance.
But they have not been implemented yet, due to time limitation. We will provide the imple-
mentations of them in the future.

AKCN-ES8: It is an RLWE-based ephemeral KEM scheme specified in Section 8.4.1, which
uses the developed lattice code in Eg to reduce the error probability. It can have better
performance compared to AKCN-SEC, at the price of increasing the complexity a little.
Its security lies in Category-5.

CNKE: It is an authenticated key exchange protocol described in Section 9.6. CNKE is com-
putationally efficient, and is well compatible with existing standards like TLS in the clien-
t/server setting. Its MLWE-based construction is described in Section 9.6.4, with security
level lying in Category-4. The construction can also be straightforwardly adapted to those
based on LWE, LWR and RLWE.

1.7 Concurrent and Subsequent Work

The work [| proposes a CPA-secure PKE scheme, named Lizard, based both on a variant
of LWE (referred to as spLWE) and on a variant of LWR (referred to as spLWR). Specifically, for
Lizard, the public key is generated with spLWE sample, while the ciphertext is generated with
spLWR sample. The underlying reconciliation mechanism of Lizard can be viewed as a special
case of AKCN for m|g|q, where g (resp., m) in AKCN corresponds to p (resp., t) in |].
Also, we do not know how to apply the analysis of Lizard to KE protocols merely based on
LWR, as analyzed in Section 6 where both public key and ciphertext are generated merely from
LWR samples.

To the best of our knowledge, AKC-based key exchange (actually, key transport) was firstly
formalized in this work. In particular, AKCN4:1 is the first AKC-based variant of NewHope.
Another AKC-based variant of NewHope, named NewHope-simple, was presented subsequently
in a short note posted on 17 December 2016 | |. In comparison, NewHope-simple is still
slightly inferior to AKCN4:1-RLWE in bandwidth expansion (specifically, 256 vs. 1024 bits).

Recently, a module lattice based CPA-secure KEM scheme, named Kyber, was introduced
[]. Though different notations and presentation methods are used in |], it is
easy to see that the underlying AKC mechanism of Kyber (specifically, Line 6 of Algorithm
2 in |]) is just our AKCN scheme. Specifically, by letting o7 = tIr + e3, m = 2
and g = 2%, the resultant instantiation of AKCN is actually the underlying AKC mechanism
implicitly used in |]. In particular, when setting d; = d,, = 13 and k = 1 (corresponding
tot; =t2 =0 and [= 1 in our case), Kyber is actually AKCN-RLWE that is explicitly specified
in this work.

12

http://github.com/OKCN

2 Preliminaries

A string or value o means a binary one, and |« is its binary length. For any real number z, |z|
denotes the largest integer that less than or equal to x, and |z] = |z + 1/2|. For any positive
integers a and b, denote by lcm(a, b) the least common multiple of them. For any i, j € Z such
that ¢ < j, denote by [, j] the set of integers {i,i+1,---,j—1,7}. For any positive integer ¢, we
let Zy denote Z/tZ. The elements of Z; are represented, by default, as [0,¢ — 1]. Nevertheless,
sometimes, Z; is explicitly specified to be represented as [—|(t — 1)/2], [t/2]].

If S is a finite set then |S| is its cardinality, and x < S is the operation of picking an element
uniformly at random from S. For two sets A, B C Z,, define A+ B £ {a + bla € A,b € B}.
For an addictive group (G, +), an element € G and a subset S C G, denote by x + S the set
containing x + s for all s € S. For a set S, denote by U(S) the uniform distribution over S. For
any discrete random variable X over R, denote Supp(X) = {z € R | Pr[X = z] > 0}.

We use standard notations and conventions below for writing probabilistic algorithms, ex-
periments and interactive protocols. If D denotes a probability distribution, x < D is the
operation of picking an element according to D. If « is neither an algorithm nor a set then
x < « is a simple assignment statement. If A is a probabilistic algorithm, then A(x1,za, - ;7)
is the result of running A on inputs zj, z9,--- and coins r. We let y < A(z1, z2,---) denote the
experiment of picking r at random and letting y be A(x1,z2,--- ;7). By Pr[Ry; - ; Ry, : E] we
denote the probability of event F, after the ordered execution of random processes Ry, - , R,.

A function f(A) is negligible, if for every ¢ > 0 there exists an A, such that f(\) < 1/A¢ for
all A > A.. In in this work, for presentation simplicity, when dealing with concrete parameters
we also informally say that a quantity lower than 270 is negligible.

2.1 Authenticated Encryption with Associated Data

The presentation in this section is verbatim from [Z16]. Briefly speaking, an authenticated
encryption with associated data (AEAD) scheme transforms a message M and a public header
information H (e.g., a packet header, an IP address) into a ciphertext C' in such a way that C
provides both privacy (of M) and authenticity (of C' and H) [R02]. In practice, when AEAD
is used within cryptographic systems, the associated data is usually implicitly determined from
the context (e.g., the ciphertext of the CPA-secure KEM, the hash of the transcript of protocol
run or some pre-determined states). For simplicity, we usually do not explicitly specify the
associated data in this work. For all the protocols developed in this work that use AEAD, the
associated data can be set to be empty without sacrificing provable security.

Let SE = (Ks¢, Enc, Dec) be a symmetric encryption scheme. The probabilistic polynomial-
time algorithm K. takes a security parameter s as input and samples a key K from a finite
and non-empty set K[({0,1}". For presentation simplicity, we assume K <« K = {0,1}".
The polynomial-time encryption algorithm Enc : K x {0,1}* x {0,1}* — {0,1}* U{L} and the
(deterministic) polynomial-time decryption algorithm Dec : I x {0,1}* x {0,1}* — {0,1}*U{L}
satisfy: for any K <« K, any associate data H € {0,1}* and any message M € {0,1}*, if
Enck (H, M) outputs C' # L, then Dncg (C) always outputs M. Here, we assume the ciphertext
C bears the associate data H in plain.

Let A be an adversary. Table 4 describes a security game for AEAD. We define the advantage
of A to be Advied(A) = ‘2 -Pr[AEADZL returns true] — 1|. We say that the SE scheme is
AEAD-secure, if for any sufficiently large x the advantage of any probabilistic polynomial-time
adversary is negligible.

13

main AEADZ:: procedure Enc(H, My, M;): procedure Dec(C"):

K « Ku If [Mp| # [Mi], Ret L Ifo=1AC ¢C then
o+ {0,1} Co < Enck (H, My) Ret Decg (C)

o = AEnc,Dec Cl “— EncK(H,Ml) Ret L

Ret (¢! = o) IfCy=_LorCy=1,Ret L

C < C,: Ret O,

Table 4: AEAD security game

The above AEAD security is quite strong. In particular, it means that, after adaptively
seeing a polynomial number of ciphertexts, an efficient adversary is infeasible to generate a
new valid ciphertext in the sense its decryption is not “L”. Also, for two independent keys
K, K' + K and any message M and any header information H, Pr[Deck/(Encg(H, M)) # L]
is negligible.

The AEAD security definition is based on that in [) |, with the following modifi-
cations: the length-hiding requirement is removed while header information integrity property
is added. In this work, we assume users’ identities and public-key information to be of equal
length; otherwise, we need length-hiding AEAD as defined in [)]. Currently, the
most popular AEAD scheme in use may be GCM-AES.

2.2 Key Encapsulation Mechanism (KEM)

We review the definition of KEM given in [D02,]. A key encapsulation mechanism
KEM = (KeyGen, Encaps, Decaps) consists of three algorithms. On a security parameter k, the
key generation algorithm KeyGen outputs a key pair (pk, sk), where pk also defines a finite key
space K. The encapsulation algorithm Encaps, on input pk, outputs a tuple (K, c¢) where c is
said to be an encapsulation of the key K which is contained in key space K. The deterministic
decapsulation algorithm Decaps, on input sk and an encapsulation c¢, outputs either a key
K := Decaps(sk,c) € K or a special symbol L¢ K to indicate that ¢ is not a valid encapsulation.
We call KEM §-correct if

Pr[Decaps(sk, ¢) # K|(pk, sk) < KeyGen(1%); (K, ¢) + Encaps(pk)] < 4.

The security notion, indistinguishability under chosen ciphertext attacks (CCA), is defined
w.r.t. Figure 1. For any PPT adversary A, define its CCA-advantage as Adv%%ﬂ(fl) =
|Pr[GAME CCA outputs 1]] — 1/2|. We say the KEM scheme is CCA-secure, if for any suffi-

ciently larger security parameter and any PPT adversary A, Advg%’j\‘/[(A) is negligible.

2.3 Public-Key Encryption (PKE)

We review the definition of PKE given in [,]. A public-key encryption scheme is
given by a triple of algorithms, PKE = (K, &, D), where for every sufficiently large x € N.

e KeyGen, the key-generation algorithm, is a probabilistic polynomial-time (in) algorithm
which on input 1 outputs a pair of strings, (pk, sk), called the public and secret keys,
respectively. This experiment is written as (pk, sk) < KeyGen(1*).

14

GAME IND-CCA DEcAPS(c # ¢*)

(plg, sk) < Gen K := Decaps(sk, ¢)
b+ {0,1} return K
(K§,c*) < Encaps(pk)

KK

b — ADECAPS(C*,Kg)
return [0 =1]

Figure 1: CCA game for KEM.

e &, the encryption algorithm, is a probabilistic polynomial-time (in k) algorithm that takes
public key pk and message M from the message space MSP, draws coins r uniformly from

coin space COIN, and produces ciphertext C := &, (M;r). This experiment is written as

e D, the decryption algorithm, is a deterministic polynomial-time (in x) algorithm that takes
secret key sk and ciphertext C' € {0,1}*, and returns message M := D (C) or a special
symbol | indicating decryption failure.

We require that an asymmetric encryption scheme should satisfy the following correctness con-
dition:

We say a PKE scheme is d-correct, if for every sufficiently large x € N, every (pk, sk) generated
by KeyGen(1%) and every M € MSP, we always have E[maxyscusp Pr[Dgr(Epp(M)) # M]] < 6.

Definition 2.1 (CCA-security). Let PKE = (KeyGen, £, D) be an asymmetric encryption scheme,
and A = (A1, A2) be an adversary for PKE. For k € N, define the following CCA-advantage:

AdviCA(n) = 2. Pr[(pk, sk) «+ KeyGen(1%); (My, M, st) < A?Sk (pk);
b {0,1};C* « Epp(My) : ADH(C*, st) = b] — 1.

We say that the PKE scheme is CCA-secure, if for every sufficiently large security parameter s,
and PPT adversary A, its CCA-advantage AdVJCL‘CA is negligible in k.

2.4 The LWE, LWR, and RLWE problems

Given positive continuous o > 0, define the real Gaussian function p, (z) £ exp(—z?/202)/v2mwo?
for z € R. Let Dz, denote the one-dimensional discrete Gaussian distribution over Z, which
is determined by its probability density function Dz, (z) £ ps(2)/po(Z),x € Z. Finally, let
Dyzn , denote the n-dimensional spherical discrete Gaussian distribution over Z", where each
coordinate is drawn independently from Dy .

Given positive integers n and g that are both polynomials in the security parameter A, an
integer vector s € Zy, and a probability distribution x on Zg, let Ays y be the distribution over
Zq X Zq obtained by choosing a € Zj uniformly at random, and an error term e < x, and
outputting the pair (a,b=a’s+e) € Zq X Zq. The error distribution y is typically taken to be
the discrete Gaussian probability distribution Dz , defined previously; However, as suggested
in [] and as we shall see in Section 6.1, other alternative distributions of x can be taken.
Briefly speaking, the (decisional) learning with errors (LWE) assumption [| says that, for
sufficiently large security parameter A\, no probabilistic polynomial-time (PT) algorithm can

15

distinguish, with non-negligible probability, A, s, from the uniform distribution over Zg x Z.
This holds even if A sees polynomially many samples, and even if the secret vector s is drawn
randomly from x" |].

The LWR problem | | is a “derandomized” variant of the LWE problem. Let D be
some distribution over Zy, and s <- D. For integers ¢ > p > 2 and any z € Z,, denote

2], = [Da]. (1)

Then, for positive integers n and ¢ > p > 2, the LWR distribution A, ;,(s) over Lq X
Zy is obtained by sampling a from Zj uniformly at random, and outputting (a, LaTs] p) €
Zq X Zp. Briefly speaking, the (decisional) LWR assumption says that, for sufficiently large
security parameter, no PPT algorithm A can distinguish, with non-negligible probability, the
distribution Ay, 4,(s) from the distribution (a < Zg, |u],) where u < Zg. This holds even if
A sees polynomially many samples. An efficient reduction from the LWE problem to the LWR
problem, for super-polynomial large ¢, is provided in | |. Let B denote the bound for any
component in the secret s. It is recently shown that, when g > 2mBp (equivalently, m < q/2Bp),
the LWE problem can be reduced to the (decisional) LWR assumption with m independently
random samples |]. Moreover, the reduction from LWE to LWR is actually independent
of the distribution of the secret s.

For the positive integer m that is polynomial in the security parameter), let n 2 (m)
denote the toties of m, and K £ Q((,,) be the number field obtained by adjoining an abstract
element (,, satisfying ®,,(¢mn) = 0, where ®,,,(z) € Z[z] is the m-th cyclotomies polynomial of
degree n. Moreover, let R £ Oy be the ring of integers in K. Finally, given a positive prime
q = poly()\) such that ¢ =1 (mod m), define the quotient ring R, = R/qR.

We briefly review the RLWE problem, and its hardness result [) , . In
this work, we focus on a special case of the RLWE problem defined in []. Let n > 16
be a power-of-two and ¢ = poly(\) be a positive prime such that ¢ = 1 (mod 2n). Given
s < Ry, a sample drawn from the RLWE distribution A, 4 +s over R, x R, is generated by first
choosing a <— Ry, e < Dzn ,, and then outputting (a,a-s +e) € R, x R,. Roughly speaking,
the (decisional) RLWE assumption says that, for sufficiently large security parameter A, no
PPT algorithm A can distinguish, with non-negligible probability, A, 4,s from the uniform
distribution over R, x R,. This holds even if A sees polynomially many samples, and even if the
secret s is drawn randomly from the same distribution of the error polynomial e | ,].
Moreover, as suggested in |], alternative distributions for the error polynomials can be
taken for the sake of efficiency while without essentially reducing security.

Recently, a polynomial-time (quantum) reduction from worst-case ideal lattice problems
directly to the decision version of Ring-LWE is presented in |]. In particular, the reduction
works for any modulus and any number field. Besides the above special version of the RLWE
problem [|, another suggested version of the RLWE problem is defined over the polynomial
ring R, = Z[z]/®,11(x), where n + 1 is a safe prime and @, 11(x) = 2" + 2" L+ + 2+ 1is
the (n 4+ 1)-th cyclotomic polynomial. This ring has a wider range of n to choose from.

16

3 Key Consensus with Noise

Alice Bob
01 € Zg 09 € Zg

Q

(k1,v) < Con(oy, params)

v

_ >

ko < Rec(oa,v, params)

Figure 2: Brief depiction of KC, where k1, ka € Zy,, v € Zg and |01 — 02| < d.

Before presenting the definition of key consensus (KC) scheme, we first introduce a new function
| |¢ relative to arbitrary positive integer ¢ > 1: |z|; = min{z mod ¢,t—x mod t}, Vz € Z, where
the result of modular operation is represented in {0, ..., (¢ — 1)}. For instance, | — 1| = min{—1
mod ¢, (t 4+ 1) mod t} = min{t — 1,1} = 1. In the following description, we use |01 — 02,4 to
measure the distance between two elements 01,02 € Z,.

Definition 3.1. A KC scheme KC = (params, Con, Rec), briefly depicted in Figure 2, is specified
as follows.

e params = (q,m, g,d,aux) denotes the system parameters, where q,m,g,d are positive in-
tegers satisfying 2 < m,g < q,0 < d < [4], and aux denotes some auziliary values that
are usually determined by (q,m, g,d) and could be set to be a special symbol () indicating

“empty”.

o (ki,v) < Con(o1, params): On input of (o1 € Zg, params), the probabilistic polynomial-
time conciliation algorithm Con outputs (ki,v), where ki € Zy, is the shared-key, and
v € Zg 15 a hint signal that will be publicly delivered to the communicating peer to help the
two parties reach consensus.

o ky < Rec(oa,v, params): On input of (02 € Zg,v, params), the deterministic polynomial-
time reconciliation algorithm Rec outputs ko € Zy,.

Correctness: A KC scheme is correct, if it holds k1 = ky for any 01,00 € Z4 such that
o1 — o2]g < d.

Security: A KC scheme is secure, if k1 and v are independent, and ki is uniformly distributed
over Ly, whenever o1 < Zg. The probability is taken over the sampling of o1 and the
random coins used by Con.

3.1 Efficiency Upper Bound of KC

The following theorem reveals an upper bound on the parameters ¢ (dominating security and
efficiency), m (parameterizing range of consensus key), g (parameterizing bandwidth), and d
(parameterizing error rate), which allows us to take balance on these parameters according to
different priorities.

Theorem 3.1. If KC = (params, Con, Rec) is a correct and secure key consensus scheme, and

params = (q,m, g,d, aux), then 2md < q (1 — é)

17

Before proceeding to prove Theorem 3.1, we first prove the following propositions.

Proposition 3.1. Given params = (q,m, g,d,auz) for a correct and secure KC' scheme. For
any arbitrary fived o1 € Zgq, if Con(o1, params) outputs (ki,v) with positive probability, then the
value ky is fivred w.r.t. the (v,01). That is, for any random coins (r,r’), if Con(o1, params,r) =
(k1,v) and Con(oq, params,r’) = (k},v), then ky = kf.

Proof. Let 09 = 01, then |01 — 02]g = 0 < d. Then, according to the correctness of KC, we have
that k1 = ko = Rec(o2,v) = Rec(o1,v). However, as Rec is a deterministic algorithm, ks is fixed
w.r.t. (o1,v). As a consequence, k; is also fixed w.r.t. (o1,v), no matter what randomness is
used by Con. Il O

Proposition 3.2. Given params = (q,m,g,d,aux) for a KC scheme, for any v € Zg4, let
Sy be the set containing all o1 such that Con(oy, params) outputs v with positive probability.
Specifically,

Sy = {01 € Zg | Pr [(k1,0") < Con(oy, params) : v/ =v| > 0} .

Then, there exists vog € Zg such that |Sy,| > q/g.

Proof. For each o1 € Z4, we run Con(oy, params) and get a pair (k1,v) € Zp, X Zg4 satisfying
o1 € Sy. Then, the proposition is clear by the pigeonhole principle. O]

of Theorem 3.1. From Proposition 3.2, there exists a vy € Z4 such that |S,,| > ¢/g. Note that,
for any o1 € Sy,, Con(o1, params) outputs vy with positive probability.

For each ¢ € Zy,, let K; denote the set containing all o1 such that Con(oy, params) outputs
(k1 = i,v = vg) with positive probability. From Proposition 3.1, K;’s form a disjoint partition
of Sy,. From the independence between k; and v, and the uniform distribution of ki, (as we
assume the underlying KC is secure), we know Pr[ky =i | v = vo] = Pr[k; = i] > 0, and so K; is
non-empty for each i € Z,,. Now, for each i € Z,,, denote by K| the set containing all o € Z,
such that Rec(og, v, params) = i. As Rec is deterministic, K/’s are well-defined and are disjoint.

From the correctness of KC, for every o1 € K;,|o2 — 01|y < d, we have o9 € K. That is,
K; + [—d,d) C K.

We shall prove that K; + [—d, d] contains at least |K;| + 2d elements. If K; + [—d, d] = Zy,,
then m = 1, which is a contradiction (we exclude the case of m = 1 in the definition of KC as it is
a trivial case). If there exists an x € Z,, such that = ¢ K; + [—d, d], we can see Z,, as a segment
starting from the point = by arranging its elements as z, (z+1) mod m, (x +2) mod m, ..., (z+
m — 1) mod m. Let [be the left most element in K; + [—d, d] on the segment, and r be the right
most such element. Then K; +[—d, d] contains at least |K;| elements between [and r inclusively
on the segment. Since [+ [—d,0] and 7 + [0, d| are subset of K; + [—d, d|, and are not overlap
(because = ¢ K; + [—d,d]), the set K; + [—d, d] contains at least |K;| + 2d elements.

Now we have |K;| +2d < |K]|. When we add up on both sides for all i € Z,,, then we derive
|Swo| + 2md < q. By noticing that |S,,| > ¢/g, the theorem is established. O O

3.2 Construction and Analysis of OKCN

The key consensus scheme, named OKCN, is presented in Algorithm 1.° An illustration diagram
is given in Figure 3. Some explanations for implementation details are given below.

5Note that, for the general case of OKCN, the Con is probabilistic. When OKCN is used for key exchange or
public-key encryption, the randomness can be derived from transcripts.

18

Algorithm 1 OKCN: Symmetric KC with Noise

1: params = (¢, m, g, d, aux), aux = {¢' =lem(q,m),a = ¢'/q, 8 = ¢'/m}

2: procedure CON((o1, params)) > oy €[0,q—1]
3 e [—l(a—1)/2], a/2]]

4: o4 = (ao1 + €) mod ¢

5: kIZLUA/BJ € L,

6: v/ =04 mod 3

7 v=|vg/B] > v E Zg
8: return (ki,v)

9: end procedure

10: procedure REC(09, v, params) > og €10,q — 1]
11: ky = |aoa/B — (v+1/2)/g] mod m

12: return ko

13: end procedure

Define o’y = ao+e. Note that it always holds o’y < ¢’. However, in some rare cases, o/, could
be a negative value; for example, for the case that o3 = 0 and e € [—[(a — 1)/2],—1]. Setting
o4 = 0’y mod ¢, in line 4, is to ensure that o4 is always a non-negative value in Zgy, which
can be simply implemented as follows: if ¢’y < 0 then set 04 = 0’y + ¢/, otherwise set o4 = o/y.
Considering potential timing attacks, conditional statement judging whether o’y is negative or
not can be avoided by a bitwise operation extracting the sign bit of ¢/;. In specific, suppose o’y
is a 16-bit signed or unsigned integer, then one can code o4 = o’y + ((0/y >> 15)&1) % ¢ in C
language. The same techniques can also be applied to the calculation in line 11.

In lines 5 and 6, (k1,v") can actually be calculated simultaneously by a single command
div in assembly language. In line 11, the floating point arithmetic can be replaced by integer
arithmetic. If m is small enough, such as 2 or 3, the slow complex integer division operation
can be replaced by relative faster conditional statements.

The value v + 1/2, in line 11, estimates the exact value of v'g/B. Such an estimation can
be more accurate, if one chooses to use the average value of all v'g//’s such that [v'g/8] = v.
Though such accuracy can improve the bound on correctness slightly, the formula calculating
ko becomes more complicated.

The following fact is direct from the definition of | - |;.

Fact 3.1. For any x,y,t,l € Z wheret > 1 and | > 0, if |v —y|, <, then there exists 0 € Z
and ¢ € [—1,1] such that x =y + 0t + 6.

Theorem 3.2. Suppose that the system parameters satisfy (2d+1)m < q (1 - é) where m > 2
and g > 2. Then, the OKCN scheme is correct.

Proof. Suppose |01 — 02| < d. By Fact 3.1, there exist § € Z and § € [—d,d] such that
09 = 01 + 0g + 6. From line 4 and 6 in Algorithm 1, we know that there is a #’ € Z, such that

aocy +e+60qd =04 =kif+v'. And from the definition of a, 8, we have /8 = m/q. Taking
these into the formula of k2 in Rec (line 11 in Algorithm 1), we have

ko = |aoe/B — (v+1/2)/g] mod m (2)
=|a(@qg+0o1+0)/8—(v+1/2)/g] mod m (3)

19

d+1
Figure 3: An illustration diagram of OKCN

:{mw—eq+;mm+mhﬂg+if—;@+1mﬂnmdm (4)
:{kl—i-(g—v%ﬁglﬂ)—;—i-; mod m (5)

Notice that [v'/8 — (v+1/2)/g| = |v'g — B(v +1/2)|/Bg < 1/2g. So

[Ea R
B g B B 29

+%u+1m>

From the assumed condition (2d 4+ 1)m < ¢(1 — é), we get that the right-hand side is strictly
smaller than 1/2; Consequently, after the rounding, ko = kj. O O

Theorem 3.3. OKCN is secure. Specifically, when o1 < Zg, k1 and v are independent, and
k1 is uniform over Z,,, where the probability is taken over the sampling of o1 and the random
coins used by Con.

Proof. Recall that ¢’ = lem(q,m),a = ¢'/q,8 = ¢'/m. We first demonstrate that o4 is subject
to uniform distribution over Zy. Consider the map f : Zq X Zq — Zy; f(0,€) = (o +e€) mod ¢/,
where the elements in Z, and Z, are represented in the same way as specified in Algorithm 1. It
is easy to check that f is an one-to-one map. Since o1 < Z,; and e < Z, are subject to uniform
distributions, and they are independent, 04 = (a0 + €) mod ¢ = f(o1,€) is also subject to
uniform distribution over Z.

In the similar way, defining f’ : Zp, x Zg — Zg such that f'(k1,v") = pki + ¢/, then

f' is obviously a one-to-one map. From line 6 of Algorithm 1, f'(k1,v") = ca. As o4 is
distributed uniformly over Zg, (k1,v’) is uniformly distributed over Z, x Zg, and so k; and v’
are independent. As v only depends on v/, k1 and v are independent. ([O

20

Algorithm 2 OKCN power 2

1: params: ¢ =27 g =29 m =2"d, aux = {(B=q/m =29~ = /g =20"7"9)}
2: procedure CON(oq, params)

3: k1 = LO'I/BJ

£ v=|(o1 mod §)/7]

5: return (ki,v)

6: end procedure

7. procedure REC(o2, v, params)

8: ky = |o2/B — (v+1/2)/g] mod m

9: return ko

10: end procedure

Algorithm 3 OKCN simple
params: ¢ = 29, g = 29, m = 2™, d, where g +m = q
procedure CON(oy, params)
= 5]
v =01 mod g
return (ki,v)
end procedure
procedure REC(03, v, params)

ko = [JQT_”—‘ mod m

return ko
end procedure

._.
=

3.2.1 Special Parameters, and Performance Speeding-Up

The first and the second line of Con (line 3 and 4 in Algorithm 1) play the role in transforming
a uniform distribution over Z,; to a uniform distribution over Zy. If one chooses ¢,g,m to be
power of 2, ie.,, g = 29,g = 29, m = 2™ where q,g,m € Z, then such transformation is not
necessary, and the random noise e used in calculating o 4 in Algorithm 1 is avoided. In this case
Con and Rec can be simplified to Algorithm 2. The following corollary is straightforward.

Corollary 3.1. If ¢ and m are power of 2, and d, g, m satisfy 2md < q (1 — é), then the KC
scheme described in Algorithm 2 is both correct and secure.

If we take g + m = ¢, Algorithm 2 can be further simplified into the variant depicted in
Algorithm 3, with the constraint on parameters is further relaxed.

Corollary 3.2. If m,g are power of 2, ¢ = m-g, and 2md < q, then the KC scheme described in
Algorithm 3 is correct and secure. Notice that the constraint on parameters is further simplified
to 2md < q in this case.

The proof of Corollary 3.2 is given in Appendix C.

21

4 Asymmetric Key Consensus with Noise

Alice Bob
g1 ~ 02
k‘l € Zm

v < Con(oy, k1, params)

v
B —

ko < Rec(o2, v, params)

Figure 4: Brief depiction of AKC

As we shall see, for OKCN-based key exchange both the initiator and the responder play a
symmetric role in outputting the shared-key, in the sense that no one can pre-determine the
session-key before the KE protocol run. Though OKCN is well desirable for (authenticated)
key exchange, it is, however, not well suitable for directly achieving key transport and public-
key encryption. This motivates us to introduce asymmetric key consensus (AKC), as specified
below.

Definition 4.1. An asymmetric key consensus scheme AKC = (params, Con, Rec) is specified
as follows:

e params = (q,m,g,d,aux) denotes the system parameters, where ¢, 2 < m,g < ¢,1 <
d < [2] are positive integers, and aux denotes some auxiliary values that are usually
determined by (q,m, g,d) and could be set to be empty.

e v « Con(o1,k1,params): On input of (01 € Zg, ki € Zm, params), the probabilistic
polynomial-time conciliation algorithm Con outputs the public hint signal v € Z.

e ko < Rec(og,v, params): On input of (o2,v, params), the deterministic polynomial-time
algorithm Rec outputs ko € Z,.

Correctness: An AKC scheme is correct, if it holds k1 = ko for any 01,00 € Z4 such that
lo1 — o2q < d.

Security: An AKC scheme is secure, if v is independent of k1 whenever o1 is uniformly dis-
tributed over Zq. Specifically, for arbitrary v € Zy and arbitrary ki1, l;:’1 € L, it holds that
Prlv = 9|k; = k1] = Prfv = |k; = K], where the probability is taken over oy < Z, and
the random coins used by Con.

When AKC is used as a building tool for key transport, k; is taken uniformly at random
from Z,,. However, when AKC is used for public-key encryption, ki can be arbitrary value from
the space of plaintext messages. In any case, k1 can be generated offline, and can be input to
the party Alice.

Theorem 4.1. Let AKC' be an asymmetric key consensus scheme with params = (¢, m, d, g, auzx).
If AKC' is correct and secure, then 2md < ¢ (1 — %)

22

Comparing the formula 2md < ¢(1—m/g) in Theorem 4.1 with the formula 2md < ¢(1—1/g)
in Theorem 3.1, we see that the only difference is a factor m in g. This indicates that, on the
same values of (¢, m,d), an AKC scheme has to use a bigger bandwidth parameter g compared

to KC.
Before proving Theorem 4.1, we first adjust Proposition 3.2 to the AKC setting, as following.

Proposition 4.1. Given params = (q,m,g,d,auz) for an correct and secure AKC scheme,
then there exists vg € Zg such that |Sy,| > mq/g.

Proof. If kp is taken uniformly at random from Z,,, AKC can be considered as a special KC
scheme by treating ki < Z,;v < Con(oy, ki, params) as (ki,v) < Con(o1, params). Conse-
quently, Proposition 3.1 holds for this case.

Denote S, 2 {(01,k1) € Zy X Zy, | Pr[v' < Con(oy, k1, params) : v = v] > 0}. Then, S, de-
fined in Proposition 3.2 equals to the set containing all the values of o1 appeared in (o1,-) € 5.
We run Con(o1, ki, params) for each pair of (o1,k1) € Zy X Zy,. By the pigeonhole principle,
there must exist a vy € Zy such that [S; | > gm/g. For any two pairs (o1,k;) and (o7, k7) in
S! ,if o1 = o}, from Proposition 3.1 we derive that ky = kf, and then (01, k1) = (0}, k}). Hence,

o)

if (o1,k1) and (07, k}) are different, then o1 # 07, and so [Sy,| = |S;,| > mq/g. O O

Proof of Theorem 4.1. By viewing AKC, with ki < Z,, as a special KC scheme, all the reasoning
in the proof of Theorem 3.1 holds true now. At the end of the proof of Theorem 3.1, we derive
|Swol + 2md < ¢q. By taking |S,,| > mgq/g according to Proposition 4.1, the proof is finished.
O O

4.1 Construction and Analysis of AKCN

Algorithm 4 AKCN: Asymmetric KC with Noise

1: params = (¢, m, g,d, auz), where aux =).

2: procedure CON(o1, k1, params) > o1 €10,q—1]
3 v=lg(o1+ [kig/m])/q] mod g

4 return v

5. end procedure

6: procedure REC(0y, v, params) > og €10,q— 1]
7 ko = |m(v/g — 02/q)] mod m

8 return ko

9: end procedure

The AKCN scheme, referred to as asymmetric key consensus with noise, is depicted in Al-
gorithm 4. We note that, in some sense, AKCN could be viewed as the generalization and
optimization of the consensus mechanism proposed in |] for CPA-secure public-key en-
cryption. For AKCN, we can offline compute and store k1 and g|ki1q/m] in order to accelerate
online performance.

Theorem 4.2. Suppose the parameters of AKCN satisfy (2d + 1)m < ¢ (1 — %) Then, the
AKCN scheme described in Algorithm / is correct.

23

Proof. From the formula generating v, we know that there exist €1,e2 € R and 6 € Z, where
le1] <1/2 and |ea| < 1/2, such that

k
v="2 <01+ (lq+51>> +e2+0g
q m

Taking this into the formula computing ko in Rec, we have
k2 = [m(v/g — 02/9)] mod m

1
= {m <q(01 + kig/m+e1) + %2 +6— UqQ>—‘ mod m

m m m
= {kl + — (01 —02) + —e1 + —e2| mod m
q q g

By Fact 3.1 (page 19), there exist #’ € Z and 6 € [—d, d] such that o1 = 09 + 6'q + §. Hence,

ko = \‘k‘1+m(5+m81+m62 mod m
q q g

Since |md/q + mey/q+ mea/g| < md/q+m/2q+m/2g < 1/2, k1 = ko. O O
Theorem 4.3. The AKCN scheme is secure. Specifically, v is independent of k1 when o1 < Zq.

Proof. For arbitrary v € Z, and arbitrary 1%1,12’1 € Zm, we prove that Prlv = 0|k; = 1231] =
Pr[v = 0|k, = ki] when o7 + Z;.)

For any (k,?) in Zm, X Zg4, the event (v = o | k1 = k) is equivalent to the event that
there exists o1 € Zg such that o = [g(o1 + [kg/m])/q] mod g. Note that o1 € Z, satisfies
o = |g(o1 + [kg/m])/q] mod g, if and only if there exist ¢ € (—1/2,1/2] and 0 € Z such that
0 = g(o1 + |kg/m])/q + e — 0g. That is, o1 = (¢(v — €)/g — |kq/m]) mod ¢, for some ¢ €
(—1/2,1/2]. Let X(0,k) = {o1 € Zg | 3c € (—1/2,1/2] s.t. o1 = (q(v —€)/g — | kq/m]) mod ¢}.
Defining the map ¢ : X(#,0) — X(0,k), by setting ¢(z) = (m — U%q/m}) mod g. Then ¢ is
obviously a one-to-one map. Hence, the cardinality of (7, l%) is irrelevant to k. Specifically, for
arbitrary @ € Z, and arbitrary ki, k{ € Z,,, it holds that ‘Z(fz, k)| = ‘E(f), k)| = 12(5,0)]

Now, for arbitrary © € Z4 and arbitrary k € Zy,, when oy + Zg we have that Prjv =0 | k1 =
k] = Prloy € S(0,k) | ky = 7;:} = |%(#,k)|/q = |2(#,0)|/q. The right-hand side only depends

on v, and so v is independent of k.]]

4.1.1 Simplified Variants of AKCN for Special Parameters

We consider the parameters ¢ = g = 29, m = 2™ for positive integers g, m. Then the two round-
ing operations in line 3 of Con (in Algorithm 4) can be directly eliminated, since only integers
are involved in the computation. We have the following variant described in Algorithm 5. Note
that, in Algorithm 5, the modular and multiplication/division operations can be implemented
by simple bitwise operations.

For the protocol variant presented in Algorithm 5, its correctness and security can be proved
with a relaxed constraint on the parameters of (g, d, m), as shown in the following corollary.

Corollary 4.1. If ¢ and m are power of 2, and d, m and q satisfy 2md < q, then the AKCN
scheme described in Algorithm 5 is correct and secure.

24

Algorithm 5 AKCN power 2
params: ¢ =g =29, m = 2™ quxr = {G = q/m}
procedure CON(o1, k1, params)
v = (01 + k1 - G) mod ¢, where k1 - G can be offline computed
return v
end procedure
procedure REC(o2, v, params)
ko = [(v—02)/G] mod m
return ko
end procedure

Algorithm 6 AKCN simple

1: params = (¢, m, g,d,auz), where ¢ =27, g =29 m = 2™ and ¢ = gm (i.e., g+ m = q)

2: procedure CON(o1, k1, params) > oy €10,q—1]
3: v=[(kig+o1)/m] mod g > k1g/m can be offline computed
4: return v

5. end procedure

6: procedure REC(0y, v, params) > o €10,q— 1]
7: ko = |(mv — 02)/g] mod m

8: return ko

9: end procedure

Proof. For correctness, suppose |01 — 02| < d, then there exit § € [—d,d] and 6 € Z such
that o9 = o1 + 0g + 6. From the formula calculating v, there exists #’ € Z such that v =
o1 + k1297 ™ 4 ¢'q. Taking these into the formula computing ks, line 7 of Rec in Algorithm 5
we have

|(v—01—8—0g)/27™] mod m
| (k1277™ — §)/27"™] mod m
(k1 — [6/277™1) mod m

If 2md < g, then [6/297™| < 1/2, so that ki = k.
For security, as a special case of the generic AKCN scheme in Algorithm 4, the security of
the AKCN scheme in Algorithm 5 directly follows from that of Algorithm 4. (] O

Corollary 4.2. If g, m and g all are power of 2 satisfying ¢ = mg, and d, m and g satisfy
m+ 2d < g, then the AKCN-simple described in Algorithm 6 is correct and secure.

Proof. For correctness, suppose |01 — 02|y < d, then there exit 0 € [—d,d] and 6 € Z such that
o9 = 01 + 0q + 0. From the formula calculating v, there exist 8 € Z and ¢ € (—1/2,1/2] such
that v = 0127™ + k1297™ 4+ ¢ + @'g. Taking these into the formula computing ks, line 7 of Rec
in Algorithm 5, we have

ke = |k1 4+ (me —§)/g] mod m

If m +2d < g, then |k 4+ (me — §)/g| < 1/2, so that k1 = k.
As a special case of the AKCN scheme, the security of the AKCN-simple scheme in Algo-
rithm 6 directly follows from that of Algorithm 4. U O

25

Initiator Responder
seed + {0,1}"
A = Gen(seed) € Zy™"

X1 — XnXlA
Y, = |AX,],
seed, Y € Zn*la
A = Gen(seed)
X2 — X’nXlB
Y, = |ATX,],
€ < [~q/2p,q/2p — 1]"<!
(K2,V) < Con(3X9, params)
nxl 1axl
Yy €Z,*'",V e ZgAX B
= XTY,

K + Rec(34,V, params)

Figure 5: LWR-based key exchange from KC, where Ki,Ko € Zl4*5 and |K;| = |[Ka| =
lAlB|m\.

5 LWR-Based Key Exchange from KC and AKC

In this section, we present the applications of OKCN and AKCN to key exchange protocols
based on LWR.® The LWR-based key exchange (KE) is depicted in Figure 5. Denote by
(n,la,lp,q,p, KC,x) the system parameters, where p|g, and p and g are chosen to be power
of 2. Let KC = (params = (p,m,g,d,auz),Con,Rec) be a correct and secure key consensus
scheme, x be a small noise distribution over Z,, and Gen be a pseudo-random generator (PRG)
generating the matrix A from a small seed. For presentation simplicity, we assume A € ZZX”
to be square matrix. The length of the random seed, i.e., k, is typically set to be 256.

The actual session-key is derived from K; and Ky via some key derivation function K DF.
For presentation simplicity, the functions Con and Rec are applied to matrices, meaning that
they are applied to each of the coordinates respectively.

For presentation simplicity, we describe the LWR-based key exchange protocol from a KC
scheme in Figure 5. But it can be trivially adapted to work on any correct and secure AKC
scheme, which is also described in Figure 6. In this case, the responder user Bob simply chooses
K, € Z!4%!8 for PKE where K» corresponds to the arbitrary plaintext message (or Ky < Zlaxts
for KEM), and the output of Con(Xs9, Ko, params) is simply defined to be V. For presentation
simplicity, in the following security definition and analysis we also simply assume that the output
of the PRG Gen is truly random (which is simply assumed to be a random oracle in | D).
In the actual implementation, &€ < [—q/2p,q/2p — 1]”X1A can be computed by the responder
with a PRG from another fresh random seed seed’, or with a PRF from another static random

5Note that AKCN-based KE is actually key transport. But for presentation simplicity, we do not make
distinction between them in this work.

26

Initiator Responder
seed + {0,1}"
A = Gen(seed) € Zy*"
Xl — XTLXlA
Y, = |AX,],

seed, Yy € Znxla

K, € Z%XIB
A = Gen(seed)
X2 < XnXlB
Yo = LATX21P
€ ¢ [~q/2p,q/2p — 1]"<!4
22 = Y{Xg + |_6TX2—|p
V + Con(X;, Ko, params)

Y, € Z;;XZB,V e Zngsz

3 =XTyY,
K, < Rec(34,V, params)

Figure 6: LWR-based key exchange from AKC, where K, Ky € Z4*5 and |K;| = |Ka| =
lAlB|m\.

seed and the protocol transcript. Note that for the case that ¢ and p are power-of-two and p|q,
the computation of e is simple.

On the role of random lifting with e. We use random lifting with € to lift Y Xy from
Zy to Zg4. This way, the same protocol structure can be applied to any KC or AKC scheme
(particularly, OKCN and AKCN in this work). We also note that, if we only aim for KE from
AKCN or its variants, such a random lifting may not be necessary. As the generation of &
is simple (particularly for the case of p and ¢ are power-of-two), we preferred to the random
lifting approach for its generic protocol structure that can be instantiated with any KC or AKC
scheme.

5.1 Security Proof of LWR-Based Key Exchange

Definition 5.1. A KC or AKC based key exchange protocol from LWR is secure, if for any
sufficiently large security parameter A and any PT adversary A, }Pr[b’ =0 — %‘ 1s negligible, as
defined w.r.t. game G specified in Algorithm /0.7

"For presentation simplicity, we simply assume K9 < ZIAX'B when the key exchange protocol is implemented
with AKC. However, when the AKC-based protocol is interpreted as a public-key encryption scheme, K9 and K}
correspond to the plaintexts, which are taken independently at random from the same (arbitrary) distribution

laxl
over Z;r "B

27

Algorithm 7 Game Gy
LA Zy"
2: X XnXlA
3: Y| = LAXl-‘p
4: Xo XnXlB
5. €+ {—q/2p...q/2p — 1}"xla
6
7
8
9

: Yo = [ATX,],
3o = [(2Y1 +e) X, > 3o =Y{ Xy + [e"Xo], = [(2Y1 +)TX2],
: (K9, V) < Con(X2, params)
: K% — Z%XZB
10: b+ {0,1}
1 b A(A, Y1, Y, K5, V)

Before starting to prove the security, we first recall some basic properties of the LWR as-
sumption. The following lemma is derived by a hybrid argument, similar to that of LWE

[, I

Lemma 5.1 (LWR problem in the matrix form). For positive integer parameters (A\,n,q >
2,1,t), wheren,q,l,t all are polynomial in X satisfying plq, and a distribution x over Z,, denote
by Lg’t) the distribution over ZZX" XZ;XZ generated by taking A <+ ZZX”, S « x™*! and outputting
(A, |AS],). Then, under the assumption on indistinguishability between Aq s, (with s < x™)
and U (ZZ X Zp) within t samples, no PT distinguisher D can distinguish, with non-negligible

probability, between the distribution Lgf’t) and U(ZEX" X Z;Xl) for sufficiently large A.

Algorithm 8 Game G Algorithm 9 Game G;
1: A« Zg‘xn 1: A« ngn
2 Xy ¢ x"xla 2 Xy = x"a
3 Y1 = [AX4], 3 Y« Zpxia
4: Xog XnXlB 4: Xg XnXlB
5 €+ {—q/2p...q/2p — 1}"%Ia 5. €< {—q/2p...q/2p — 1}xla
6: Yo = |ATX:], 6: Yo = |ATX,],
70 Yo = M%Yl + E)TXQ-‘p 70 Yo = L(%Yl + E)TX2—|p
8: (K9, V) « Con(Xs, params) 8: (K9, V) « Con(X;, params)
9: K} < zlaxis 9: Kj ¢ Zp X'
10: b+ {0,1} 10: b+ {0,1}
11: b,%A(A,Yl,Yg,Kg,V) 11: v <—A(A,Y1,Y2,KS,V)

28

Algorithm 10 Distinguisher D
: procedure D(A,B) >AeZ; " Be ZZXIA
: Y, =B
.)(2 — XnXlB

1

2

3

4: e+ {—q/2p...q/2p —1}"XIa
5 Yo=|ATX,],

6 Zp=[(IY1+e)Xa],

7 (K9, V) « Con(%;, params)
8 K} « Zlaxis

9: b+ {0, 1}

10: ¥+ AA,Y1,Y9, K5 V)
11: if ¥’ = b then

12: return 1
13: else

14: return 0
15: end if

16: end procedure

Theorem 5.1. If (params, Con, Rec) is a correct and secure KC or AKC scheme, the key ex-
change protocol described in Figure 5 is secure under the (matriz form of) LWR assumption.

Proof. The proof is analogous to that in | ,]. The general idea is that we construct
a sequence of games: G, G1 and Ga, where Gy is the original game for defining security. In every
move from game G; to G;11, 0 < i < 1, we change a little. All games G;’s share the same PT
adversary A, whose goal is to distinguish between the matrices chosen uniformly at random and
the matrices generated in the actual key exchange protocol. Denote by T3, 0 < ¢ < 2, the event
that b =t/ in Game G;. Our goal is to prove that Pr[Ty] < 1/2+ negl, where negl is a negligible
function in A. For ease of readability, we re-produce game G below. For presentation simplicity,
in the subsequent analysis, we always assume the underlying KC or AKC is correct. The proof
can be trivially extended to the case that correctness holds with overwhelming probability (i.e.,
failure occurs with negligible probability).

Lemma 5.2. | Pr[Ty|—Pr[T1]| < negl, under the indistinguishability between Lng’n) and U(Zy™" x
ZnXlA)
5.
Proof. Construct a distinguisher D, in Algorithm 10, who tries to distinguish Lgcl“’n) from
!
UZD*™ x Z0xla),

If (A, B) is subjected to Lgf“’n), then D perfectly simulates Gy. Hence, Pr [D (LS‘"’”) = 1] =
Pr[Tp]. On the other hand, if (A, B) is chosen uniformly at random from Z*™ x Z*!4 which
is denoted as (AY, BY), then D perfectly simulates G;. So Pr[D(AY, BY) = 1] = Pr[T}]. Hence,
IPr[Ty] — Pr[Ty]| = [Pr[D(L{*™) = 1] — Pr[D(AY, BY) = 1]| < negl. O 0

29

Algorithm 11 Game G; Algorithm 12 Game Go

LA Zy LA Zy""
2. X1, Eq + "Xl 2: X1, By + x"xla
3. Y« Zpxia 3 Y« Zpxia
4: Xg X”XZB 4 Xy anlB
5 € {—q/2p...q/2p — 1}"*la 5. €< {—q/2p...q/2p — 1}xla
6: Yo = LATX2-|p 6: Yo Z’II)LXZB
7. Yo = I_(%Yl + ET)T)(ﬂp 70 Do ZLAX]B
8: (K9, V) « Con(X,, params) 8: (K9, V) « Con(X5, params)
9: Kb < Zlaxls 9: Kb < Zlaxls
10: b+« {0,1} 10: b« {0,1}
11: o %A(A,Yl,Yg,Kg,V) 11: v <—A(A,Y1,Y2,KS,V)
Lemma 5.3. |Pr[Ti| — Pr[Ty]| < negl, under the indistinguishability between LgclB’nHA) and

M(Z((Jn—HA)Xn % ZSH_ZA)XIB).

Proof. As Y1 and € are subjected to uniform distribution in G, %Yl + € is subjected to uniform

distribution over ZZ}XZA. Based on this observation, we construct the following distinguisher D’
presented in Algorithm 13.

First observe that Y1 = (1Y +e) € 7214 follows the uniform distribution ¢ (Z*!4), where
Y, « ZP4 and € + [—q/2p, q/2p — 1]"<!4. If (A, B) is subject to L{P™) A7 zmHal
corresponds to A < Z7*" and Y} = %Yl + € in Gy; And S < Y™ !B in generating (A’, B)
corresponds to Xy < x™*!B in G. In this case, we re-write

oo [(8)x],
()= (3)
Hence Pr [D’ (L;“B””‘+ lA)) - 1] — Pr[T}).

On the other hand, if (A’, B) is subject to uniform distribution L{(ZgnHA)Xn X Zz()nHA)XZB),
then A, Y], Y2, X9 all are also uniformly random; So, the view of D’ in this case is the same
as that in game G. Hence, Pr[D’ (A’,B) = 1] = Pr[T5] in this case. Then, | Pr[T}] — Pr[T]| =
| Pr[D/ (LB T4y = 1] — Pr[D/ Uz« Z XYy Z 1)) < negl. O 0

Lemma 5.4. If the underlying KC or AKC is secure, Pr[T2] = 3.

Proof. Note that, in Game G, forany 1 <i <lyand1 < j <lIp, (Kg[i,j],V[z',j]) only depends
on Xs[i, j|, and X5 is subject to uniform distribution. By the security of KC, we have that, for
each pair (i,), KJ[i,j] and V[i, j] are independent, and K9[i, j] is uniform distributed. Hence,
KY and V are independent, and K9 is uniformly distributed, which implies that Pr[Th] = 1/2.
U O

This finishes the proof of Theorem 5.1. (| 0

30

Algorithm 13 Distinguisher D’
1: procedure D'(A’,B) where A’ € ZgnHA)Xn, B e ZI(JnHA)XlB

T

2 Denote A’ = (é/T) = nganllT _ (%Yl +e)T e Zflen
1

3: Denote B = (;2 > >Ys € ZgX1137 3, € ZéAXlB
2

4: (Kg,V) + Con(Xg, params)

5: K% — Z%XZB

6: b+ {0, 1}

7. b AA, Y]], Y2,K5 V)

8: if o = b then

9: return 1

10: else

11: return 0

12: end if

13: end procedure

5.2 Analysis of Correctness and Error Rate

For any integer z, let {z}, denote z — I[z],, where |z], = [Ez]. Then, for any integer z,

{z}p € [~q/2p,q/2p — 1], hence {z}, can be naturally regarded as an element in Z,,,. In
fact, {x}, is equal to z mod ¢/p, where the result is represented in [—¢/2p, q/2p — 1]. When
the notation {-}, is applied to a matrix, it means {-}, applies to every element of the matrix
respectively.

We have ¥y = Y{Xg + L{:‘TXQ-IP = LAX{IZXQ + LETXﬂp = %(AXl — {AXl}p)TXQ +
[e"Xo]p. And B = XTY, = X{[ATX,], = 2(XTATX, — XT{ATX>},). Hence,

3 -3, = %’(XIT{ATXQ}p — {AX1}1X,) + [e7X2], mod p
- E(X’{{ATXQ},, — {AX 1} X0 + aTXQ)W mod p

The general idea is that X1, X, e, {ATXs}, and {AX;}, are small enough, so that 3; and
3y are close. If |3; — X5, < d, the correctness of the underlying KC guarantees K; = Ko.
For given concrete parameters, we numerically derive the probability of |Zy — 34|, > d by
numerically calculating the distribution of X{ {ATX5}, — ({AX;}] Xy — e7Xy) for the case of
l4 =1p =1, then applying the union bound. The independency between variables indicated by
the following Theorem 5.2 can greatly simplify the calculation.

Let Inv(X1,X3) denote the event that there exist invertible elements of ring Z,/, in both
vectors X and Xa. Inv(X;, Xo) happens with overwhelming probability in our application.

Lemma 5.5. Consider the case of la = lg = 1. For any a € Zy,,x € Zg/p, denote Sy, =
{y € Zy,,, | xTy mod (q¢/p) = a}. For any fivred a € Z,,, conditioned on Inv(X1,Xs) and

XTATX5 mod (¢/p) = a, the random vectors {ATXs}, and {AX1}, are independent, and are
subjected to uniform distribution over Sx, a,5%X,,a respectively.

Proof. Under the condition of Inv(Xy,X3), for any fixed X; and Xy, define the map ¢x, x,:

Ly — L7, x L7, such that A = ({AXq},, {ATXo},).

31

We shall prove that the image of ¢x, x, is S = {(y1,¥y2) € L)y X Ly, | XTIy, = XTy,
mod (g/p)}. Denote X; = (z1,X)T and y2 = (yo,¥5)T. Without loss of generality, we
assume 71 is invertible in the ring Z/,. For any (y1,y2) € S, we need to find an A such that

¢X1,X2 (A) = (y17y2)'

From the condition Inv(Xy,X5), we know that there exists an A’ € Z(M™ 1" guch that
{A'X5}, = y,. Then, we let a; = z7*(y1 — A”"X}) mod (¢/p), and A = (a;, A’"). Now we
check that ¢X1,X2 (A) = (Y1ay2)-

{AXq), = {(al A'T) <2)} ={ma +A"X\}, =y
=50, (), - ()
() @)

Hence, if we treat Z;*™ and S as Z-modules, then ¢x, x, : Zg*" — S is a surjective

homomorphism. Then, for any fixed (X1, X2), ({AX1},, {ATXs},) is uniformly distributed
over S. This completes the proof. O O

Theorem 5.2. Under the condition Inv(X1, Xs), the following two distributions are identical:

o (a,X1,Xo,{AX;},, {ATX:},), where A « Zy*", Xy = X", Xg = X", anda = XTATX5 mod
(a/p)-

o (a,X1,X2,y1,¥2), where a < Zgp, X1 < X", X2 < X", ¥1 ¢ SXy.a, and y2 < 5%, a-

Proof. For any a € Zyp, X1,X; € Supp(x™), ¥1,¥2 € Zg/p, we have

PI‘[CL = C~L, X1 = Xl,Xg = Xz, {AXl}p = S’l, {ATXQ}p = 5’2 ‘ |nV(X1, Xg)}
=Pr[{AX1}, = y1,{AT Xy}, =72 | a = @, X5 = X1, Xy = Xy, Inv(Xy, Xo)]
PI’[CL = (~I, X1 = Xl,Xg = Xz | |nV(X1, XQ)]

From Lemma 5.5, the first term equals to Prly; < SXQ@;yg — SXL& (Y1 =Y1,¥Y2 = Y2 |
a = EL,Xl = Xl,Xg = Xg, |nV(X1,X2)].

For the second term, we shall prove that a is independent of (X;,X5), and is uniformly
distributed over Z,,,. Under the condition of Inv(Xy, X2), the map Z3*" — Z,,, such that
A — XTATX, mod (¢/p), is a surjective homomorphism between the two Z-modules. Then,
Prla =a | X; = X1, Xy = Xo, Inv(X1, X5)] = p/q. Hence, under the condition of Inv(X1, X»), a
is independent of (X1, X3), and is distributed uniformly at random. So the two ways of sampling
result in the same distribution.] O

We design and implement the following algorithm to numerically calculate the distribution of
3y — 3 efficiently. For any ¢, ca € Zg,a € Zy/p, we numerically calculate PT[X{{ATXQ}p = 1]
and Pr[{AXl}ZXQ — eTXy = ¢, XTATX5 mod (¢/p) = a], then derive the distribution of
3o — 3.

As Inv(X1,X2) occurs with overwhelming probability, for any event E, we have |Pr[E] —
Pr[E|Inv(X1,X3)]| < negl. For simplicity, we ignore the effect of Inv(X;,X32) in the following

32

calculations. By Theorem 5.2, Pr[XT{ATX;}, = ¢1] = Pr[X; + x",y2 « Zg‘/p;Xfyg =
c1]. This probability can be numerically calculated by computer programs. The probability
Pr[{AXl};;FXg — Xy = ¢, XTATX, mod (¢/p) = a] can also be calculated by the similar
way. Then, for arbitrary c € Z,,

P13 — 5 =] = PrX{ {ATX,}, — {AX 1} X,y + "X, = (]

_ § : PrXT{ATXs}p=c1,{AX;}] Xo—eTXp=c2|X] AT X5 mod (¢/p)=a]-
- Pr[XTATX, mod (q/p)=a]

c1—ca=c
a€Zq/p
o PrXT{ATXs}p=c1|XTATX5 mod (q/p)=al-
- Z Pr[{AX1}Z;X2—ETX2:C2‘X{ATXQ mod (¢/p)=al Pr[XlTATXQ mod (q/p)=a]
ezl
PrXT{ATXs5}, = c1,c1 mod (g/p) = a] Pri{AX1}TXs — e X5 = ¢z, XT ATX5 mod (¢/p) = a
aeé: Pr(XTATX3 mod (q/p) = a]
a/p
c1—co=c
o PrXT{ATX,}, = 1] Pr{AX; }' X — €7 X = ¢, XT ATX; mod (¢/p) = a]
N e%: Pr[XTATX; mod (q/p) = q]
acLq/p

c1 niz)d_C(ZZf):a
By Theorem 5.2, conditioned on Inv(Xy, X) and X¥ATX5 mod (¢/p) = a, XT{ATXs}, is
independent of {AXl}gXQ — eTX,, which implies the second equality. Our code and scripts
are available from Github http://github.com/0KCN.

5.3 Parameter Selection and Evaluation

It is suggested in | , | that rounded Gaussian distribution can be replaced by
discrete distribution that is very close to rounded Gaussian in the sense of Rényi divergence

[I

Definition 5.2 (|). For two discrete distributions P,Q satisfying Supp(P)
_1
C Supp(Q), their a-order Rényi divergence is Rq(P||Q) = (Za:GSupp(P) %) ot
Lemma 5.6 (|). Letting a > 1, P and Q are two discrete distributions satisfying
Supp(P) C Supp(Q), then we have

Multiplicativity: Let P and Q be two distributions of random variable (Y1,Y3). Fori € {1,2},
let P; and Q; be the margin distribution of Y; over P and Q) respectively. If Y1 and Ys,
under P and Q respectively, are independent, then Rq(P||Q) = Ro(P1||Q1) - Ra(P2]|Q2).

Probability Preservation: Let A C Supp(Q) be an event, then
Q(A) > P(A)aT/Ra(P||Q).

Note that, when the underlying key derivation function K DF' is modelled as a random
oracle (as in | ,]), an attacker is considered to be successful only if it can
recover the entire consensus bits. Denote by E the event that a PT attacker can successfully
and entirely recover the bits of K; = Ko. By Lemma 5.6, we have that Pryounded Gaussian|[E] >
Praiscrete [E}a/(a_l)/RZ'(ZAHB)HA'IB (x||¢), where ¢ is the rounded Gaussian distribution, and x
is the discrete distribution.

33

http://github.com/OKCN

5.3.1 Proposed Parameters

probability of

dist. bits var. 0 1 19 i3 m 15 16 order divergence
Dpr 16 2.00 18110 14249 6938 2090 389 44 3 500.0 1.0000270
Dp 16 1.40 21456 15326 5580 1033 97 4 0 500.0 1.0000277

Table 5: Discrete distributions of every component in the LWR secret. We choose the standard
variances large enough to prevent potential combinational attacks.

n q P l m g distr. bw. err. K|
Recommended 672 20 212 g 24 98 Dgr 16.19 2739 256
Paranoid 832 20 212 g 24 98 Dp 20.03 273% 256

Table 6: Parameters for LWR-Based key exchange. “bw.” refers to the bandwidth in kilo-bytes.

“err.” refers to the overall error rate that is calculated by the algorithm developed in Section

5.2. “|K|” refers to the length of consensus bits.

5.3.2 Security Estimation

Similar to | ,], we only consider the primal and dual attacks | ,

| adapted to the LWR problem which are briefly reviewed in Appendix E. Recently, Al-
brecht showed new variants against LWE with small secret [A17]. But as noted in [A17], it does
not violate the concrete security estimation of Frodo | | and NewHope | | as the
security evaluation in these works are very conservative.

We aim at providing parameter sets for long term security, and estimate the concrete security
in a more conservative way than [| from the defender’s point of view. We first consider
the attacks of LWE whose secret and noise have different variances. Then, we treat the LWR
problem as a special LWE problem whose noise is uniformly distributed over [—¢q/2p, q¢/2p — 1].
In our security estimation, we simply ignore the difference between the discrete distribution and
the rounded Gaussian, on the following grounds: the dual attack and the primal attack only
concern about the standard deviation, and the Rényi divergence between the two distributions
is very small.

Scheme Attack m’ b C Q P
Recommended Primal 665 459 143 131 104
Dual 633 456 142 130 103

Paranoid Primal 768 584 180 164 130
Dual 746 580 179 163 129

Table 7: Security estimation of the parameters described in Table 6. “C, Q, P” stand for
“Classical, Quantum, Plausible” respectively. Numbers under these columns are the binary
logarithm of running time of the corresponding attacks. Numbers under “m’,b” are the best
parameters for the attacks.

34

6 LWE-Based Key Exchange from KC and AKC

In this section, following the protocol structure in | , |, we present the
applications of OKCN and AKCN to key exchange protocols based on LWE.

Denote by (A, n,q, x, KC,l4,lp,t) the underlying parameters, where X is the security param-
eter, ¢ > 2, n, l4 and [are positive integers that are polynomial in A (for protocol symmetry, [4
and [p are usually set to be equal and are actually small constant). To save bandwidth, we chop
off t least significant bits of Yy before sending it to Alice. Of course, we can chop off some least
significant bits from both Y; and Y. We mainly consider chopping off least significant bits
from Y9, as we want to optimize the ciphertext size when LWE-based KE is used for public-key
encryption.

Let KC = (params, Con, Rec) be a correct and secure KC scheme, where params is set to be
(¢,9,m,d). The KC-based key exchange protocol from LWE is depicted in Figure 7, and the
actual session-key is derived from K; and Ky via some key derivation function K DF'. There,
for presentation simplicity, the Con and Rec functions are applied to matrices, meaning they are
applied to each of the coordinates separately. Note that 2°Y5 4211 is an approximation of Yy,
so we have 3 ~ XTYy = XTATX, + XTE,,) = YI Xy +E, = XTATX, + ET X, + E,.°
As we choose X1, X5, Eq, Es, E, according to a small noise distribution y, the main part of 3;
and that of Xy are the same X,{ATXQ. Hence, the corresponding coordinates of 331 and 35 are
close in the sense of |- |4, from which some key consensus can be reached. The failure probability
depends upon the number of bits we cut off ¢, the underlying distribution y and the distance
parameter d, which will be analyzed in detail in subsequent sections. In the following security
definition and analysis, we simply assume that the output of the PRG Gen is truly random.
For presentation simplicity, we have described the LWE-based key exchange protocol from a
KC scheme. But it can be straightforwardly adapted to work on any correct and secure AKC
scheme, which is also explicitly specified in Figure 8.

By a straightforward adaption (actually simplification) of the security proof of LWR-based
key exchange protocol in Section 5.1, we have the following theorem. The detailed proof of
Theorem 6.1 is presented in Appendix G.

Theorem 6.1. If (params, Con, Rec) is a correct and secure KC or AKC scheme, the key
exchange protocol described in Figure 7 is secure under the (matriz form of) LWE assump-

tion [; /.

6.1 Noise Distributions and Correctness

For a correct KC with parameter d, if the distance of corresponding elements of 3 and 39
is less than d in the sense of | - |4, then the scheme depicted in Figure 7 is correct. Denote
e(Ya) =21 Yo/2!] + 20711 — Y5. Then

¥ -3 =X (2'Y,+2711) - Y{ Xy, — E,
=X{ (Y2 +e(Y2) - Y X, - E,
= XT(ATX;, + By +2(Y2)) — (AX; + E)'X, — E,
= X{(Ez+e(Y2) —E{ Xy — E,

8 An alternative (equivalent) method is to set Y5 = [Y2/2"], and in this case 31 = X{2"Y%.

35

Initiator Responder
seed + {0,1}"
A = Gen(seed) € Zy™"
XlaEl — anlA
Y, =AX; +E;

seed, Y € Z1*la

A = Gen(seed)
XQ,EQ < XnXlB
Y, =ATX, + E,
Eo’ — XlelB
2 =YX, + E,
(K2,V) < Con(3Xs9, params)

Y4y = [Yo/2!] € 2720,V € Zip e

¥, = XT(2ty), + 2t 11)
K + Rec(X4,V, params)

Figure 7: LWE-based key exchange from KC, where Ki,Ky € ZA*X5 and |K;| = |Ka| =
lalg|m|. 1 refers to the matrix which every elements are 1.

We consider each pair of elements in matrix 31, 35 separately, then derive the overall error
rate by wunion bound. Now, we only need to consider the case [4 = Ig = 1. In this case,
X, Ei, Yy, (i = 1,2) are column vectors in Zy, and E, € Z,.

If Y5 is independent of (X2, Esg), then we can directly calculate the distribution of o1 — os.
But now Y2 depends on (X9, Es). To overcome this difficulty, we show that Y is independent
of (X2, E2) under a condition of Xy that happens with very high probability.

Theorem 6.2. For any positive integer q,n, and a column vector s € Zy, let ¢s denote the map

Ly — Lq : ¢s(x) = xs. If there exits a coordinate of s which is not zero divisor in ring ZLq,
then map ¢s is surjective.

Proof. Let us assume one coordinate of s, say s, has no zero divisor in ring Z,. Then the Z, — Z,
map between the two Z,-modules deduced by s: x + sz, is injective, and thus surjective. Hence,
¢s is surjective.] O

For a column vector s composed by random variables, denote by F(s) the event that ¢g is
surjective. The following theorem gives a lower bound of probability of F'(s), where s < x™. In
our application, this lower bound is very close to 1.

Theorem 6.3. Let py be the probability that e is a zero divisor in ring Z,, where e is subject to
X. Then Pr[s <— x" : F(s)] > 1 — py

Proof. From Theorem 6.2, if ¢g is not surjective, then all coordinates of s are zero divisors.
Then Pr[s < x™ : =F(s)] < p{j, and the proof is finished. O O

Theorem 6.4. Ifs,e < X", A < Zy*",y = As + e € Zy, then under the condition F(s), y is
independent of (s, e), and is uniformly distributed over Zy .

=S§,e=¢F(s)) =Pr[As =y —¢é | s =8§,e = ¢F(s).

VI, where a; € Zy, and ¢; € Zg, for every

Proof. For all y,s8,é, Prly =y | s
Let A = (aj,as,...,a,)", ¥y —& = (c1,¢2,...,¢n

<]

36

Initiator Responder
seed + {0,1}"
A = Gen(seed) € Zp™"
Xla El <~ XnXlA
Y = |[(AX; + Eq)/2"]

nxl
seed,Y; € ZMX/;IT

K2 <— Z#L‘XZB
A = Gen(seed)
X27E2 — XnXlB
Y, = [(ATX, + Ey)/2"2]
Eo_ — XlAXlB
>y = 2YTX, + B,
V « Con(X5, Ko, params)

Y, € 275,V e Zipxtn

¥, = XT(2k2Y,)
K + Rec(X4,V, params)

Figure 8: LWE-based key exchange from AKC, where K;, Ky € Zi4*!2 and |K;| = |Ka| =
lAlB|m\.

1 <7 < n. Since ¢g is surjective, the number of possible choices of a;, satisfying a;fr -8 = ¢y, 18
|Kergs| = ¢" . Hence, PrfJA§ =y — & | s = §,e = & F(s)] = (¢"1)"/¢"" = 1/¢". Since the
right-hand side is the constant 1/¢", the distribution of y is uniform over Zq, and is irrelevant
of (s,e). O O

We now begin to analyze the error rate of the scheme presented in Figure 7.

Denote by E the event | X! (Eo+¢(Y32))—ET Xo—E,|, > d. Then Pr[E] = Pr[E|F(S)] Pr[F(S)]+
Pr[E|-F(S)] Pr[=F(S)]. From Theorem 6.4, we replace Yo = ATX5 + Es in the event E|F(S)
with uniformly distributed Ys. Then,

Pr[E] = Pr[Ys « Z!' : E|F(S)]| Pr[F(S)] + Pr[E|-F(S)] Pr[~F(S)]
= Pr[Y; Z!' : E|F(S)] Pr[F(S)] + Pr[Y « ZI' : E|-F(S)] Pr[~F(S)]
+ Pr[E|~F(S)| Pr[-F(S)] — Pr[Ys « Z7' : E|~F(S)] Pr[-F(S)]
=Pr[Yy Z': E] +¢

T g

where |¢| < Pr[=F(S)]. In our application, pg is far from 1, and n is very large, by Theorem 6.3,
¢ is very small, so we simply ignore . If Y5 is uniformly distributed, then £(Y32) is a centered
uniform distribution. Then, the distribution of X7 (Eq + £(Y2)) — ET Xy — E, can be directly
computed by programs.

6.1.1 Discrete Distributions

As noted in |) |, sampling from rounded Gaussian distribution (i.e., sampling
from a discrete Gaussian distribution to a high precision) constitutes one of major efficiency
bottleneck. In this work, for LWE-based key exchange, we use the following two classes of
discrete distributions, which are specified in Table 8 and Table 9 respectively, where “bits”

37

refers to the number of bits required to sample the distribution and “var.” means the standard
variation of the Gaussian distribution approximated. We remark that the discrete distributions

specified in Table 9 are just those specified and used in | | for the LWE-based Frodo
scheme.

. . _ probability of _ .

dist. bits var. 0 1 19 43 14 45 order divergence

Dy 8 | 1.10 94 62 17 2 15.0 1.0015832

Doy 12 0.90 1646 992 216 17 75.0 1.0003146

Ds 12 1.66 1238 929 393 94 12 1 30.0 1.0002034

Dy 16 | 1.66 | 19794 14865 6292 1499 200 15 | 500.0 1.0000274

Ds 16 | 1.30 | 22218 15490 5242 858 67 2 | 500.0 1.0000337

Table 8: Discrete distributions proposed in this work, and their Rényi divergences.

dist. bits var. 0 11 pi(;bablhti ?? f 4 15 16 order divergence

D, 8| 125 88 61 20 3 250 1.0021674

Dy 12 | 1.00 | 1570 990 248 24 1 400 1.0001925

Dy 12 | 175 | 1206 919 406 104 15 1 100.0 1.0003011

Dy 16 | 175 | 19304 14700 6490 1659 245 21 1 | 500.0 1.0000146
Table 9: Discrete distributions for Frodo [], and their Rényi divergences

6.2 Instantiations, and Comparisons with Frodo

The comparisons, between the instantiations of our LWE-based KE protocol and Frodo, are
summarized in the following tables 10, 11 and 12. Note that, for presentation simplicity, we
take [, = lgp = [for the sets of parameters under consideration. Also, for space limitation,
we use OKCN to denote OKCN-LWE in these tables. For “OKCN simple” proposed in Algo-
rithm 3, it achieves a tight parameter constraint, specifically, 2md < ¢. In comparison, the
parameter constraint achieved by Frodo is 4md < q. As we shall see, such a difference is one
source that allows us to achieve better trade-offs among error rate, security, (computational
and bandwidth) efficiency, and consensus range. In particular, it allows us to use ¢ that is one
bit shorter than that used in Frodo. Beyond saving bandwidth, employing a one-bit shorter ¢
also much improves the computational efficiency (as the matrix A becomes shorter, and con-
sequently the cost of generating A and the related matrix operations are more efficient), and
can render stronger security levels simultaneously. Here, we briefly highlight one performance
comparison: OKCN-T2 (resp., Frodo-recommended) has 18.58kB (resp., 22.57kB) bandwidth,
887.15kB (resp., 1060.32kB) matrix A, at least 134-bit (resp., 130-bit) quantum security, and
error rate 2739 (resp., 27389).

The error probabilities for OKCN-LWE are derived by computing Pr {]Zl [, 5] — o, j][, > 4],
forany 1 < i <l and 1 < j < lp, and then applying the union bound. The concrete failure
probabilities are gotten by running the code slightly adjusted, actually simplified, from the open
source code of Frodo. The simplified code are available from Github http://github.com/0KCN.

The concrete security levels are calculated by running the same code of Frodo. For compar-
ison, the security levels of Frodo are presented in Appendix F.

38

http://github.com/OKCN

g d . error rates)
1 " ! m OKCN Frodo OKCN Frodo dist OKCN Frodo bw. (kB) 4] (kB) K]
Challenge 210 334 g 2l 29 2 255 127 D, 2~19 21149 6.75 139.45 64
Classical 21l 554 8 22 29 2 255 127 Dy 2394 215 12.26 422.01 128
Recommended | 21 718 8 2! 210 2 511 255 D3 27379 2102 20.18 902.17 256
Paranoid 21 818 g 2! 210 2 511 255 Dy 27326 2-86 22.98 1170.97 256
Paranoid-512 212 700 16 22 210 2 511 255 Dy 27336 2-83 33.92 735.00 512

Table 10: Parameters proposed for OKCN-LWE when ¢ = 0 (i.e., without cutting off least
significant bits). “distr.” refers to the discrete distributions proposed in Table 8 and Table 9.
“bw.” means bandwidth in kilo-bytes (kB). “|A|” refers to the size of the matrix. |K| = I2logm

denotes the length of consensus bits.

g d . error rates bw. (kB) .

q " ! m OKCN Frodo OKCN Frodo dist OKCN Frodo OKCN Frodo 4] (kB) K]

Challenge 2 352 8§ 2I 22 2 383 255 Dy 2-80.T 2-118 7.76 7.75 170.37 64
Classical 212 592 8 22 22 2 383 255 Dy 2703 2-36.2 14.22 14.22 525.70 128
Recommended | 2% 752 8§ 24 23 2 895 511 D3 271059 9—38.9 22.58 22.57 1060.32 256
Paranoid 215 864 8§ 2¢ 23 2 895 511 Dy 2919 2338 25.94 25.93 1399.68 256

Table 11: Parameters of Frodo, and comparison with OKCN-LWE when ¢ = 0. Here, “distr.”
refers to the discrete distributions specified in Table 9. Note that, on the parameters of Frodo,
OKCN-LWE achieves significantly lower error rates.

q n I m g t d dist. err. bw. (kB) |A] (kB) |K|
OKCN-T2 | 2 712 8 28 28 2 509 Ds 27390 18.58 887.15 256
OKCN-T1 | 24 712 8 2¢ 28 1 509 Ds 27523 19.29 887.15 256

Table 12: Parameters proposed for OKCN-LWE with ¢ least significant bits chopped off.

6.2.1 Benchmark

The work | | introduces the Open Quantum Safe Project. libogs is one part of this project.
libogs provides the interface for adding new key exchange schemes, benchmark, and an easy way
to integrate to OpenSSL.

We fork the libogs on Github and add our OKCN-LWR-Recommended and OKCN-LWE-
Recommended. Most of the source codes are modified from Frodo-Recommended provided in
libogs.

We run benchmark of libogs on Ubuntu Linux 16.04, GCC 5.4.0, Intel Core i7-4712MQ
2.30GHz, with hyperthreading and TurboBoost disabled, and the CPU frequency fixed to
2.30GHz (by following the instructions on http://bench.cr.yp.to/supercop.html). The
benchmark result (Table 14) shows that OKCN-LWR-Recommended and OKCN-LWE-Recommended
are faster than Frodo, and use smaller bandwidth.

7 Hybrid Construction of Key Exchange from LWE and LWR

By composing a CPA-secure symmetric-key encryption scheme, the LWE-based key exchange
protocols presented Section 6 can be used to construct public-key encryption (PKE) schemes,

39

http://bench.cr.yp.to/supercop.html

Scheme Attack) Ro;lnded gdllbbld(g b é’ost re(él;ctlon b
Classical Primal 477 444 138 126 100 132 120 95
Dual 502 439 137 125 99 131 119 94

Recommended Primal 664 500 155 141 112 146 133 105
Dual 661 496 154 140 111 145 132 104

Paranoid Primal 765 586 180 164 130 179 163 130
Dual 743 582 179 163 129 178 162 129

Paranoid-512 Primal 643 587 180 164 131 180 164 130
Dual 681 581 179 163 129 178 162 129

Primal 638 480 149 136 108 148 135 107

OKCN-T2 Dual 640 476 148 135 107 147 134 106

Table 13: Security estimation of the parameters described in Table 10 and Table 12. “Rounded
Gaussian” refers to the ideal case that noises and errors follow the rounded Gaussian distribution.
“Post-reduction” refers to the case of using discrete distributions as specified in Table 8.

by treating (A,Y;) (resp., X;) as the static public key (resp., secret key). Moreover, AKC-
based key-exchange protocol can be directly used as a CPA-secure PKE scheme. To further
improve the efficiency of the resultant PKE scheme, the observation here is we can generate
the ephemeral Yo in the ciphertext with LWR samples. This results in the following hybrid
construction of key exchange from LWE and LWR in the public-key setting. For applications to
PKE, we focus on the AKC-based protocol construction. Denote by (na,np,la,l5,q,p, KC,X)
the system parameters, where p|q, and we choose p and ¢ to be power of 2. The AKC-based
protocol from LWE and LWR is presented in Figure 9. To further reduce the size of Y public
key, some least significant bits can also be cut off from Y.

The hybrid construction of key exchange from LWE and LWR is similar to the underlying
protocol in Lizard | |. The Lizard PKE scheme uses our AKCN as the underlying
reconciliation mechanism, while our protocol is a general structure that can be implemented
with either KC or AKC. In order to improve efficiency, Lizard | | is based on the variants,
referred to as spLWE and spLWR, of LWE and LWR with sparse secret. We aim at providing
parameter sets for long term security, and estimate the concrete security in a more conservative
way than [| from the defender’s point of view.

7.1 Security and Error Rate Analysis

The security proof is very similar to LWE-based and LWR-based key exchanges in previous
sections, and is omitted here.
For the error probability, we have

2 =XTY, = %)X{ (ATX, — {ATX,},) g (XTATX, — XT{ATX,},)

3 = | Y] Xs]

b= g (YTXo — {Y{Xo},) = S(X{ATX2 +E1Xs — {Y1Xo}y)

Y- = g (ETX5 + XT{ATX}, — {ETX, + XTATX,},) = [ETX, + XT{ATX,},],
We can see that the distribution of 5 — X1 can be derived from the distribution of E1 X5 +

XT{ATX5},. From Theorem 6.4, we know that for almost all (with overwhelm probability)
given Xy, the distribution of {A7X3}, is the uniform distribution over [—q/2p, ¢/2p)"4. The

40

time(us) stdev cycle stdev bw. (B)
LWE Frodo recommended
Alice 0 1443.915 10.990 3313704 25236 11280
Bob 1940.616 12.809 4453734 29439 11288
Alice 1 170.109 3.655 390331 8317 -
LWR OKCN recommended
Alice 0 1161.154 11.839 2664789 27129 9968
Bob 1722.525 12.401 3953182 28400 8224
Alice 1 133.984 3.980 307404 9065 -
LWE OKCN recommended
Alice 0 1335.453 13.460 3064789 30871 9968
Bob 1753.240 14.293 4023632 32851 8608
Alice 1 146.162 3.528 335380 8035 -

Table 14: Benchmark of libogs integrated with OKCN-LWE-Recommended. “time(us)” refers
to mean time that spent on each iteration. “cycle” refers to mean number of cpu cycles. “stdev”
refers to population standard deviation of time or cpu cycles. “bw. (B)” refers to bandwidth,
counted in bytes.

concrete error probability can then be derived numerically by computer programs. The codes
and scripts are available on Github http://github.com/0KCN.

7.2 Parameter Selection

For simplicity, we use the Gaussian distribution of the same variance (denote as o2) for the noise
E1, secrets X; and Xy. We consider the weighted dual attack and weighted primal attack in

«

Section 5.3

a2 na npg q P l m g pk cipher err. K|
Recommended 2.0 712 704 2% 212 g8 20 28 1056 8.61 2763 256
Paranoid 2.0 864 832 215 212 8 24 28 12.24 10.43 2752 256

Table 15: Parameters for the hybrid construction of key exchange from LWE and LWR. “err.”
refers to the overall error probability. “|K|” refers to the length of consensus bits. “pk” refers to
the kilo-byte (kB) size of the public key pk = (A,Y1). “cipher” refers to the kB size of (Y2, V).

LWE LWR
m’ b C Q P m’ b C Q P
Primal 699 464 144 131 105 664 487 151 138 109
Dual 672 461 143 131 104 665 483 150 137 109
Primal 808 590 181 165 131 856 585 180 164 130
Dual 789 583 179 163 130 765 579 178 162 129

Scheme Attack

Recommended

Paranoid

Table 16: Security estimation of the parameters described in Table 15.

41

http://github.com/OKCN

Initiator Responder
seed < {0,1}"
A ZyExna
sk = X ynaxla
E1 — XnB X1
Y = AX; + E; € Zp5%!4

pk = (A7 Yl)

K2 < Zln"l‘XlB
A = Gen(seed)
X2 — X'ILB XlB
Y, = [ATX,],
2= [Y{Xa],
V « Con(Xs, Ko, params)

Y, € ZgAXlB,V S Zngsz

3, = XTY,; mod p
K; + Rec(X;,V, params)

Figure 9: AKC-based key exchange from LWE and LWR in the public-key setting, where pk =
(A,Y) is fixed once and for all, K;, Ky € ZA*!5 and |K;| = |Ka| = lalg|m|.

8 RLWE-Based Key Exchange from KC and AKC

Denote by (A, n,q,o0, KC) the system parameters, where A is the security parameter, ¢ > 2 is
a positive prime number, o parameterizes the discrete Gaussian distribution Dz» ,, n denotes
the degree of polynomials in Ry, and Gen a PRG generating a € R, from a small seed. Let
KC = (params, Con, Rec) be a correct and secure KC scheme, where params = (¢, g, m,d). In
this section, we mainly consider m = 2. The KC-based key exchange protocol from RLWE is
depicted in Figure 10, where the actual session-key is derived from k; and ks via some key
derivation function K DF. As discussed in Section 5, a KC-based key exchange protocol can
be trivially extended to work on any correct and secure AKC scheme, which is also presented
in Figure 11, where kg < {0,1}" for KEM (rep., ko € {0,1}" corresponds to any plaintext for
PKE). When used for PKE, (seed,y;) corresponds to the public key, and x; corresponds to the
secret key. In the protocol description, for presentation simplicity, the Con and Rec functions
are applied to polynomials, meaning they are applied to each of the coefficients respectively.
Also, for simplicity and symmetry, in the following analysis we assume the same number of tail
bits are chopped off from both y; and yo by setting t = ¢t; = t2 > 0. In general, if we want to
optimize the size of public key (resp., ciphertext), we can set t; > to (resp., t1 < t2).

On parameters and implementations. The protocol described in Figure 10 works on any hard
instantiation of the RLWE problem. But if n is power of 2, and prime ¢ satisfies ¢ mod 2n = 1,
then number-theoretic transform (NTT) can be used to speed up polynomial multiplication. The
performance can be further improved by using the Montgomery arithmetic and AVX2 instruction
set [|, and by carefully optimizing performance-critical routines (in particular, NTT) in
ARM assembly | JH14] Asin |], the underlying noise distribution is the centered
binomial distribution ¥, (rather than rounded Gaussian distribution with the standard deviation

42

Initiator Responder
seed + {0,1}"
a = Gen(seed) € R,
x1,e1 < Dzn »

y1=[(a-x1 +ep)/2"]
seed,y1 € Ry

a = Gen(seed)
X9,€9 < Dvag
y2 = [(a-x2 + ep)/2"]
e’2 — DZ”,O’
oy =2y, - x5+ €y €R,
(ko,Vv) + Con(oz, params)

Y2 ERq7VERg

o1 = 2t2YQ X1 € Rq
k; < Rec(o1, v, params)

Figure 10: RLWE-based key exchange from KC, where k;,ks € R,. The protocol instantiated
with OKCN specified in Algorithm 1 is referred to as OKCN-RLWE.

o= \/W), which is the sum of 7 independent centered binomial variables and can be rather
trivially sampled in hardware and software with much better protection against timing attacks.
We remark that the actual noise distribution is the composition of ¥, and the chopped bits
determined by ¢t. When estimating the post-quantum security levels, we usually just assume
t = 0 (i.e., without considering the effect of ¢ on the actual noise distribution); but sometimes we
also take this value into account by approximately treating the standard deviation of the noise as
o' = /(202 + 2t=1) /2. This is based on the observation that no attacks known take advantage of
the information of different noise distributions. The concrete values of post-quantum security are
gotten by running the scripts provided by | , |. The parameters and performance
of OKCN-RLWE and AKCN-RLWE are summarized in Table 17 and 18.

On security analysis. The security definition and proof of the RLWE-based key exchange
protocol can be straightforwardly adapted from those for the KE protocol based on LWE or
LWR. Similar analysis is also given in |]. NewHope achieves 255-bit post-quantum
security against the underlying lattice problem, but the actual use of its 256-bit shared key
may provide essentially lower security guarantee (in view of the quadratic speedup by Grover’s
search algorithm and the possibility of more sophisticated quantum attacks against symmetric-
key cryptography | ,]). In this sense, the 255-bit post-quantum security of NewHope
is actually overshot in reality. For RLWE-based KE protocols, we aim for about 256-bit post-
quantum security against both the underlying lattice problem and the shared key. This means
that the shared key should be of at least 256 bits.

On error rate analysis. The error rate analysis is a special case of that for MLWE-based key
exchange presented in Section 9. Note that the correctness of OKCN (resp., AKCN) requires
that (2d + 1)m < q(1 — %) (resp., (2d + 1)m < ¢(1 — %)); This means that on the same
parameters (¢, m,d), OKCN-RLWE with parameter g has the same error rate of AKCN-RLWE
with parameter ¢’ = mg. In this work, we set m = 2, and the concrete error rate values are
gotten by running the scripts provided in | ,]

43

Initiator Responder
seed + {0,1}"
a = Gen(seed) € R,
X1,€1 < DZnJ

y1=(a-x; +ep)
seed,y1 € Ry

ky € Zn/"
a = Gen(seed)
Xg,€2 < Dzn
y2 = [(a-x2 +e3)/2"]
e’2 — DZ”,O’
oy =Yy1 X2+ €, eR,
v < Con(og, ko, params)

Y2 € Rg,VER,

(oA =2tYQ'X1 ER(I
k; + Rec(o1, v, params)

Figure 11: RLWE-based key exchange from AKC, where ki,ks € R,. The protocol instantiated
with AKCN in Algorithm 4 is referred to as AKCN-RLWE.

8.1 Combining AKCN with Lattice Code in D,

When implemented with the same parameters proposed in | | for NewHope, as shown in
Table 17, OKCN-RLWE and AKCN-RLWE reach 1024 consensus bits, with a failure probability
around 27%°; Though it suffices, we suggest, for most applications of key exchange. In order for
reaching a negligible error rate, particularly for achieving a CCA-secure PKE scheme, we need
to further lower the error rate.

A straightforward approach to reducing the error rate is to use the technique of NewHope
by encoding and decoding the four-dimensional lattice D4.° With such an approach, the error
rate can be lowered to about 2%, but the shared-key size is reduced from 1024 to 256. AKCN-
RLWE equipped with this approach, referred to as AKCN-4:1, is presented and analyzed in
Appendix H. We note that, in comparison with NewHope-simple proposed in the subsequent
work | |, AKCN-4:1 still has some performance advantage in bandwidth expansion;
specifically expanding 256 bits by AKCN-4:1 vs. 1024 bits by NewHope-simple compared to
that of NewHope. '’

8.2 On the Independence of Errors in Different Positions

Another approach to reduce error rate is to employ error correction code (ECC). Unfortunately,
in general, the ECC-based approach can be more inefficient and overburdened than NewHope’s
approach. In this work, we make a key observation on RLWE-based key exchange, by proving
that the errors in different positions in the shared-key are independent when n is large. Based
upon this observation, we present a super simple and fast code, referred to as single-error
correction (SEC) code, to correct at least one bit error. By equipping OKCN/AKCN with the
SEC code, we present the (up-to-date) simplest RLWE-based key exchange from both OKCN

9Decoding the 24-dimensional Leech lattice is also recently considered in |], but is more complicated.
10The bandwidth expansion, for both AKCN-4:1 and NewHope-simple, can be further compressed but at the
price of losing operation simplicity.

44

g d K| bw.(B) per. ny err. pg-sec

OKCN-RLWE 2T 2879 1024 4128 278 - 238 255
OKCN-RLWE 26 3023 1024 4384 2752 - 2—42 255
AKCN-RLWE 24 2687 1024 4128 2742 - 232 255
AKCN-RLWE 260 2975 1024 4384 2751 - 241 255
OKCN-SEC 22 2303 765 3904 2731 4 2-185 255
OKCN-SEC 23 2687 765 4032 2742 4 2-705 255
OKCN-SEC 23 2687 837 4021 2% 5 2-695 255
AKCN-SEC 2% 2687 765 4128 2742 4 2-705 255
AKCN-SEC 24 2687 837 4128 2% 5 2-69.5 255
NewHope 22 - 256 3872 2709 - 2-61 255
NewHope-Simple 22 - 256 4000 2-69 - 2-61 255
AKCN-4:1-RLWE | 22 - 256 3904 2799 - 261 255

Table 17: All the schemes in this table use the same parameters proposed for NewHope
[J: (¢ = 12289,n = 1024,m = 21t = 0,0 = V/8,k = 256, W15). |K| refers to the
total binary length of consensus bits. bw. (B) refers to the bandwidth in bytes. err. refers to
failure probability. “ng” refers to the dimension of SEC code used. “per” refers to the per bit

error rate before applying the SEC code. “err.” refers to overall error rate. “pqg-sec” refers to
the best known post-quantum attacks targeting the underlying lattice problem.

g t o (d') |K|(SEC) bw.(pk,cipher) err.(SEC) pa-sec (t-sec)
OKCN-RLWE | 2% 2 V8 (v/9) 1024(765) 3392 (1440,1952) 2281 (=61 255 (258)
oc=18 23 2 V8 (v/9) 1024(765) 3264 (1440,1824) 27248 (27544) 255 (258)
23 1 V8 (V85) 1024(765) 3520 (1568,1952) 27334 (277L6) 255 (257)
20 1 V8 (V/85) 1024(765) 3648 (1568,2080) 27378 (2780:4) 255 (257)
OKCN-RIWE | 22 2 V6 (V7) 1024(765) 3136(1440,1696) 27318 (2-684) 246 (250)
=16 2 2 V6 (V) 1024(765) 3264 (1440,1824) 27432 (2791.2) 246 (250)
24 2 V6 (VT) 1024(765) 3392(1440,1952) 2719 (27102.8) 246 (250)
251 6 (v/6.5) 1024(765) 3520 (1568,1952) 27606 (2-126) 246 (248)
24 1 V6 (v6.5) 1024(765) 3648 (1568,2080) 27689 (271426) 246 (248)
AKCN-RLWE | 2° 2 V8 (V9) 1024(765) 3520 (1440,2080) 2281 (2-61) 255 (258)
c=18 24 2 V8 (V9) 1024(765) 3392 (1440,1952) 27248 (27544 255 (258)
20 1 V8 (V/85) 1024(765) 3648 (1568,2080) 27334 (27716) 255 (257)
25 1 /8 (v/85) 1024(765) 3776 (1568,2208) 27378 (27804 255 (257)
AKCN-RLWE | 23 2 V6 (VT) 1024(765) 3264(1440,1824) 27318 (9684 246 (250)
c=+6 24 2 V6 (V7) 1024(765) 3392(1440,1952) 27432 (9791.2) 246 (250)
25 2 V6 (V) 1024(765) 3520(1440,2080) 2749 (27102:8) 246 (250)
241 V6 (v6.5) 1024(765) 3648 (1568,2080) 27606 (27126) 246 (248)
25 1 6 (v6.5) 1024(765) 3776 (1568,2208) 27689 (27142:6) 246 (248)

Table 18: Parameters for k = 256, ¢ = 12289, n = 1024, m = 2, ny = 4. “|K| (SEC)” refers
to the key size (resp., key size with SEC); “bw.(pk,cipher)” refers to the bandwidth in bytes
(including the size of pk = (y, seed) and cipher = (y4,Vv)); “err.(SEC)” refers to the error rate
(resp., the error rate with SEC); “pqg-sec” (resp., “t-sec”) refers to the security against the best
known quantum attacks against the underlying lattice problem without considering the effect of
t (resp., by heuristically viewing the standard deviation of the noise as o/ = /(202 + 2t=1)/2).

45

and AKCN, which can be used for CCA-secure public-key encryption (e.g., for achieving 765-bit
shared-key with bandwidth 3392 bytes and error rate 27732 at about 250-bit post-quantum
security).

Suppose f(z),g(x) are two polynomials of degree n, whose coefficients are drawn indepen-
dently from Gaussian. Let h(z) = f(z) - g(z) € R[z]/(z™ + 1). We show that for every two
different integers 0 < ¢1,¢2 < n, the joint distribution of (h[c1], hlez]) will approach to the
two-dimensional Gaussian when n tends to infinity. Hence, for the basic construction of RLWE-
based key exchange from KC and AKC presented in Figure 10, it is reasonable to assume that
the error rates of any two different positions are independent when n is sufficiently large.

For representation simplicity, for any polynomial f, let f[i] denote the coefficient of .

Lemma 8.1. Suppose f(x),g(x) € R[z]/(x"+1) are two n-degree polynomials whose coefficients
are drawn independently from N(0,0?%). Let h(z) = f(z) - g(z) € Rlx]/(z™ + 1), where h(x) is
represented as an n-degree polynomial. For any two different integers 0 < c1,co < n, the
characteristic function of the two-dimensional random vector (h[c1], hlea]) € R? is

bt t) = B [HHEND] — 16T A+t A (6)
n—1 -1
2k +1 2
= H <1 + ot (t% 4 t2 + 2t1t9 cos (77(01 — ¢2) + >>> (7)
n
k=0

Proof. One can observe that t1h[c1] + tah|co] is equal to

t| D fllglil = > fllalil |+t | D fllelil - D flilgli]

i+j=c1 i+j=c1+n i+j=c2 i+j=ca2+n
=t fTA g+ tof TALg. = 1 (1AL, + t2AL)g

Where f = (f[0], f[1],..., fln — 1T, g = (9]0], g[1],.-.,g[n — 1])T, and the notations A, A,
are defined by

-1

The value 1 in the first row is in the ¢-th column.

As t1A., + t2A,, is symmetric, it can be orthogonally diagonalize as PTAP, where P
is orthogonal, and A is diagonal. Hence, ¢, c,(t1,t2) = Elexp(i(Pf)T A(Pg))]. Since P is
orthogonal, it keeps the normal distribution unchanged. Hence, (Pf)” A(Pg) equals to the sum
of n scaled products of two independent one-dimensional Gaussian.

Suppose A1, Ag, ..., A, are the eigenvalues of t1A., +1t2A.,, and ¢ is the characteristic func-
tion of the product of two independent one-dimensional standard Gaussian. Then we have

n—1

v ex(t1,t2) = T 2(0 M) (8)

k=0

46

From |], o(t) = (1 +t2)~Y/2. For A\, we further observe that

(tlAq + t2A02)2 = (t% + t%)I + tth(AclACQ + AC2A01)
= (t% + t%)]: + tltZ(G’c2_cl _|_ Gcl_CZ)’

where

The characteristic polynomial of G is ™ + 1. Hence, A\ satisfies

2k:+1)

A2 =12 15 + 2t1t9 cos (71'(61 —c2)
n

By taking this into Equation 8, we derive the Equation 7. O O

Theorem 8.1. For any fized integers 0 < c1,c2 < n, ¢1 # c2, when n tends to infinity, the dis-

tribution of (hei hles)) converges (in distribution) to the two-dimensional normal distribution

o2y/n’ o2\/n
N(0,1y).

Proof. Let ¢(t1,t2) denote the characteristic function of the random vector (:2[%, :Q[f;]ﬁ) . Then,
for fixed tq, to,

n—1
(gt t2)) = =5 Y In (1 + = (t? + 3 + 2411 cos <w(q —) n+))) 9)
k=0
n—1
1 1 2k +1
— _5 [n <t% + t% + 2t1t9 cos <7r(01 — 62) ;)) + Tk] (10)
k=0
1 1 n—1
=SB+ -5 (1D
k=0

where 7, is the Lagrange remainders. So, |rg| < A{/2n?. Since A} < (|t1] + |t2])?, we have
il < (Jta] + [ta])* /202,

When n tends to infinity, ¢(t1,%2) converges pointwise to exp(— (3 + ¢3)/2), which is the
characteristic function of the two-dimensional normal distribution N'(0,Is). From Lévy’s con-
hlci] hlca]
o2/n’ o2y/n
the normal distribution N(0, I). O O

vergence theorem, we derive that the random vector <) converges in distribution to

8.3 Reducing Error Rate with Single-Error Correction Code

Note that, for the basic protocol construction of RLWE-based key exchange from KC and AKC
presented in Figure 10, it has already achieved per-bit error rate of about 2742, The observation
here is that, by Theorem 8.1 on the independence of error in different positions when n is large, if
we can correct one bit error the error rate will be greatly lowered. Towards this goal, we present
an variant of the Hamming code, referred to as single-error correction (SEC) code, which can
correct one-bit error in a very simple and fast way.

47

8.3.1 Single-Error Correction Code

All the arithmetic operations in this section are over Zs. For a positive integer ny, denote
Ng = 2™7 and define the matrix H as following, where for any i, 1 < i < Ny — 1, the i-th
column of H just corresponds to the binary presentation of i.

10101010101
0110011 --001°1
H,, «ng-=]0001111 - 1111
0000000 -~ 1111

For arbitrary x = (21,...,Tn,-1) € ZéVHfl, let p! = Hx”. It is easy to check that the j-th
element of p is the exclusive-or of all x;’s satisfying the j-th least significant bit of ¢ is 1, where
1<j<nygand1<i< Ny —1. Specifically, the first element of p is the exclusive-or of all x;
that the least significant bit of ¢ is 1, and the second element of p is the exclusive-or of all x;
that the second least significant bit of 7 is 1, and so on. Denote p = (p1,p2,...,Pny). We can
combine the bits in p into a binary number p = 2°p; + 2'py + ... 2" 1p,, . The construction
of H directly leads to the following proposition.

Proposition 8.1. If p” = Hx”, and the Hamming weight of x is 1, then P is the subscript
index of the only 1 in x.

Algorithm 15 Decodec(xo, X, p)
Np—1

Algorithm 14 Encodec(x = (21,...,ZN,-1))

Lp=®,5 i
1: 29 = @f\g_lxi 2: if p =1 then
2. p! = Hx' 3: i=HxT ¢p > bitwise exclusive-or
3: ¢ = (z0,X,Pp) 4: T, =x; D1
4: return c 5: end if
6: return x = (z1,...,TN,—-1)

The single-error correction code C is defined by
C= {(a:o,x,p) € Zg X ZéVH_l X Lyt | xo = @f\g_lxi,pT = HxT}

The encoding algorithm is straightforward and depicted in Algorithm 14.

We now show that C can correct one bit error. Suppose x is encoded into ¢ = (zg,x,p).
For some reasons, such as the noise in communication channel, the message ¢ may be changed
into ¢ = (a3, %/, p’). We only need to consider the case that at most one bit error occurs. If
x(equals to the parity bit of x’, then no error occurs in zy and x. Otherwise, there is one bit
error in z{, or X', but p’ = p (as we assume there exists at most one bit error that has already
occurred in z{, or x'). We calculate p” = Hx'" @ p'T. In fact, p” = Hx? @ p? = HxT @ xT).
If the one-bit error occurs in x’, by Proposition 8.1, p” is the subscript index of the error bit. If
the one-bit error occurs on z{,, then x' = x, and p” = HO = 0. Hence, p” always equals to the
subscript index of the error bit.

The decoding algorithm is depicted in Algorithm 15. Note that, according to the special
form of H, the matrix multiplication Hx” in both encoding and decoding can be done with
simple bit operations like bit shifts and bitwise exclusive-or (such an implementation is given
in Appendix I). Moreover, for AKCN-SEC and OKCN-SEC, the calculations in Lines 2-4 in

Algorithm 15 are executed only with probability around 274°, so the decoding is extremely fast.

48

8.3.2 AKC and KC with SEC code

Figure 12 depicts the AKC scheme equipped with the SEC code. Note that Encodec can be
calculated off-line.

Alice Bob
oA 6ZévH+nH op GZ(I]VH+HH

Q

k4 = Encodec(x)
v < Con(o 4, ka4, params)

Vv
_—

kp <+ Rec(o g, v, params)
x' = Decodec(kp)

Figure 12: Depiction of AKC with SEC code, where k4, kg € Zo "™ | |x| = |x/| = Ny — 1. If
the Hamming distance between k4 and kg is at most 1, then x = x'.

Alice Bob
UAGZ(IIVH+"H OB GZéVH+nH

Q

(ka,v) < Con(o 4, params)
Denote k4 as (zg,x = (1,...,ZNy-1),P)
v/ = Encodec(x) ® k4

v,V

kp + Rec(o g, Vv, params)
x’ = Decodec (kg ® v')

Figure 13: Depiction of application of SEC code to KC, where ky,kp € ZéVH”LH. If ks and kg
have at most one different bit, then x = x'.

For KC equipped with the SEC code, we propose the algorithm depicted in Figure 13. Note
that Alice only needs to send nyg + 1 bits of v/, as the second to the Ny-th elements of v/ are
all zeros. Bob calculates x’ = Decodec(kp @ v'). In fact, kp & v/ = Encodec(x) @ (k4 @ kp).
Hence, if the Hamming distance between k4 and kp is 1, then x’ = x. To prove security of the
algorithm in Figure 13, we need the following theorem.

Theorem 8.2. Let V = Zy x {0 € ZY# ™Y x 724 | then ZY# " = C@V, where @ denotes
direct sum.

Proof. For any ka = (20,x = (z1,...,ZNy-1),P) € Zo "™ let ¢ = Encodec(x) and v/ =
c® k. We have the decomposition ky = ¢ ® v/, where ¢ € C and v/ € V.

Next, we prove VNC = 0. If k = (z¢,x,p) € VNC, then x = 0, which implies z¢p = 0 and
p’ = HO = 0. Hence, k = 0. O O

When k4 is subjected to uniform distribution, then by Theorem 8.2, after the decomposition
of kg = c®Vv’' where ¢ € C and v/ € V, ¢ and v’ are subjected to uniform distribution in C and V
respectively. And ¢ and v’ are independent. As both Zév #-1 _, C and x — Encodec(x) are one-
to-one correspondence, we derive that x and v’ are independent, and x is uniformly distributed.

49

The parameters and performances for OKCN-SEC and AKCN-SEC are summarized in Table 17
and 18.

8.3.3 KEM Specification of AKCN-SEC in the Public-Key Settiing

We divide the n-bit string ko into v = |n/(Ng +npm)| blocks, then apply our SEC code in each
block. This means the actual shared-key is of size v - (Ny — 1) bits. Note that this approach
can also correct more than one bit errors, if at most one bit error occurs in each block.
Suppose the per bit error rate of k; and ks is p, then under the assumption that the errors
in different positions are independent, we can estimate that the overall heuristic error rate for

the actual shared-key is no larger than LNHiinHj CJQVH +an2.

Algorithm 16 (pk,sk) < KeyGen()
seed < {0,1}"
a := Gen(seed)
X1,e1 < Dgn o

y1 = [(ax1 +e1)/2]
return (pk := (seed,y;),sk := x1)

Algorithm 17 (ct, key) < Encaps(pk) Algorithm 18 key’ < Decaps(sk, ct)
: XQ,GQ,GIQ <— DZnJ 1: 01 1= 2t2y2 * X1

. a:= Gen(seed) 2: kg := Rec(o1, v, params)

LYo = [(axe + e2) /2% 3: k| := Decodec(k;)

o9 1= 2"y, - x9 + €} 4: return key' := k)

K, « ZgNH_l)‘_n/(NH+nH)J

ko := Encodec (k)

: v « Con(og, ko, params)

. return (ct := (y,,v), key := kb)

Note: the above pseudo-codes describes how three algorithms work in general. Notice that
n-(Ng —1)/(Ng + ng) may not be a positive integer in practice; in particular, it is not a
positive integer in our software implementation. In this case, some coefficients in v, o1, 09 will
not contribute to the generation of the shared secret key.

8.3.4 KEM Specification of OKCN-SEC in the Public-Key Setting

Algorithm 19 (pk,sk) <— KeyGen()
seed + {0,1}"
a := Gen(seed)
X1,e1 < Dgn 5

y1 = [(ax1 +e1)/2]
return (pk := (seed,y;),sk := x1)

50

Algorithm 20 (ct, key) < Encaps(pk) Algorithm 21 key’ + Decaps(sk, ct)

1: Xg,eg,elz — Dznya 1: o1 1= 2t2y2 - X1
2: a := Gen(seed) 2: k; := Rec(o1, v, params)
3y i= | (axg + e3) /2] 3: parse the vector ky into A := |n/(Ng +
4: 0= 2"y, X2 + € ng)| blocks, say kgl), e ,kgA), each of
5: (ko,v) < Con(og, params) size Ny +ny
6: parse the vector kp into A := [n/(Ng + 4 parse the vector v/ into A blocks, say
ng)| blocks, say kgl), . ,kgA), each of size vi, -+, V/\, each of size Ny + ny
Ny +npy 0 . 5: return key’ := (Decodec(kg) & vi))
7. parse every ks’ into the form i€[A]

(x((f) € Zy,xD € VT p0) ¢ ZQH>

o (4) (@)
8 v : (Encodec(x)@k >z‘e[A}

9: return (ct = (yq, v, V'), key := (X(i))iG[A]>

Note: the above pseudo-codes describe how three algorithms works in general. Notice that
n/(Ng-+ng) may not be a positive integer in practice; in particular, it is not a positive integer in
our software implementation. In this case, some coefficients in v, 01, 09, k1, ke will not contribute
to the generation of the shared secret key.

8.4 Reducing Error Rate with Lattice Code in FEjy

In this section, we further consider the approach to lower the error rate, and develop new lattice
code in Fg. We divide the coefficients of the polynomial 1 and o3 into 7 = n/8 groups, where
each group is composed of 8 coefficients. In specific, denote R = Z[z]/(2®+1), R, = R/qR, K =
Q[z]/(28+1) and Kgr = K ® R ~ R[z]/(2% + 1). Then the polynomial o1 can be represented as
o1(z) = oo(x™) + o1 (z™)z + - - - + 041 (2™)2" L, where 0;(z) € R, for i =0,1,...7. o3 can be
divided in the same way. Then we only need to construct the reconciliation mechanism for each
o;i(x), and finally combine the keys together. To do this, we need to first introduce the lattice
FEg and its encoding and decoding.

8.4.1 Combining AKCN with Lattice Code in Fyg

We construct lattice Fg from the Extended Hamming Code in dimension 8, which is denoted
as Hg for presentation simplicity. Hg refers to the 4-dimension linear subspace of 8-dimension
linear space Z$.

Hg ={c€Z§|c=2zHmod 2,z € Z*}

where
11110000
H— 00111100
00001111
01 010101

o1

The encoding algorithm is straightforward: given a 4-bit string k;, calculate k;H. This op-
eration can be done efficiently by bitwise operations. We combine this encoding with AKCN (for
the special case of m = 2), which is referred to as AKCN-E8-RLWE for presentation simplicity.
The complete algorithm is shown in Algorithm 22.'" In this work, we focus on the combination
of AKCN with encoding/decoding in Eg, and the extension to OKCN is straightforward.

Algorithm 22 AKCN-ES8: Con with encoding in Fg
. procedure Con(o; € Z§, k) € Z3, params)

v = {% <0'1 + 951 (kyH mod 2))-‘ mod g'?

return v
end procedure

—_

The decoding algorithm finds the solution of the closest vector problem (CVP) for the lattice
FEg. For any given x € R®, CVP asks which lattice point in Ej is closest to x. Based on the struc-
ture of Eg, we propose an efficient decoding algorithm. Let C' = {(x1, x1, 2, T2, 3, T3, T4, T4) €
Z8 | x1+z2+23+x4 = 0 mod 2}. In fact, C is spanned by the up most three rows of H. Hence,
Eg = CU(C + ¢), where ¢ = (0,1,0,1,0,1,0,1) is the last row of H. For a given x € R%, to
solve CVP of x in Eg, we solve CVP of x and x — ¢ in C, and then choose the one that has
smaller distance.

Algorithm 23 AKCN-E8: Rec with decoding in Fg

1: procedure Rec(os € Zg,v € Zg, params)
2: ko = Decodeg, ([gv—‘ — 02>

3: return ko

4: end procedure

Then we consider how to solve CVP in C. For an x € R®, we choose (71, 72, 23,74) € Z%, such
that (z1, 21, z2, T2, X3, T3, T4, x4) is closest to x. However, x1+x2+x3+ x4 mod 2 may equal to 1.
In such cases, we choose the 4-bit string (z], x4, 2%, «)y) such that (2, 2], zh, b, %, af,)y,) is
secondly closest to x. Note that (2], x5, 2%, ;) has at most one-bit difference from (x1, x2, x3, z4).
The detailed algorithm is depicted in Algorithm 24. Considering potential timing attack, all
the “if” conditional statements can be implemented by constant time bitwise operations. In
practice, Decode%0 and Decode%1 are implemented as two subroutines.

For algorithm 24, in Decodeg,, we calculate cost;;, where i = 0,1,...,7,b € {0,1}, which
refer to the contribution to the total 2-norm when z; = b. Decode solves the CVP in lattice
C, and Decode?! solves the CVP in lattice C' 4+ c¢. Then we choose the one that has smaller
distance. Decodelgb1 calculates the k;,7 = 0,1, 2,3 such that q%l(k‘o @ by, ko @ b1, k1 D by, k1 P
by, ko @ bo, ko @ by, ks @ by, ks @ b1) is closest to x. We use ming and min; to find the second
closest vector. Finally, we check the parity to decide which one should be returned.

HEor simplicity, we assume g is a prime and directly use q%l in Con (rather than |g/2]). The construction and
analysis can be trivially changed to work with % in Con. Also, when ¢ is an even number (e.g., power-of-two),

it should be 1.

52

Algorithm 24 Decoding in Eg and C

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

procedure Decodeg(x € Z3)

fori=0...7do

COStLO = ’.TUZ‘(QI

_1

cost; 1 = ’:L’l — qT|g
end for
(kOO, TotaICostOO) — Decode%)(costieo__j’be{ovl})
(k°!, TotalCost?) « Decodeocl(costieo..j’be{o’l})
if TotalCost” < TotalCost’! then

b=20
else

b=1
end if

(kOa kla kQ, k3) <~ kOb
ko = (ko, k1 @ ko, k3,b)

return ko

end procedure

bob1

17: procedure Decode?” (cost;cq. 7 pefo,1} € Z5*?)

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

ming = +00
min; =0
TotalCost =0
for j=0...3do
Cp < COSta; p, + COStoj 41,
C] < COSty;1-p, + COStoj 11,18,
if ¢y < ¢1 then
else
]{Ji +—1
end if
TotalCost < TotalCost + ¢y,
if c;_y, — c; < ming then
ming < Ci—k; — Ck;
end if
end for
if kg + k1 + ko + k3 mod 2 =1 then
kmini —1- kmznz
TotalCost < TotalCost + ming
end if
k = (k‘o, k1,]{2, k‘g)
return (k, TotalCost)

41: end procedure

53

The following theorem gives a condition of success of the encoding and decoding algorithm
in Algorithm 22 and Algorithm 23. For simplicity, for any o = (zg, z1,...,27) € Zg, we define

7
HU||2,2 =2 izo |$z|g

Theorem 8.3. If |01 —oallg2 < (¢—1)/2—2 <g + 1), then ki and ko calculated by Con and

Rec are equal.

Proof. The minimal Hamming distance of the Extended Hamming code Hg is 4. Hence, the

2
minimal distance in the lattice we used is 34/ (‘1;—1> x4=(qg—1)/2.

We can find €,e; € [-1/2,1/2]%,0 € Z® such that

—1
{qvw—agzqv—ks—ag:q(g(al—i—q k1H>+E+99>+61—0'2
g g g9 \q 2

qg—1

= (o1 —02) + k1H+g€+€1+0q

Hence, the bias from q;21k1H is no larger than ||o1 — o2l|q2 + gHEH +v2 < |lo1 — o242 +

V2 (% + 1). If this value is less than the minimal distance (¢—1)/2, the decoding will be correct,

which implies ki = ks. O

Parameters and implementation. The parameters and performance of AKCN-E8 are given
in Table 25. We provide a script to calculate the concrete error rate. For AKCN-E8-256, the
deviation in our parameter set (o = v/21) is quite large, which requires more many random bits
to sample. However, the generation of random bits costs a lot of time. Frodo uses a table to
generate a discrete distribution that is very close to the rounded Gaussian. However, in our
parameter set for AKCN-E8-256, the table will be too large to sample efficiently. Hence, we
propose the distribution B*?, where a and b are two integers.

Algorithm 25 Sample 7 from B%®
1. 7+ 3% getOneRandomBit() + 2 * 3°Y_, getOneRandomBit() — (& +0b)

The variation of r in Algorithm 25 is § + b, and the expect value of r is 0. By the central
limit theorem, the distribution of r is close to a discrete Gaussian. In our implementation, we
choose a = 24,b = 15, and the summation of the random bits are calculated by fast bit counting.
Recall that the Renyi divergence increases as a increases. Hence, B?*!5 and rounded Gaussian
of variance 21 are more close compared to W14 and rounded Gaussian of variance 8. We use a
larger a than NewHope so that the potential security decline can be smaller, although no attacks
known make use of the information of different noise distributions.

54

|K| n q o (o) g t pg-sec (t-sec) err pk (B) cipher (B) bw. (B)

AKCN-E8-256 256 512 12289 /21 (v22) 20 2 128 (129) 234 800 1152 1952
AKCN-E8-512 512 1024 12289 /8 (V/10) 21 3 255 (262) 2-63.3 1440 1920 3360
o=+8 512 1024 12289 VB (V9) 24 2 255 (258) 2798 1568 2048 3616
512 1024 12289 V8 (v10) 250 3 255 (262) 2816 1440 2048 3488

512 1024 12289 V8 (V9) 25 2 255 (258) 271244 1568 2176 3744

512 1024 12289 V8 (V9) 26 2 255 (258) 271387 1568 2304 3872

AKCN-E8-512 512 1024 12289 6 (vV10) 2% 4 246 (262) 27356 1312 1792 3104
(0 =+/6) 512 1024 12289 V6 (VB) 24 3 246 (255) 271094 1440 1920 3360
512 1024 12289 V6 (V10) 20 4 246 (262) 27472 1312 1920 3232

512 1024 12289 V6 (V8) 233 246 (255) 27607 1440 1792 3232

512 1024 12289 V6 (V8) 253 246 (255) 271384 1440 2048 3488

Table 19: Parameters for AKCN-E8-RLWE. “pk(B)” refers to the size of (y;,seed) in bytes;

“cipher(B)” refers to the size of (y,, v). The underlying noise distribution is ¥,, with o = /1/2;
“pg-sec” (resp., “t-sec”) refers to the security against the best known quantum attacks against
the underlying lattice problem without considering the effect of ¢ (resp., by heuristically viewing

the standard deviation of the noise as o/ = /(202 4 2t=1)/2).

8.5 On the Desirability of OKCN/AKCN-SEC and OKCN/AKCN-ES8

Compared to NewHope, OKCN/AKCN-SEC and OKCN/AKCN-ES8 are more desirable, on the
following grounds:

e To our knowledge, OKCN/AKCN-SEC schemes are the simplest RLWE-based KE pro-
tocols with error probability that can be viewed negligible in practice, which are better
suitable for hardware or software implementations than encoding and decoding the four-
dimensional lattice Dy. Note that SEC can be implemented with simple bit operations.
Moreover, with probability about 1 —2740, the decoding only involves the XOR operations
in Line-1 of Algorithm 14, which is extremely simple and fast.

e AKCN-SEC can be directly transformed into a CPA-secure PKE scheme for encrypting
837-bit messages, while AKCN4:1-RLWE and NewHope-simple are for encrypting 256-bit
messages.

e [t is more desirable to have KE protocols that directly share or transport keys of larger
size. On the one hand, it is commonly expected that, in the post-quantum era, symmetric-
key cryptographic primitives like AES need larger key sizes, in view of the quadratic
speedup by Grover’s search algorithm and the possibility of more sophisticated quantum
attacks [, | against symmetric-key cryptography. Indeed, to our knowledge,
the post-quantum security of NewHope is evaluated as a stand-alone protocol, without
considering possible quantum attacks targeting the use of shared-key. On the other hand,
in some more critical application areas than public commercial usage, larger key size
actually has already been mandated nowadays. Note that for NewHope, AKCN4:1-RLWE,
and NewHope-simple, if we want a 512-bit shared-key (which is necessary for ensuring 256-
bit post-quantum security) they have to use a polynomial of degree 2048 which can be
significantly less efficient.

e As clarified, the SEC approach fails only when there are more than one bit errors in some
block, and is versatile in the sense: the smaller (resp., larger) is the block size ny, the
lower the error probability (resp., bandwidth expansion) will be.

95

Initiator Responder
seed + {0,1}"
a = Gen(seed) € R,
x1 < X"

yi=la-xi],
seed,y1 € Ry

a = Gen(seed)
X X"
y2 = |a-xa]p
€« [~-q/2p,q/2p — 1"
o2 =y1 X2+ |€-X2]p, €ER,
(ko,Vv) + Con(oa, params)

Yo ERP,VERg

o1=Yy2 X1 €Rp
k; < Rec(o1, v, params)

Figure 14: RLWR-based key exchange from KC

e OKCN/AKCN-SEC and OKCN/AKCN-ES are more versatile and flexible than NewHope,

allowing more useful trade-offs among the parameters and performance.

¢ OKCN/AKCN-SEC vs. OKCN/AKCN-E8. OKCN/AKCN-SEC has larger key size and
is simpler. In comparison, on the system parameters, OKCN/AKCN-E8 can have lower
error rate, smaller bandwidth and stronger security simultaneously, but at the price of more
complicated implementation. We may prefer OKCN/AKCN-SEC, from the viewpoint of
system simplicity and easy implementation.

8.6 Extension to RLWR-Based KE

As a direct extension of the LWR-based KE presented in Section 5, the ring-LWR (RLWR)
based KE protocols are depicted in Figure 14 and 15. For simplicity, we assume p and q are
power-of-two, and p|g. The SEC and Eg lattice-code can also be applied to further reduce the
error probability.

9 MLWE-Based Key Exchange from KC and AKC

Recall that R = Z[X]/(X" +1), and Ry = R/qR. Let | be a positive integer parameter. Let S,
denote a distribution on all elements w € R such that ||w|| < n.'®> The Module-LWE (MLWE)
problem is introduced in | |, which is a generalization of the RLWE problem. We make use
of the definitions described in [).

13 A typical instantiation of S, as proposed in |], is based on the following centered binomial distribu-
tion: sample (a1, -+, ap, by, -, by) « {0,1}*", and output 3.7 (a; — b;).

56

Initiator Responder
seed + {0,1}"
a = Gen(seed) € R,
x1 < X"

y1=la-xi],
seed,y1 € Ry

ko € Z7,
a = Gen(seed)
Xg — X"
y2 = a-Xz2]p
€+ [~q/2p,q/2p —1]"
oy =y1 X2+ |€-X2]p €R,
v < Con(oa, ko, params)

Y2 ERP,VERQ

o1=y2-X1 €R,
ky < Rec(o, v, params)

Figure 15: RLWR-based key exchange from AKC

¢ MLWE distribution. The MLWE distribution is defined on Rf] X R4 induced by pairs
(a;,b;), where a; « Ré is uniform and b = aiTs + e; with s Sf7 common to all samples
and e; < S, fresh for every sample.

¢ MLWE assumption. The MLWE problem consists in recovering s from polynomially
many samples chosen from the MLWE distribution. More precisely, for an algorithm A,
we define el l .

A Ry (s @) « S x S

Adv‘f;}vzie(A) =Prix=s:
" b+ As+e;x < A(A,b);

We say that the (¢,¢) MLWE,;,, hardness assumption holds if no algorithm A running in
time at most ¢ has an advantage greater than e.

9.1 Generic Construction of MLWE-Based KE

Let KC = (Con,Rec,params) be a correct and secure KC or AKC scheme with parameters
params = (gq,m, g,d), where m = 2 in this section. When Con and Rec are applied to a poly-
nomial in R, they are applied to each coefficients of the polynomial respectively. The generic
construction of key exchange from MLWE is described in Figure 16 and Figure 17. When being
cased into the public-key setting, its specification is given in Section 9.1.1. We remark that
the underlying AKC (resp., KC) can be any one of AKCN, AKCN4:1, AKCN-SEC, AKCN-ES8
(resp., OKCN, OKCN-SEC, OKCN-E8). Here, for simplicity and symmetry, we assume the
same number of tail bits are chopped off from both Y7 and Y5 by setting ¢t = t; = t5 > 0.

The construction of MLWE-based KE is a direct adaptation of the LWE-based KE from
KC/AKC presented in Figure 7 in Section 6. When m = 2 and g is power-of-two, the AKCN-
based implementation is actually the CPA-secure Kyber scheme proposed in |]. The
parameters and performance of OKCN-MLWE and AKCN-MLWE are presented in Table 25. In
practice, we prefer to use the parameter set OKCN-MLWE-PKE-1, which is also the parameter

57

Initiator Responder
seed « {0,1}"
A = Gen(seed) € RLX!
Xl, E1 — S7l7><1
Y, = L(AXl + El)/Qtl]

seed, Y1
A = Gen(seed)
XQ,EQ — S,f,]XI’Eo' — STI
Yo = [(ATX; + E,)/2"]
¥, =2bYTX, + E,
(K2, V) < Con(Xy, params)
Y.,V

¥ = XT(2"2Y,)
K; = Rec(X1,V, params)

Figure 16: Generic construction of OKCN-MLWE

set used in our actual implementation. We note that, when n = 2, there may be potential
combinational attacks, but the much larger 1’ voids such potential combinational attacks.

9.1.1 KEM Specificiation of OKCN-MLWE in Public-Key Setting

When being casted into the public-key setting, the specification of OKCN-MLWE is given below.
The adaption to the specification of AKCN-MLWE is straightforward, and is specified in Section
9.1.2. For presentation simplicity, we simply set the resultant shared-key to be K = K; = Kjs. In
actual implementation of KEM, the shared-key is derived from K and the interaction transcript
via some key derivation function (e.g., a cryptographic hash function or HMAC, etc).

Algorithm 26 (pk,sk) < KeyGen(1%)

1: seed + {0,1}"
2: A := Gen(seed)
3 X1, E; + S%Xl
4: Y1 := L(AXl + El)/2t1—‘
5. return (pk := (seed, Y1),sk := Xj)
Algorithm 27 (ct, key) < Encaps(pk) Algorithm 28 key’ < Decaps(sk, ct)
XQ,EQ — S,f,)X17Eo' — 577 1: 21 = X,{(thYQ)
A := Gen(seed) 2: Ky := Rec(X1, V, params)
Yo = [(ATX, + Ey) /2% 3: return key' := K;

¥y :=20YTXy, + E,
(K2, V) < Con(Xy, params)
return (ct := (Y3, V), key := Kby)

58

Initiator Responder
seed + {0,1}"
A = Gen(seed) € RL*!
Xl, E1 — S%Xl
Y1 = |[(AX; + Eq)/2%]
seed, Y1

K; « ZZL
A = Gen(seed)
XQ,EQ — SéX17EO- — Sn
Y, = L(ATXQ + EQ)/2t2—‘
%, = 20YTX, 4+ B,
V + Con(Xs3, Ky, params)
Y,V

= X{(Qthg)
K; = Rec(X4,V, params)

Figure 17: Generic construction of AKCN-MLWE, where m = 2 in this work

9.1.2 KEM Specificiation of AKCN-MLWE in Public-Key Setting

Algorithm 29 (pk,sk) < KeyGen()
seed + {0,1}"

A := Gen(seed)

Xl,El — S7l7><1

Y = [(AX; + Eq) /2"

return (pk := (seed, Y;),sk := X;)

Algorithm 30 (ct, key) < Encaps(pk) Algorithm 31 key’ < Decaps(sk, ct)
1 Ko < Zy, 1: X = X?(QtQYg)
2: Xo,Ey + SPL Eq, 5 2: K := Rec(31,V, params)
3: A := Gen(seed) 3: return key' := K,
4: Yo 1= L(ATXQ + Eg)/2t2—|
5: g :=20YT Xy + E,
6: V < Con(X2, Ky, params)
7. return (ct := (Y2, V), key := Kp)

9.2 Error Rate Analysis and Parameter Selection

Denote g9 = ATX.2 + E9 — 2t _(ATXQ + EQ)/2t—‘, and g1 = AX; + E; — 2t L(AXI + El)/Qt—I
Then we have

2 - %y = XT(2'Y,) - (2'Y{ Xy + Ey) (12)
= 2'XT | (ATX, + Ey) /2! — 2| (AX, + E})/21Xs + E, (13)

99

=XT(ATXy + Ey —€2) — (AXy +E; —&1) + E,) (14)
= X{(BEy—e2) + (E1 —e1)"Xo + By (15)
From MLWE assumption, (A, ATX, + E,) is indistinguishable with (A, U), where U is
subjected to the uniform distribution, €;(i = 1,2) should be closed to U — 2¢|U/2!]. We can
roughly regard each coefficients of polynomials in U — 2¢{U/2!] as uniform distribution over
[7215—17 2t—1}n‘
Then we can calculate the standard deviation of each coefficients of polynomials in 3o — 31,
denote it as s. We have

12
In case that S, corresponds to uniform distribution over [—7,n], we have
(14+2n)2—-1 /(1+2n)% -1 N (14292 -1 (1+2n)2 -1
12 12 12 12

For AKCN-E8-MLWE, by the Central Limit Theorem, each coefficient of the polynomials in
Yo — X is close to a Gaussian distribution. From Theorem 8.3, the AKCN-E8-MLWE scheme
is correct with probability

Pr [d’<—x2(8) Vd < <q;1—ﬂ<g+1>>/s} (18)

1+252 -1
5% = 2nlo? <02 + (+)> +0? (16)

s2 =2nl

(17)

9.3 Parameter Selection and Comparison

The parameters and performance of SKCN-MLWE and AKCN-MLWE are presented in Table 20
and Table 23 respectively. There, “pg-sec” refers to the best known quantum attack against the
underlying lattice problem w.r.t. ¢ = 0. The concrete security values are gotten by running the
scripts provided in |]. We believe that chopping off ¢ least significant bits from Y; and
Y2 can essentially strengthen the security in reality (particularly for ephemeral key exchange or
transport). More parameters are given in Appendix L.

Note that the security is proved with t; = 0, but in the actual implementation we set
t1 =te =t as in Kyber |]. We made this choice based on the following considerations:

e Setting t; = to = ¢t > 0 minimizes the bandwidth, without sacrificing the actual security
in any meaningful way (a detailed explanation is given in |).

e Symmetry in protocol structure is always a desirable feature in practice.

Of course, if one strictly concerns about provable security, we can always implement the
protocol with ¢; = 0. On the same parameters, with ¢; = 0 the error probability is further
lowered while the bandwidth (specifically, the size of Y1) is accordingly increased.

|K| n q n g t l pg-sec err pk (B) cipher (B) bw. (B)

OKCN-MLWE-512-CPA 256 256 7681 5 23 4 2 102 2362 608 672 1280

OKCN-MLWE-512-CCA 256 256 7681 5 23 3 2 102 271055 672 736 1408

OKCN-MLWE-768-CPA 256 256 7681 2 2* 4 3 147 2761 896 992 1888

OKCN-MLWE-768-CCA 256 256 7681 2 22 3 3 147 91664 992 1024 2016

OKCN-MLWE-1024-CPA 512 512 7681 8 2¢ 1 2 248 27608 1568 1792 3360

Table 20: Parameters for SKCN-MLWE. KE refers to parameters aimed for ephemeral key
exchange, and PKE to parameters aimed for CCA-secure public-key encryption.

60

|K| n q n g 1t i c-sec pg-sec err pk (B) cipher (B) bw. (B)

AKCN-MLWE-768-1 256 256 7681 2 23 3 3 3 163 148 21664 992 1056 2048
AKCN-MLWE-768-2 256 256 7681 2 2 0 4 3 163 148 2-128 1280 992 2272
Kyber-768 256 256 3329 2 22 0 2 3 181 161 2164 1184 1088 2272

Table 21: Parameters for AKCN-MLWE, and comparisons with Kyber. KT refers to parameters
aimed for ephemeral key transport, and PKE to parameters aimed for CCA-secure public-key
encryption.

|K| n q l n g t c-sec pg-sec err pk (B) cipher (B) bw. (B)
AKCN-MLWE-768 256 256 7681 3 2 235 3 163 148 21661 992 1056 2048
Kyber-768 256 256 3329 3 2 23 2 181 161 2164 1184 1088 2272

Table 22: Parameters for AKCN-MLWE, and comparisons with Kyber. KT refers to parameters
aimed for ephemeral key transport, and PKE to parameters aimed for CCA-secure public-key
encryption.

K| n q n g t l pa-sec err pk (B) cipher (B) bw. (B)

AKCN-MLWE-KT-light 256 256 7681 5 23 4 2 102 2362 608 704 1312
AKCN-MILWE-PKE-light 256 256 7681 5 2% 3 2 102 271055 672 768 1440
Kyber-light 256 256 7681 5 23 2 2 102 2145 736 832 1568
AKCN-MLWE-KT-Recommended 256 256 7681 2 2 4 3 147 27671 896 992 1888
AKCN-MLWE-PKE-Recommended 256 256 7681 2 2% 3 3 147 21664 992 1056 2048
Kyber-Recommended 256 256 7681 4 23 2 3 161 91427 1088 1152 2240
AKCN-MLWE-KT-Paranoid 512 512 7681 8 260 1 2 248 2641 1568 1920 3488
Kyber-Paranoid 256 256 7681 3 23 2 4 218 2169 1440 1536 2976

Table 23: Parameters for AKCN-MLWE, and comparisons with Kyber. KT refers to parameters
aimed for ephemeral key transport, and PKE to parameters aimed for CCA-secure public-key
encryption.

9.3.1 Comparison with Kyber

Kyber is based on MLWE, and is AKC-based key transport protocol. In Kyber, Y| = Lth (AX; + Eqp)/ qw ,
Y, = [294(ATXy + E)/q], B2 = |qY1/2%1"Xs + Eo, 1 = X{|qY2/2%], where d;, d,, are
non-negative integers. The underlying AKC mechanism of KYBER is essentially AKCN (Algo-

rithm 4). Note that Rec(o2, v, params) = |m - (|qv/g|/q — 02/q)] mod m in KYBER, compared

to Rec(o2, v, params) = |m - (v/g — 02/q)] mod m in AKCN.

In comparison, we present both SKCN-based key exchange and AKCN-based key transport.
Moreover, the underlying key building tools: SKCN and AKCN, appeared in the literature
since November 2016 https://arxiv.org/abs/1611.06150. In fact, the SKCN-MLWE and
AKCN-MLWE protocols are the MLWE-based instantiations of SKCN-LWE and AKCN-LWE
presented there. On all the chosen parameters, we can see that SKCN-MLWE protocols have
better performance than their AKCN-MLWE counterparts. Below, we briefly compare AKCN-
MLWE and Kyber.

e For AKCN-MLWE-PKE-light and Kyber-light, they both achieve 102-bit post-quantum
security, but AKCN-MLWE-PKE-light (resp., Kyber-light) has bandwidth of 1440 bytes
(resp., 1568 bytes) at the failure rate 2719 (resp., 2714%). As the post-quantum security
level is for 102 bits and 105 > 102, we suggest an error probability of 2710% already suffices
for 102-bit post-quantum security. Also, three (resp., two) least significant bits are chopped

61

https://arxiv.org/abs/1611.06150

off with AKCN-MLWE-PKE-light (resp., Kyber-light), which means that AKCN-MLWE-
PKE-light can have stronger security than Kyber-light in reality. In addition, we also
present parameters for ephemeral key establishment with remarkably lower bandwidth:
1280 (resp., 1312) bytes for SKCN-MLWE-KE-light (resp., AKCN-MLWE-KT-light).

e For AKCN-MLWE-PKE-Recommended and Kyber-Recommended, they both have enough
margins for 128-bit post-quantum security, where AKCN-MLWE-PKE (resp., Kyber-
Recommended) has 147 (resp., 161) bit post-quantum security w.r.t. ¢ = 0 at failure
rate of 271664 << 27T (pegp., 271427 > 27161) Notice that three (resp., two) least
significant bits are chopped off with AKCN-MLWE-PKE-Recommended (resp., Kyber-
Recommended). AKCN-MLWE-PKE-Recommended has bandwidth of 2048 bytes, com-
pared with 2240 bytes of Kyber-Recommended. In addition, we also present recommended
parameters for ephemeral key establishment: 1888 bytes at failure rate 276! (resp., 2767-1)
for SKCN-MLWE-KE-Recommended (resp., AKCN-MLWE-KT-Recommended).

o AKCN-MLWE-KE-Paranoid and Kyber-Paranoid are somewhat incomparable. AKCN-
MLWE-KE-Paranoid is for ephemeral key establishment, which achieves 512-bit shared
key at 248-bit post-quantum security and failure rate of 2754, In comparison, Kyber-
Paranoid is for achieving 256-bit shared key at post-quantum security of 218 and failure
rate of 2719, We remark that 256-bit shared-key may only ensure about 128-bit security
in the quantum world, in view of the quadratic speedup by Grover’s search algorithm
and the recent advances of more sophisticated quantum attacks against symmetric-key

cryptography.

9.4 Implementation

In this section, we concentrate our introduction on the KEM implementation of the OKCN-
MLWE scheme.'* Almost all the implementations of our schemes with this submission follow
the same designing principles. The suggested parameters for the implementation of OKCN-
MIWE KEM scheme are:

n=256,q=6781,1=3,9g=2"t=4,m=21n=2.

9.4.1 Generation of Noise Polynomials

In our implementation, each coefficient of the noise polynomial is drawn independently from the
centered binomial distribution of parameter n = 2 (instead of the discrete Gaussian distribution),
mostly due to the difficulty of implementing a discrete Gaussian sampler efficiently. To obtain
such a noise polynomial, we first expand a seed of 31 + 1 = 32 bytes into a uniform random
array of length 128 bytes, and each byte is applied to generate two indepenent coeflicients in the
obvious manner. Note that although each coefficient of the noise polynomial corresponds to some
integer in the interval [¢ —n, ¢ + 1], we could compress each coefficient so that [log(1+2n)] =3
bits suffices to represent each coefficient of the noise polynomial. Such observation enables us
to represent the secret key (i.e., the X; in Algorithm 26) in a compact manner.

14Some parts of the implementations are inspired by [,]

62

9.4.2 The Keys and Ciphertext

In our implementation of OKCN-MLWE KEM, every public key is a pair (Y1,seed). Here, Y1
is a truncated vector consisting of [= 3 truncated polynomial, each of size

l-n-([1+1logq] —1)/8 =960

bytes, whereas the seed to generate the public matrix A € RgX?’ is of size 32 — 1 = 31 bytes.

As noted before, a secret key is a small polynomial, which is of size [-n-[log(1+2n)]/8 = 288
bytes. Each ciphertext is a pair (Y2, V). Here, Y5 is a truncated vector, and hence is of size
960 bytes. Conversely, the array V is of size n - g/8 = 160 bytes.

9.4.3 Encoding/Decoding of Objects

In addition to the random seed, we need to convert four types of numerical objects into character
strings in our implementation, i.e., the truncated polynomial (or more precisely, the truncated
vector), the noise polynomial, the signal, and the final shared key. Note that although each
could be seen as an n-dimensional “vector” in the space Z", their coefficients are of different
sizes in nature. Nevertheless, each vector could be divided into n/8 = 32 consecutive blocks,
each with 8 coefficients, and each block could be encoded/decoded in the similar manner. Such
observation enables us to define two general procedures, compress, decompress in the io.h file,
which could handle all the foregoing objects and thus simplify our implementation significantly.

Take the signal vector V = (vg,v1,--- ,v,_1)" for instance. It consists of 32 blocks, and
each coefficient v; = v;0v;,10p2- - Vg € {O, 1,---,2° — 1}. It is routine to see that each block
could be encoded into five bytes, as the following indicates:

Vi 0Vi+1,0 * " Vi+7,0, Vi, 1Vi+1,1 - Vit71, 0y Ui4Uip14 - Vig74.-

The decoding procedure is defined in the appropriate manner.

It should be stressed that the coefficients of each noise polynomial fall into the interval
[¢ — 1, q + n] during computation. Hence, we should shift these coefficients into an appropriate
interval, and then encode each block into [log (1 + 2n)] = 3 bytes; similarly, shifting operation
is necessary after the decoding process.

9.4.4 NTT Technique

In our implementation, the NTT technique is applied to speeding up the polynomial multipli-
cation operations. In particular, the negative wrapped convolution method |] is used
to avoid the use of the trivial doubling technique in Z,/(z"™ + 1). The Montgomery reduced
algorithm [], i.e., the REDC algorithm, is also applied so as to make it more efficient, with
R =218

Moreover, by setting the parameters in an appropriate manner, both the NTT transform
and the inverse NTT transform could be conducted by invoking the same procedure, i.e., the
Poly-NTT-transform procedure in polynomial.h file. This makes our implementation more com-
pact and more readable.

9.5 Applications to CCA-Secure PKE

The transformation from AKCN-MLWE to CCA-secure KEM is specified in detail in |].
A CCA-secure KEM from OKCN-MLWE, which is instantiated from |], is presented in

63

Section J. In this section, we present new construction of CCA-secure PKE scheme from AKCN-
MLWE. The extensions to schemes based on RLWE, LWE and LWR are straightforward.

For schemes based on MLWE, LWE and LWR, the security parameter x is set to be 256.'°
Let G : {0,1}* — {0,1}* x {0,1}7*(®) where p; is a positive polynomial, and H : {0,1}* —
{0,1}" be two cryptographic hash functions (or any secure key derivation functions). Let
KDF{0,1}* — K,e be a secure key derivation function, where I, is the key space of AEAD. We
write (X, Eg, E,) <~ Sample(17;r1) to denote the process of sampling the noises: Xo, Eg S’f]“
and E, < S, using randomness r; € {0,1}P1(®). Let SE = (K, Enc, Dec) be an AEAD scheme,
as specified in Section 2.1, and M € {0,1}* be the message to be encrypted. The key-generation
algorithm, the encryption algorithm £ and the decryption algorithm D of the PKE scheme from
AKCN-MLWE are specified in Algorithm 32, Algorithm 33 and Algorithm 34 respectively.

Some comments are in order. The design of the PKE scheme combines techniques from
[, , ,], but with the following modifications and considerations.

e We explicitly use authenticated encryption (rather than any one-time CCA-secure symmetric-
key encryption), which is mandated in (and is thus well compatible with) some prominent
existing standards like TLS1.3. In actual implementations, we recommend to use AES-
GCM, or Chacha for light-weight implementations.

e The value w is sent in plain in [, |, which plays an essential role for provable
security in the quantum random oracle model. In our design, it is encrypted with AE. On
the one hand, we suggest it is more prudent to get it encrypted in reality. On the other
hand, this value will also be used for other purposes in our design of AKE to be presented
in the subsequent section. Though encrypting it with any (one-time) CCA-secure SE
scheme might be problematic, encrypting it with AEAD can only strengthen the security
in reality. Formal analysis will be conducted in a separate work.

e The underlying key for AEAD is set to be H(S,cy). This allows more flexible implemen-
tations (e.g., when the random coins for KEM are generated with part of plaintexts as
input), and is well compatible with the use of the PKE scheme in more complex systems
like AKE.

e When composing a CCA-secure KEM with AEAD, decrypting the AEAD ciphertext using
a valid key or a fault key can have performance differences, which may cause potential
side channel attacks. Our design tries to hide such performance differences.

Algorithm 32 (pk,sk) < KeyGen(1"%)

z+ {0,1}"

seed + {0,1}"

A := Gen(seed)

Xl, E| « S%Xl

Y = [(AX; + E;)/211]

return (pk := (seed, Y1),sk := {Xy,z, pk})

15For schemes based on RLWE, we may suggest x = 512.

64

Algorithm 33 ct < & (M)

1: A := Gen(seed)”

2: S« {0, 1}'i

3: (w,r) = G(pk,S)’

4: (X2, E9, E,;) < Sample(17;r;)

5. Yo i= [(ATXy + Eg) /2]

6: X :=21YT Xy + E,

7: 'V < Con(Xy, S, params)

8 K= KDF(S,Cl), where c; = (YQ,V)
9: Cg = EncK(H,w||M)C

10: return ct := (¢, c2)

%A can be directly specified as part of pk and sk in place of seed.

%In practice, we may recommend the variant of (e, r) = G(pk, S, M’), where M’ is part
of M.

°The associated data H contains a (possibly empty) subset of ¢; and some public values
determined from the application context. For simplicity, we usually do not explicitly specify
the associated data.

65

Algorithm 34 Dg(ct = (c1,c2))
A := Gen(seed)
¥, = XTI (2Y,)
S:= Rec(X;, V, params)
K' = KDF(S,c1)
M = Decg(c2)
S = H(Z, C1)
if M = 1 then
=85
else
S =5¢
. end if
(&) = G(pk.S)
(X4, ES, EL) < Sample(1%; 1))
2= L(ATX) + E5)/2]
c Xy =20YTX, +EL Y
: V' + Con(X}, S, params)
rephrase M = (W', M") if M # L
Cif (Yo £ YLV V£V VW #w \/ M= 1) then®
return |
else
return M’
. end if

NN N = o= = s = = e e e

“This is to hide the performance difference between M = 1 and M # L.

"We are unaware of any vulnerability without performing Step 15-16. If these steps are removed,
the condition of V = V' is also removed.

“The condition whether w’ = @’ can be checked just after Step 12. We refrain from doing so to be
against potential side-channel attacks.

9.6 Applications to Privacy-Preserving AKE

In this section, we present a new construction for AKE, referred to as concealed non-malleable
key-exchange (CNKE). We present its generic construction, clarify its design rationales, and
finally give concrete instantiations from AKCN-MLWE. CNKE is carefully designed, with the
following goals: (1) computational efficiency; (2) privacy protection; (3) well compatible with
existing standards like TLS1.3; and (4) robust non-malleability.

9.6.1 Abstraction of Key-Exchange and Key-Transport

An ephemeral two-round key-exchange (KE) protocol II consists of the following algorithms:

e Par: On a security parameter 1%, the probabilistic polynomial-time (PPT) procedure Par
outputs the parameters params.'® Denote by params < Par(1%).

161n reality, Par is implicit or provided by a higher-level protocol, when the KE protocol is used as a building
block in a complex system.

66

e M;: A PPT procedure used by the initiator player I to generate the first-round message
and the associated secret state. Denote by (M, Sr) < My(params), where M;j is the
first-round message to be sent to the responder in plain, while Sy is some secret state kept
by I in private.'”

e Mp: A PPT procedure used by the responder player R to generate the second-round
message, the associated secret state and the shared-key. Denote by (Mpg,Sgr, Kgr) <
Mpg(params, M), where Mp is the second-round message to be sent to the initiator in
plain, K is the derived shared-key, and Sg is some secret state kept by R in private.'®

e Kj: A polynomial-time procedure used by the initiator to derive the shared-key. Denote by
K| = Kj(params,Mg, My, S;).'Y Without loss of generality, we assume Kj, Kp € {0,1}".

An ephemeral two-round key-transport (KT) protocol is identical to the above ephemeral
KE protocol, except that: (Mpg,Sgr) < Mg(params, M, Kr), where Mg is the second-round
message to be sent to the initiator in plain, Kr < {0,1}" is the shared-key to be transported,
and Sp is some secret state kept by R in private. Specifically, the shared-key Kpg is set by the
responder.

Definition 9.1. A KE or KT protocol 11 is sound, if it satisfies the following two conditions:

Completeness For any sufficiently large security parameter k, it holds that K = Kgr with
overwhelming probability. The probability is taken over the random coins used in Par, My,

Mg and K;.

Security Denote by Trans the execution transcript including (params, Mr, Mg). The follow-
ing two distributions are computationally indistinguishable: { Trans, Kr} and { Trans, K},
where K < {0,1}".

Traditional Diffie-Hellman, and the various KE protocols based on OKCN, are instantiations
of sound KE; while the protocols based on AKCN are instantiations of KT.

9.6.2 Basic Construction of CNKE

Let (KenGen, &,D) be a CCA-secure PKE scheem,?’ and II = (Par, M;, Mg, K;) be a sound s
(ephemeral) KE or KT protocol, where KeyGen and Par can have overlaps. Denote by I4 (resp.,
Ip) the identity information of the initiator (resp., responder), which consists of information
like identity, public key, and certification, etc. Denote by (PK4,SK4) < KeyGen(1%) (resp.,
(PK4,SK4) + KeyGen(1%)) the public key and secret key of I4 (resp., Ig). We assume the
responder’s identity information Ip is known to the initiator in advance (e.g, in the client/server
setting). For instance, the responder’s identity information can be sent to the initiator in the
parameter negotiation stage prior to the protocol run. Let KDF : {0,1}* — {0,1}" x {0,1}"
be a secure key derivation function, and params < Par(1%), which are assumed to have been
negotiated between the communicating players before the protocol run. The basic version of the
privacy-preserving AKE protocol works as follows, which is also depicted in Figure 18:

"In the public-key setting, M; (resp., S;) corresponds to the public key (resp., secret key).

18Usuaully7 the secret-state Sk is erased after the shared-key is derived.

9The procedure K; is usually deterministic, but can also be probabilistic in general.

20In practice, we prefer to the hybrid construction of combining CCA-secure KEM and authenticated encryption
for the CCA-secure PKE.

67

PK4 .PKp
"SK 4 Bk

ca =Epky(ra,Ma,1a)

v

cg = Epk,(rB, MB)

<
<%

Figure 18: Brief depiction of CNKE, where (K, K') = KDF(Ia,Ig, 74,75, MaA, Mp,Ka,ca,cp)

Round-1: The initiator 14 takes r4 < {0,1}", computes (M4,S4) < M;(params), and ¢4 =
Epk(Ta, Ma,14).2t Tt sends cy to I, and keeps (r4,S4) in private.

Round-2: The responder I computes (74, Ma,74) = Dsk,(ca),”* (Mp,Sp, Kg) < Mpg(params, M 4)
if IT is KE (or, takes Kp <+ {0,1}", and computes (Mp,Sp) + Mg(params, M 4, Kp) if
ITis KT), takes rp < {0, 1}", and computes cg = Epk , (14, M p, auxrp) where auxp can be
an empty string.?> Then, it computes (K, K') = KDF(I4,Ip,74,75, M, Mp, Kp, auzr),
where K serves as the session-key while K’ can be used for mutual authentication within
the protocol run, and auzy is some (possibly empty) auxiliary information.?* Finally, it
sends cp to I4, and keeps (K, K') in private but erases all the other secret states.

Initiator key derivation: I4 computes (rp, Mp,auzp) = Dsk ,(cp),”” K4 = Kr(params, Mg, M4, S4),
and (K,K') = KDF(Ia,Ip,ra,758,Ma, Mp, K4,auxf). The session-key is set to be K.

Some comments about the above basic construction are in order. Firstly, identity privacy is
now considered to be an important privacy to be protected, and is mandated in some standards
like TLS1.3, EMV, etc. Secondly, by using ephemeral KE or KT protocol, it is computationally
more efficient, and is better suitable for implementations by low-power clients.?® Thirdly, for
efficiency considerations, we can only encrypt some parts of each of {M4, Mp, 14}, as long as
the rest sent in plain does not breach ID-privacy or recover M 4 or Mp with non-negligible
probability. Finally, a more robust variant (but unnecessary for provable security) is to derive
the session-key K from (Ia,Ip, 74,75, Ma, Mp, K4 = Kp) and the whole session transcript.

The construction, when using OKCN-MLWE as the underlying ephemeral KE, is illustrated
in Figure 19. Note that if the underlying CCA-secure PKE is implemented with CCA-secure
KEM or PKE from OKCN/AKCN-MLWE, seed can be part of public key or system parameters,
and is no need to be encrypted in cy4.

9.6.3 Design Rationale of CNKE, and the Actual Design

We demonstrate the design rationales of CNKE with some concrete attacks, which lead us to
the actual design and implementation.

2In actual implementation, some parts of M could be part of public key or system parameters, which are
not necessary to be encrypted.

22In case the decryption outputs “L”, it aborts.

23Depending on the application scenarios, auzp can include the responder’s identity information Ip.

24In practice, we may suggest auzp includes (ca,cB).

25In case the decryption outputs “L”, it aborts.

26For provable security in the eCK model, the random coins for generating M4 (resp., Mp) are derived from
a fresh random string rca and the static secret-key of 14 (resp., a random string rcp and the static secret-key of
Ig).

68

PK4 .PKp
"SK 4 Bk

Cp = 5PKB (TA, seed,Yl, IA)

v

cg =Epk,(rB, Y2, V)

<
<%

Figure 19: Basic Structure of CNKE from OKCN/AKCN-MLWE

If 14 is not encrypted, and suppose (I4,Ip) are not put into the input of KDF, there is
unknown key share (UKS) attack. The UKS attack works as follows: a man-in-the-middle (MIM)
adversary I¢ intercepts (I4,ca), and changes it to (I¢,c4) that is sent to Ip. After receiving
cp encrypted with the public key of Io by Ip, it decrypts cp and re-encrypts the plaintext
into ¢z with the public key of I4. With such an attack, 14 considers it is communicating
with Ip, while Ip thinks it is communicating with I, but these two (unmatched) sessions are
of the same session-key. As users’ identity information is not put into the input of KDF for
Kyber.AKE |], this attack also demonstrates that the design of Kyber.AKE is specific
to its CCA-secure KEM mechanism. For implementation generality and security robustness, we
may suggest to put users’ identity information into the input of KDF for Kyber. AKE, as well
as to encrypt client identity information with a symmetric-key encryption.

If M4 or Mp is not encrypted, there could be malleating attacks, as the underlying ephemeral
KE/KT protocol is not secure against adaptive attacks. Specifically, by malleating these compo-
nents, an MIM adversary can cause two unmatching sessions to have related ephemeral KE/KT
messages. Then, as the sessions are unmatching, the adversary is allowed to expose any secret
states of one session to be against another one.

Suppose a MIM adversary A learns the secret key SKp of Ig. After intercepting c4 from [4, it
decrypts c4 with SKp, and then re-encrypts into ¢4 with the public key SKg. Supposing (ca, cp)
is not put into the input K DF or explicit mutual authentication (e.g., via M ACk) is not added,
this attack causes two sessions to have different transcripts but have the same session-key. To
be against this type of attacks, we suggest to put (ca,cp) into KDF' or explicit authenticate
the session transcript via M ACk. If the underlying CCA-secure PKE is implemented with the
combination of CCA-secure KEM and a CCA-secure symmetric-key encryption scheme SE, we
suggest the following method:

e The random coins for the CCA-secure KEM run by one player, as well as the key materials
r4 and rp, are derived from a random string, the public keys, and the transcript, on
which the resultant PKE becomes deterministic. The underlying symmetric encryption is
recommended to be authenticated encryption, e.g., AES-GCM. But the random coins used
for the ephemeral KE/KT protocol should be derived from another independent random
string and the transcript (particularly, the public key of the player itself).?” Moreover, as
we shall see, the random strings r4 and rg can be implicitly transported without being
encrypted with the symmetric-key encryption, which further reduces the bandwidth.

2"In general, the random coins for PKE and KE/KT can be derived from the same random seed. But for
CCA-secure KEM via the FO-transformation, the random coins used for KEM and those for ephemeral KE/KT
should be independent.

69

Now, suppose the PKE is built by composing CCA-secure KEM and AEAD. Suppose a MIM
adversary A exposes the underlying key for AEAD from the secret state of one player, which can
be allowed in the underlying security model, it can use the exposed key to change the AEAD
ciphertext part, which again causes two sessions to have different transcripts but have related
key materials. To be against this type of attack and to provide robust non-malleability, we let
the identity information and ephemeral KE/KT component (which are encrypted with AEAD)
are put into the input for deriving the random coins for KEM.?® Note that we have already
make the key materials r4 and rp getting encrypted with AEAD to be related to the KEM
part. This way, the KEM part and the AEAD part are non-malleably combined, which provides
robust resistance to MIM attacks and to secrecy exposure.

The basic construction lacks perfect forward security (PFS). To add PFS and add explicit
mutual authentication, Iz additionally sends 73 = M ACk/(0) in the second round, and I 4 sends
74 = MACK+(1) in an extra third round. In this case, we suggest aury includes (ca,cp).?’ In
order to be compatible with TLS1.3, in the actual implementation we prefer to use the Finish
mechanism of TLS1.3. Based on [Z16], the analysis of CNKE will be given in a separate work
soon.

9.6.4 Instantiation of CNKE from AKCN-MLWE

Let G : {0,1}* — {0,1}* x {0,1}*®) G4 : {0,1}* — {0,1}P2) Gp : {0,1}* — {0,1}" x
{0,1}5() and H : {0,1}* — {0, 1}* be cryptographic hash functions (or any secure key deriva-
tion functions), where p(-), pa(-) and pp(-) are positive polynomials. Let KDF : {0,1}* — Kae
be a key derivation function, where KC,e is the key space of the underlying AEAD scheme. Let
SE = (Kge, Enc, Dec) be an AEAD scheme, as specified in Section 2.1. The public and secret
keys of each player of I4 and Ip are the same as in Algorithm 32 in Section 9.5. Denote by
pky = (seed, Y 4) and sky = {X 4,24, pky4} the public and secret keys of the initiator player 4,
and by pkp = (seed, Yp) and skp = {Xp, zp, pkg} the public and secret key of responder player
Ip. For simplicity and symmetry, we assume both players, as well as the underlying ephemeral
AKCN/OKCN-MLWE, use the same parameters params and the same matrix A derived from
seed. We also abuse the notation Sample for generating noises of varied length. Also, for sim-
plicity, we assume that for each player the same number of least significant bits are cut off from
both the static public key and the ephemeral MLWE-samples: t4 (resp., tg) for I4 (resp., Ip).

28Unlike the FO-transformation proposed in | ,], it is no need to put all the plaintexts into the input
for deriving random coins of KEM. With this approach, we are unaware of meaningful attacks even if M4 and/or
Mg are sent in plain.

2 Alternatively, 78 = MACk:(cB,ca,trp), Ta = MACk/(trg,ca,cg) or Ta = MACk: (trp,ca,c,TB), etc,
where trp is an empty string or the negotiation transcript prior to session run (e.g., for forwarding Iz to Ia or
for negotiating parameters). We remark that, if the CCA-secure PKE is built via the combination of CCA-secure
KEM and an AEAD scheme, the explicit MAC mechanism can be waived. In these cases, auxx can be empty.

70

Algorithm 35 Round-1 run by I4

A := Gen(seed)
M {0, 1}

rA — GA(SA) IA)

(XKt A+ Sample(17; r¥)

Y = [(AXH + EY)/24]

skem «— {0,137

(rA, rﬁem) — G(kem IB,Y)

(Xkem Ekem E](“m)) — Sample(l";rljfm)

Y/z@m . L(ATxkem Ek‘em)/ztA‘I

El‘zem . 2tBYTXkem + El(cem)

: Vkem — Con(Zkem s’“em params)

KDF(kem lj{em) where C]jfm _ (Ykem Vlzem)

= EncKae(HA, rAHIAHth)“

Send ca = (ckem %) to Ip

e e
oW P9

“The associated data Ha depends on the application scenarios, which can contain a (possibly empty)
subset of {c®™ Ig} and the transcript up to now.

71

kem

Algorithm 36 Round-2 run by Ip upon receiving c4 = (c{™, c%’)
A := Gen(seed)
Mo {0,1}F
(kB7rB) GB(537 B)
(th,Ekt,E()) < Sample(1*; rlg)
Yl = |(ATXY 4 BE) 2]
z’g 1= 2t (Y’ft)TX’ft+E’(f; B)
V&« Con(ZK kM params)
s .= X (avhem)
sfffem = Rec(Ekem Vkem, params)
IS//C}LG KDF(/kem Ij{em)
My = DecK/Xe(cA)
. if My # L then
rephrase My = (v, 14, Y5
(s, rfffem) =G(sy tkem Tp Y’kt)
. else
(V4 /5™) = G(zp,ca)"
end if
: (X/kem E/kem E/(kem)) — Samp|e(1m;ri§em)
. Y{Acem — L(ATX/kem + E/kem)/2t,4“
E/kem = 2tBYTX/kem + E/(kem)
: V/Eem « Con(X/kem g'kem params)
- if (Y’kem # Yhem\y vikem Lykem\/ /£ \/ M, = 1) then
return L
end if
s« {0,1}"
: (rB,r’gm) = G(skem 14, YN, Vi)
(Xkem,E%em,E’(“;fg)) < Sample(1~; kem)
DY = [(ATXE + BT /208
. zlgem — 2tAY£X%em l(<:em)
Vkem . Con(zlkem Skem7 params)

= KDF(sl™, ’f;m) where cff™m = (Y™, Vi5™)

: cB = EncKae(HB,rBHY i1\ %9

: KB = KDF(rA,rB,kkt,Y’kt YW VK 14, 15)

cB = EncKB(HB, Finishp), where Finishg = H(ca,cp,trs)¢

e e e e T e e e T
O NPT E e P2

N =
o ©

NN N NN N NN
R S A o > e

W W W
M 22

w W
=W

: Send {cB,cé} to I4, where cp = (ck™, %)

w
at

“In actual implementation, (s’¥°™, Iz, Y’f*) and (zp,ca) may be padded into the same size. In

case My = L or vy # 4, we can simply abort here. We refrain from doing so to be against potential
side-channel attacks.

This step is to hide the performance difference between M4 = L and M4 # L, in order to be
against potential side-channel attacks.

“Specifically, finishg is the hash of the transcript up to now, where ¢rs includes transcript de-
termined from the context, e.g., parameter negotiation transcript, players’ identity and IP-address
information, etc.

72

Algorithm 37 Round-3 run by I4 upon receiving (cp, cé)
Eigcem = Xg(QtBY%em)
stkem .= Rec(Z/Fe™, VA™ params)
Iglae — KDF(S/gem, leBem)
Mp = Decgrae ()
if Mp # 1 then
rephrase Mp = (rg, Y5, V/5)
(g V™) = G, Lo, Y, V)
else
(rg, r5™) = G(za, cp)
end if
(X, EE™, E('E)) < Sample(1%; rEem)
Y= [(ATX 4 B f20]
| son o= By B
Vkem < Con(X/kem, skem params) B
A (YEO™ £ Y™\ VE™ £ V™ \/ vy # v\ Mp = 1) then
return |
end if
IR = (X)) (2 YR
: k%“ = Rec(Egt,Vgt, params)
Ka = KDF(ra, vy, KK YR YR VE 14 15)
. Finishly = Deck , (ch)
. if Finish’; is incorrect then
return |
end if
: Finishy = H(ca,cp, cg,trs)

— =
= o

_ =
w N

NN NN == =

c£ = EncKA(HQ, Finisha||m4), where m4 € {0,1}* is the application data
Send cf; to Ip

SRS

The values r4 and rp play multiple roles: (1) serving as the key materials in session-key
derivation; (2) non-malleably attaching the KEM ciphertexts to the AEAD ciphertexts; and (3)
being resistant to adversary in the quantum random oracle model. In the FO-transformation
variants | , |, these values are sent in plain, while get encrypted with AEAD in our
construction. Note that the concrete instantiation of CNKE from AKCN-MLWE is actually
a secure channel establishment protocol, where the session-key K4 = Kp has already been
used within the session run. The CNKE protocol is carefully designed to have the following
advantages:

e By using ephemeral AKCN-MLWE for transporting k’g, it is computationally more effi-
cient, and is more applicable to client/server setting with low-power clients.

e Robust resistance to MIM malleating attacks, to secrecy exposure, and to side-channel
attacks.

73

Initiator Responder
seed + {0,1}"
A = Gen(seed) € RL*!
Xl — Séxl
Y. = [AX4],
seed, Y, € 7'\’,;Xl

A = Gen(seed)
X2 < Si;d
Yy = |[ATX,],
€ < ([—q/2p,q/2p — 1]")"*
22 = Y,{Xg + LETXQ-‘I)

K5, V) < Con(X5, params
YgGRéXl,VERg(>V >)

¥ =XTY,eR,
K; = Rec(X1, V, params)

Figure 20: MLWR-based key exchange from KC

e Privacy protection. Identity privacy is deemed to be an important privacy issue, and is
mandated by some prominent standards like TLS1.3, EMV, etc. Concealing the compo-
nents of the ephemeral KT protocol not only strengthens security, but is also useful for
privacy protection.

e Well compatible with TLS1.3, by explicitly using AEAD (that is mandated by TLS1.3)
and using the Finish mechanism of TLS1.3 for mutual authentications.

9.7 Extension to MLWR-Based KE

As a direct extension of the LWR-based KE presented in Section 5, the MLWR based KE
protocols are depicted in Figure 20 and 21. For simplicity, we assume p and g are power-of-two,
and plg. The transformations to CCA-secure PKE and to CNKE are also applicable to these
protocols.

Acknowledgement. We are grateful to Leixiao Cheng, Yuan Li and Qin Luo for great as-
sistance, and to Sauvik Bhattacharya, Jintai Ding, Vadim Lyubashevsky, Chris Peikert, Peter
Schwabe, Moti Yung and Andrew C. Yao for helpful discussions.

References

[AGKS05] M. Abe, R. Gennaro, K. Kurosawa and V. Shoup. Tag-KEM/DEM: A New Frame-
work for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. EU-
ROCRYPT 2005: 128-146.

[A17] M. R. Albrecht. On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. EUROCRYPT 2017: 103-129.

74

[APS15]

[ADPS16]

[ADPS16b]

[AJS16]

[ACPS09)

[BLL*+15]

[BPR12]

[BGM*16]

[BCD*16]

Initiator Responder
seed + {0,1}"
A = Gen(seed) € RL*!

Xl — S%XI
Y1 = I_AXl‘Ip
seed,Y; € 7'\’,;Xl
K2 — Z%
A = Gen(seed)
Xy S7l7><1
Y, = LATXg]p

€+ ([~q/2p,q/2p — 1]")"!
V + Con(X,, K5, params)
Y, e RN VeER,

2 =XTY,eR,
K; = Rec(X1, V, params)

Figure 21: MLWR-based key exchange from AKC

M. R. Albrecht, R. Player and S. Scott. On the Concrete Hardness of Learning with
Errors. Journal of Mathematical Cryptology, Volume 9, Issue 3, pages 169-203, 2015.

E. Alkim, L. Ducas, T. Péppelmann, and P. Schwabe. Post-quantum Key Exchange
— A New Hope. 25th USENIX Security Symposium (USENIX Security 16), pages
327-343.

E. Alkim, L. Ducas, T. Pppelmann, and P. Schwabe. NewHope without Reconcili-
ation. Cryptology ePrint Archive, Report 2016/1157, 2016.

E. Alkim, P. Jakubeit, and P. Schwabe. A New Hope on ARM Cortex-M. Cryptology
ePrint Archive, Report 2016/758, 2016.

B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems. CRYPTO 2009
595-618.

S. Bai, A. Langlois, T. Lepoint, D. Stehlé, and R. Steinfeld. Improved Security
Proofs in Lattice-Based Cryptography: Using the Rényi Divergence rather than the
Statistical Distance. ASIACRYPT 2015: 3-24.

A. Banerjee and C. Peikert and A. Rosen. Pseudorandom Functions and Lattices.

EUROCRYPT 2012: 719-737.

A. Bogdanov, S. Guo, D. Masny, S. Richelson, and A. Rosen. On the Hardness of
Learning with Rounding over Small Modulus. TCC 2016: 209-224.

J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghu-
nathan, and D. Stebila. Frodo: Take off the Ring! Practical, Quantum-Secure Key
Exchange from LWE. ACM CCS 2016: 1006-1018.

75

[BCNS15]

[BDK*17]

[CN11]

[CKLS16]

[CWOO]

[CS03]

[D02]

[JD12]

[DORSO08]

[DD12]
[DTV15]

[FO99]

[FO13]

[GPV08]

[GS16]

J.W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-Quantum Key Exchange for
the TLS Protocol from the Ring Learning with Errors Problem. IEEE Symposium
on Security and Privacy 2015, pages 553-570.

J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P.
Schwabe, D. Stehlé. CRYSTALS-Kyber: a CCA-Secure Module-lattice-based KEM.
Cryptology ePrint Archive, Report 2017/634.

Y. Chen and P.Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. ASI-
ACRYPT 2011: 1-20.

J.H. Cheon, D. Kim, J. Lee, and Y. Song. Lizard: Cut Off the Tail! Practical Post-
Quantum Public-Key Encryption from LWE and LWR. Cryptology ePrint Archive,
Report 2016/1126, 2016.

D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progres-
sions. Journal of Symbolic Computation, volume 9, issue 3, pages 251-280, 1990.

R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on
Computing, 33(1): 167226, 2003.

A. W. Dent. A Designers Guide to KEMs. Cryptology ePrint Archive, Report
2002/174, 2002.

J. Ding, X. Xie and X. Lin. A Simple Provably Secure Key Exchange Scheme Based
on the Learning with Errors Problem. Cryptology ePrint Archive, Report 2012/688,
2012.

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How to Gen-
erate Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Com-
puting, volume 38, issue 1, pages 97-139, 2008.

L. Ducas and A. Durmus. Ring-LWE in Polynomial Rings. PKC 2012: 34-51.

A. Duc, F. Tramer, and S. Vaudenay. Better Algorithms for LWE and LWR. EU-
ROCRYPT 2015: 173-202.

E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-Key Encryption
at Minimum Cost. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences Volume 83, Issue 1, pages 24-32, 1999.

E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric
Encryption Schemes. Journal of Cryptology, Volume 26, Issue 1, pages 80-101, 2013.

C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices and
New Cryptographic Constructions. ACM STOC 2008: 197-206.

S. Gueron and F. Schlieker. Speeding Up R-LWE Post-Quantum Key Exchange.
Cryptology ePrint Archive, Report 2016/467, 2016.

76

[H14]

[HHK17]

[KLL15]

[Kra03]

[KPW13]

[KM10]

[LS15]

[LP11]

[LMPROS]

[LPR10]

[LPR13b]

[M85]

[PRS11]

[Pei09)]

[Peild]

[Peil6]

[PRS17]

[PVWOS]

D. Harvey. Faster Arithmetic for Number-Theoretic Transforms. Journal of Symbolic
Computation, 60: 113-119, 2014.

D. Hofheinz, K. Hévelmanns, and Eike Kiltz. A Modular Analysis of the Fujisaki-
Okamoto Transformation. Cryptology ePrint Archive, Report 2017/604.

M. Kaplan, G. Leurent, A. Leverrier and M. Naya-Plasencia. Quantum Differential
and Linear Cryptanalysis. ArXiv Preprint: 1510.05836, 2015.

H. Krawczyk. SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols CRYPTO 2008 400-425.

H. Krawczyk, K.G. Paterson and H. Wee. On the Security of the TLS Protocol: A
Systematic Analysis. CRYPTO 2013: 429-448.

H. Kuwakado and M. Morii. Quantum Distinguisher between the 3-round Feistel
Cipher and the Random Permutation. IEEFE ISIT 2010. 2682-2685.

A. Langlois and D. Stehlé. Worst-case to Average-case Reductions for Module Lat-
tices. Des. Codes Cryptography, 75(3): 565-599, 2015.

R. Lindner and C. Peikert. Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. CT-RSA 2011: 319-3309.

V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A Mmodest-
Proposal for FFT Hashing., FSE 2008: 54-72.

V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with
Errors over Rings. EUROCRYPT 2010: 1-23.

V. Lyubashevsky, C. Peikert, and O. Regev. A Toolkit for Ring-LWE Cryptography.
EUROCRYPT 2013: 35-54

P. Montgomery. Modular Multiplication Without Trial Division. Mathematics of
Computation, vol. 44, 519521, 1985.

K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag Size Does Matter: Attacks
and Proofs for the TLS Record Protocol. ASTACRYPT 2011: 372-389.

C. Peikert. Public-Key Cryptosystems from the Worst-Case Shortest Vector Prob-
lem. STOC 2009: 333-342.

C. Peikert. Lattice Cryptography for the Internet. PQCrypto 2014: 197-219.

C. Peikert. A Decade of Lattice Cryptography. In Foundations and Trends in
Theoretical Computer Science, Volume 10, Issue 4, pages 283-424, 2016.

C. Peikert, O. Regev and N. Stephens-Davidowitz. Pseudorandomness of Ring-LWE
for Any Ring and Modulus. STOC 2017: 461-473.

C. Peikert, V. Vaikuntanathan, and B. Waters. A Framework for Efficient and
Composable Oblivious Transfer. CRYPTO 2008: 554-571.

77

[Pop16]

[PG13]

[Reg09]

[Res]
[RO2]

[RS06]

[SE94]

[Sim02]

[SM16]

[Str69]

[TU16]

Z16]

A.V. Poppelen, Cryptographic Decoding of the Leech Lattice. Cryptology ePrint
Archive, Report 2016,/1050, 2016.

T. Poppelmann and T. Gilineysu. Towards Practical Lattice-Based Public-Key En-
cryption on Reconfigurable Hardware. SAC 2013: 68-85.

O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptog-
raphy. Journal of the ACM (JACM), Volume 56, Issue 6, pages 34, 2009.

E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.

P. Rogaway. Authenticated-Encryption with Associated-Data. ACM CCS 2002: 98-
107.

P. Rogaway and T. Shrimpton. A Provable-Security Treatment of the Key-Wrap
Problem. EUROCRYPT 2006: 373-390.

C. P. Schnorr and M. Euchner. Lattice Basis Reduction: Improved Practical Algo-
rithms and Solving Subset Sum Problems. Mathematical Programming, Volume 66,
Issue 2, pages 181-199, Springer, 1994.

M.K. Simon. Probability Distributions Involving Gaussian Random Variables : A
Handbook for Engineers and Scientists. Springer, 2012.

D. Stebila and M. Mosca. Post-Quantum Key Exchange for the Internet and the
Open Quantum Safe Project. Cryptology ePrint Archive, Report 2016/1017, 2016.

V. Strassen. Gaussian Elimination is not Optimal. Numerische Mathematik, Volume
13, Issue 4, pages 354-356, Springer, 1969.

E. E. Targhi and D. Unruh. Post-Quantum Security of the Fujisaki-Okamoto and
OAEP Transforms. TCC 2016-B: 192-216.

Y. Zhao. Identity-Concealed Authenticated Encryption and Key Exchange. ACM-
CCS 2016: 1464-1479.

78

Algorithm 38 Key consensus scheme in Frodo
1: procedure CON(oy, params) > o1 €[0,9)
2: v = P_B‘HalJ mod 2

k1 = [2_301—‘ mod 28
return (k,v)
end procedure
: procedure REC(02, v, params) > oy € [0,q)

find = € Zg closest to o2 s.t. LQiBJrli mod 2 = v

8: ko = [Q*Bm—‘ mod 28
9: return ko
10: end procedure

A Consensus Mechanism of Frodo

Let the modulo ¢ be power of 2, which can be generalized to arbitrary modulo using the tech-
niques in |]. Let integer B be a power of 2. B < (logq) — 1, B = (logq) — B (note that
m = 2% in our notations). The underlying KC mechanism implicitly in Frodo is presented in
Figure 38.

Claim A.1 (| |, Claim 3.2). If |01 — 02|y < 2B=2 then Rec(oy,v) = k1. i.e. the scheme
in Algorithm 38 is correct.

This claim is equivalence to require 4md < q.

B Consensus Mechanism of NewHope

Note that, for the consensus mechanism of NewHope, the rec procedure is run both in Con and
in Rec, and a random bit b is used in Con corresponding to the dbl trick in | .

C Proof of Corollary 3.2

Proof. For correctness, supposing |01 — 03], < d, by Fact 3.1, there exist § € Z and ¢ € [—d, d]
such that o9 = o1 + 0q 4+ §. Taking this into line 8 of Algorithm 3, i.e., the formula computing
ko, we have
ko= |(o1 —v+60q+9)/g] mod m
= (k1 +6m+1d/g]) mod m.
If 2md < q, then |§/g| < d/g < 1/2, so that ks = k1 mod m = k;.
For security, as a special case of generic scheme described in Algorithm 1, the security of
Algorithm 3 follows directly from that of Algorithm 1. U O

D On KC/AKC vs. Fuzzy Extractor

Our formulations of KC and AKC are abstractions of the core ingredients of previous construc-
tions of KE and PKE from LWE/RLWE. As we shall see in the subsequent sections, the design

79

Algorithm 39 NewHope Consensus Mechanism
1: procedure DECODE(x € R*/Z*) > Return a bit k such that kg is closest to x + Z*
2 v =x— |x]

3 return £ =0 if ||v||; <1, and 1 otherwise

4: end procedure

5

6

q
7. rec (x € Zjy, v € Z3,) = Decode (%x — 2%Bv)
8:

9: procedure CON(o; € Z;‘, params)
10: b+ {0,1}

: HelpRec(x,b) = CVPp, (27’ (x + bg)) mod 2" > b corresponds to the dbl trick |]

11: v < HelpRec(o1,b)

12: ki < rec(oq,v)

13: return (k1,v)

14: end procedure

15:

16: procedure REC(o9 € Zg,v € 74, params)
17: ko + T‘GC(O'Q, V)

18: end procedure

19:

and analysis of KE and PKE from LWE, LWR and RLWE can be reduced to KC and AKC.
We also note that KC and AKC are similar to fuzzy extractor proposed in | |, which
extracts shared-keys from biometrics and noisy data. In this section, we make some discussions
on the relationship between KC/AKC and fuzzy extractor.

The differences between the definitions of KC/AKC and that of fuzzy extractor lie mainly in
the following ways. Firstly, AKC was not considered within the definitional framework of fuzzy
extractor. Secondly, the metric | - |; we use in defining KC and AKC was not considered for
fuzzy extractor. Thirdly, in the definitions of KC and AKC, the algorithm Rec (corresponding
Rep for fuzzy extractor) is mandated to be deterministic, while in the formulation of fuzzy
extractor it is probabilistic. Fourthly, in the formulation of fuzzy extractor |], w, R
and P (corresponding o1, k and v in KC/AKC) are binary strings; while in the definitions of
KC/AKC, the corresponding values o1 € Zg, k € Z,, and v € Z, have more structured ranges,
which are helpful in deriving the exact upper bound. Finally, for the security of KC and AKC,
we require that the signal value v be independent of the shared-key ki (that can be subject to
arbitrary distribution for AKC); roughly speaking, in the definition of fuzzy extractor | ,
it is required that the joint distribution (R, P) be statistically close to (U;, P) where R € {0, 1}/
and U; is the uniform distribution over {0, 1}\.

A generic upper bound on the length of key extracted by fuzzy extractor is proposed in
[, Appendix C|. In comparison, the upper bounds for KC and AKC proved in this work
are more versatile and precise w.r.t. the metric | - |;. For example, the effect of the length of
the signal v, i.e., the bandwidth parameter g, is not considered in the upper bound for fuzzy
extractor, but is taken into account in the upper bounds for KC and AKC.

A generic construction of fuzzy extractor from secure sketch, together with a generic con-
struction of secure sketch for transitive metric spaces, is proposed in [|]. We note that

80

(Zg,| - |q) can be naturally seen as a transitive matric space. Compared to the secure sketch
based generic constructions of fuzzy extractor, our constructions of KC and AKC are direct and
more efficient.

In spite of some similarities between KC/AKC and fuzzy extractors, we remark that before
our this work the relation between fuzzy extractor and KE from LWE and its variants is actually
opaque. Explicitly identifying and formalizing KC/AKC and reducing lattice-based cryptosys-
tems to KC/AKC in a black-box modular way, with inherent bounds on what could or couldn’t
be done, cut the complexity of future design and analysis of these cryptosystems.

E Overview of the Primal and Dual Attacks

This section is almost verbatim from |]. The dual attack tries to distinguish the distri-
bution of LWE samples and the uniform distribution. Suppose (A, b = As+e) € Z;"*" xZ;" is a
LWE sample, where s and e are drawn from discrete Gaussian of variance o2 and o2 respectively.
Then we choose a positive real ¢ € R,0 < ¢ < ¢, and construct L.(A) = {(x,y/c) € Z™x(Z/c)™ |
x"A =yT mod ¢}, which is a lattice with dimension m+n and determinant (q/c)”. For a short
vector (x,y) € Lc(A) found by the BKZ algorithm, we have xIb = xT(As+e) = c-y's+xTe
mod ¢. If (A,b) is an LWE sample, the distribution of the right-hand side will be very close

to a Gaussian of standard deviation \/c2|y|202 + ||x|[202, otherwise the distribution will be

uniform. ||(x,y)| is about ;""" (g/ C)ﬁ, where dp is the root Hermite factor. We heuristically

assume that [|x| = /-7 [[(x,¥)l, and [|y]| = /755 [[(x,¥)[. Then we can choose ¢ = ¢ /0

that minimizes the standard deviation of x’'b. The advantage of distinguishing x”'b from uni-
form distribution is ¢ = 4 exp(—27272), where 7 = \/c?||y||202 + ||x||202/g. This attack must
be repeated R = max{1,1/(2%207¢2)} times to be successful.

The primal attack reduces the LWE problem to the unique-SVP problem. Let A, (A) =
{(x,y,2) €Z" x (Z™/w) X Z | Ax + wy = zb mod ¢}, and a vector v = (s,e/w, 1) € A, (A).
Ay (A) is a lattice of d = m +n + 1 dimensions, and its determinant is (¢/w)™. From geometry
series assumption, we can derive ||bf|| = 4~ %! det(A,(A))'/?. We heuristically assume that
the length of projection of v onto the vector space spanned by the last b Gram-Schmidt vectors

is about \/§||(s,e/w7 1) ~ \/g (no2 4+ mo?/w? +1). If this length is shorter than ||b}_,||,

this attack can be successful. Hence, the successful condition is \/ b (o2 +mo2/w? +1) <

5§b_d_1 (l)m/ ‘" We know that the optimal w balancing the secret s and the noise e is about

w
Oc/0s.

81

F Security Estimation of the Parameters of Frodo

Scheme Attack i Ro;mded é}aussmcr; b (lsost—re(glctlon b
Classical Primal 549 442 138 126 100 132 120 95
Dual 544 438 136 124 99 130 119 94
Recommended Primal 716 489 151 138 110 145 132 104
Dual 737 485 150 137 109 144 130 103
Paranoid Primal 793 581 179 163 129 178 162 129
Dual 833 576 177 161 128 177 161 128
Table 24: Security estimation of the parameters proposed for Frodo in |], as specified
in Table 11.

G Security Analysis of LWE-Based Key Exchange

Definition G.1. A KC or AKC based key exchange protocol from LWE is secure, if for any
sufficiently large security parameter X and any PT adversary A, |Pr[b) = b] — %‘ 1s negligible, as
defined w.r.t. game Gy specified in Algorithm 40.

Algorithm 40 Game Gy

A 73"

Xla E1 — Xn><l,4

Y = AX; +E;

XQ, E, « XnXlB

Yy = ATXQ + Eo

Ea' «— XZAXIB

=YXy +E,

(K39, V) « Con(%,, params)
K} « Zlaxle

b+ {0,1}

V< A(A, Y1, |Y2/2!, K5, V)

—_ =
= o

Before starting to prove the security, we first recall some basic properties of the LWE as-
sumption. The following lemma is derived by a direct hybrid argument | ,].

Lemma G.1 (LWE in the matrix form). For positive integer parameters (A\,n,q > 2,1,t), where

n,q,l,t all are polynomial in X, and a distribution x over Zq, denote by Lgcl’t) the distribution over
ZZX" X szl generated by taking A < ZEX”, S « \"LE < ™! and outputting (A, AS + E).
Then, under the standard LWE assumption on indistinguishability between Ags (with s < x")
and U(Zy x Zq), no PT distinguisher D can distinguish, with non-negligible probability, between

the distribution Lg’t) and Z/I(ZZX" X ZZXl) for sufficiently large X.

Theorem G.1. If (params, Con, Rec) is a correct and secure KC or AKC scheme, the key
exchange protocol described in Figure 7 is secure under the (matriz form of) LWE assumption.

82

Proof. The proof is similar to, but actually simpler than, that in | ,]. The general
idea is that we construct a sequence of games: Gg, G1 and Go, where G is the original game for
defining security. In every move from game G; to G;1+1, 0 < ¢ < 1, we change a little. All games
G;’s share the same PT adversary 4, whose goal is to distinguish between the matrices chosen
uniformly at random and the matrices generated in the actual key exchange protocol. Denote by
T;, 0 < i < 2, the event that b = b’ in Game G;. Our goal is to prove that Pr[Tp] < 1/2 + negl,
where negl is a negligible function in A. For ease of readability, we re-produce game G below.
For presentation simplicity, in the subsequent analysis, we always assume the underlying KC
or AKC is correct. The proof can be trivially extended to the case that correctness holds with
overwhelming probability (i.e., failure occurs with negligible probability).

Algorithm 41 Game G Algorithm 42 Game G;
1. A+ ZZX” 1: A+ ZZX"
2 X1, Eq « ¢4 2: X1, Ep « yxla
3: Y1 =AX; + E; 3 Y+ ZZ,IX[A
4: X9, Eo X"XZB 4: Xo, Eo anlB
5 Yo = ATX2 + Eo 5 Yo = ATXQ + E»
6: By« x!axlp 6: By xlaxis
7 Mo = Y?Xz + E, 7 Yo = Y?Xg + E,
8: (K9, V) «+ Con(%,, params) 8: (K9, V) « Con(%,, params)
9: K} « Zlaxls 9: K} + Zlaxls
10: b« {0,1} 10: b« {0,1}
11: 0+ A(A, Y1, Y2/2!, K8, V) 1: V' «— A(A, Y1, | Y2/2! |, K8, V)

Lemma G.2. |Pr[Ty] — Pr[T1]| < negl, under the indistinguishability between Lgf‘“n) and

l
U(Zy "™ X Zg™'4).
Proof. Construct a distinguisher D, in Algorithm 43, who tries to distinguish Lng’n) from
U(ZD*" x Zxa),

Algorithm 43 Distinguisher D
1: procedure D(A, B) > A€z BeZpXla
2: Y, =B

3: Xg,Eg + XnXlB

4: Yy = ATXQ + Eo

5: E, + XZAXZB
6
7
8
9

o = Y?Xg + E,
(K9, V) « Con(%,, params)
K} « 7laxis
: b+ {0, 1}
0. b+ AA, Y1, [Y2/2], K5, V)
11: if b/ = b then

12: return 1
13: else

14: return 0
15: end if

16: end procedure

83

If (A, B) is subject to LQA’"), then D perfectly simulates Go. Hence, Pr [D (L&IA’")) = 1} =
Pr[Ty]. On the other hand, if (A, B) is chosen uniformly at random from Zp*" x ZZLXIA, which
are denoted as (AY BY), then D perfectly simulates G1. So, Pr[D(AY B¥) = 1] = Pr[T1].

Hence, [Pr[Ty] — Pr[T1]] = |Pr[D(L{4™) = 1] — Pr[D(AY, BY) = 1]’ < negl. 0 O
Algorithm 44 Game G; Algorithm 45 Game Go
1: A+ ZQX” 10 A« ZQX”
9. Xl,El — anlA 9. leEl — Xn><lA
30 Yy Zpxla 3 Y Zpxia
4 X2’E2 — XnXlB 4: X27E2 — XnXlB
5 Yo = ATX2 + Es 5 Yo ZZX[B
6: E, + ylaxls 6 E, « ylaxls
T 3 =YXy +E, 7. By« Zlaxis
8: (K3, V) « Con(X5, params) 8: (K9, V) « Con(X;, params)
9: K} + Zlaxls 9: K} Zlpxls
10: b« {0,1} 10: b+« {0,1}
11: b < A(A, Y1, | Y2/2!, K5, V) 11: ¥+ A(A, Y1, | Y2/2!, K8, V)

Lemma G.3. |Pr[T1] — Pr[T3]| < negl, under the indistinguishability between L;ZB’”HA) and

U(Zgn+lA)Xn x Z((In+lA)><lB).

Proof. As Y is subject to uniform distribution in Gy, (Y7, X5) can be regarded as an L;ZB)
sample of secret X9 and noise E,. Based on this observation, we construct the following distin-
guisher D',

Algorithm 46 Distinguisher D’
1: procedure D'(A’,B) where A’ € Z((IRHA)X”,B c Z((]n+lA)XlB

AT

2: Denote A’ = (Y7 > > A€ Zp" YT € Zian
Yo nxl laxl

3: Denote B = s, >Yy € Zq B 3 € ZqA B

4: (K9, V) < Con(X,, params)

5: K% — Z%XZB

6: b+« {0,1}

7: b +— A(A, Y, LY2/2tJ,KS,V)

8: if b = b then

9: return 1

10: else

11: return 0

12: end if

13: end procedure

If (A/,B) is subject to L{#"4) A7 « ZImHa*" corresponds to A « Zy " and Y <
ZZ}XZA in Gy; and S « "B (resp., E « x("H4)xI8) in generating (A’,B) corresponds to

84

Xg < X8 (resp., Eg + x™*!# and E, <+ x!4*!8) in G;. In this case, we have

AT E

— A/ _ 2

monsime (41)xs (B
- A.TX2 + Eo . Y,
T\YIXo+E,)\ 3

Hence Pr [D’ (LgclB’n—HA)) = 1] = Pr[T1].

On the other hand, if (A’,B) is subject to uniform distribution Z/{(ZgnHA)X” X Z,(;HZA)XZB),
then A,Y1,Ys, X5 all are also uniformly random; So, the view of D’ in this case is the same
as that in game Go. Hence, Pr , = 1| = Pr|13| 1n this case. en r|ly| — Pr|ils|| =

hat i G,. H Pr[D' (A’,B) = 1] = Pr[T%] in thi Then | Pr[T}] — Pr[T:
| Pr[D/ (L7 T4)) = 1] — Pr[D (U (Z{ T < 2T Yy Z)| < negl. 0 O

Lemma G.4. If the underlying KC or AKC' is secure, Pr[T2] = %

Proof. Note that, in Game Go, forany 1 <i<lyand1 < j <lIp, (Kg[i,j],V[i,j]) only depends
on Xs[i, j|, and 39 is subject to uniform distribution. By the security of KC, we have that, for
each pair (i,), K94, j] and V[i, j] are independent, and K3[i, j] is uniform distributed. Hence,
KY and V are independent, and K9 is uniformly distributed, which implies that Pr[Ty] = 1/2.
O O

This finishes the proof of Theorem G.1. O O

H Construction and Analysis of AKCN-4:1

H.1 Overview of NewHope

By extending the technique of | |, in NewHope the coefficients of o1 (i.e., the polynomial of
degree n) are divided into n/4 groups, where each group contains four coordinates. On the input
of four coordinates, only one bit (rather than four bits) consensus is reached, which reduces the
error rate to about 27% which is viewed to be negligible in practice.

Specifically, suppose Alice and Bob have o1 and o9 in Z;‘ respectively, and they are close
to each other. One can regard the two vectors as elements in R*/Z*, by treating them as %0’1
and %0’2. Consider the matrix B = (ug, ur, us, g) € R***, where u;, 0 <4 < 2, is the canonical

unit vector whose i-th coordinate is 1, and g = (1/2,1/2,1/2,1/2)T. Denote by Dy the lattice
generated by B. Note that Z* ¢ Dy ¢ R%. Denote by V the close Voronoi cell of the origin in
Dy. In fact, V is the intersection of the unit ball in norm 1 and the unit ball in infinity norm
(the reader is referred to NewHope | , Appendix C] for details). The following procedure
CVPp, (x) returns the vector v such that Bv is closest to x, i.e., x € Bv+V, where the distance
is measured in the Euclidean norm.

85

Algorithm 47 CVPp in NewHope |]

1: procedure CVPp (x € R*)

2 vo = |x]

3 vy =[x — g

4: k=0if ||x —vo|li <1 and 1 otherwise

5 (Uo,Ul,UQ,Ug)T = Vg

6 return v = (vo,v1, v, k)T + w3 - (—1,-1,-1,2)7
7: end procedure

If o1 is in the Voronoi cell of g, then the consensus bit is set to be 1, and 0 otherwise.
Hence, Alice finds the closest lattice vector of oy by running the CVPp procedure described in
Algorithm 47, and calculates their difference which is set to be the hint signal v. Upon receiving
v, Bob subtracts the difference from 5. Since o1 and o5 are very close, the subtraction moves
%0’2 towards a lattice point in Ds. Then Bob checks whether or not the point after the move
is in the Voronoi cell of g, and so the consensus is reached. Furthermore, to save bandwidth,
NewHope chooses an integer 7, and discretizes the Voronoi cell of g to 2% blocks, so that only
4r bits are needed to transfer the hint information. To make the distribution of consensus bit
uniform, NewHope adds a small noise to o, similar to the dbl trick used in |]. The Con
and Rec procedures, distilled from NewHope, are presented in Algorithm 39 in Appendix B.

H.2 Construction and Analysis of AKCN-4:1

For any integer ¢ and vector x = (zo, 21, z2,x3)" € Zj, denote by [[x||4,1 the sum |zq|y + |z1]q +
|z2|q + |73]4- For two vectors a = (ag, a1, az,a3)’, b = (by,b1,be,b3)T € Z4, let a mod b denote
the vector (ag mod by, a; mod by, as mod by, a3 mod b3)T € Z* The scheme of AKCN-4:1 is
presented in Algorithm 48.

Compared with the consensus mechanism of NewHope presented in Appendix B, AKCN-4:1
can be simpler and computationally more efficient. In specific, the uniformly random bit b used in
NewHope (corresponding the dbl trick in |]) is eliminated with AKCN-4:1, which saves 256
(resp., 1024) random bits in total when reaching 256 (resp., 1024) consensus bits. In addition,
as ki, as well as k1(q + 1)g, can be offline computed and used (e.g., for encryption, in parallel
with the protocol run), AKCN-4:1 enjoys online/offline speeding-up and parallel computing.

Theorem H.1. If |01 — 021 < ¢ (1 - é) — 2, then the AKCN-/4:1 scheme depicted in Algo-
rithm 48 is correct.

Proof. Suppose v = CVPp (g(o1 + ki(q¢ + 1)g)/q). Then, v = v/ mod (g,9,9,2g), and so
there exits @ = (6, 01,04,03) € Z* such that v = v/ + g(6p, 01, 02,203)T. From the formula
calculating v/, we know there exits € € V, such that g(o1 + k1(¢ + 1)g)/q¢ = € + Bv'. Hence,
Bv' =g(o1+ki(¢+1)g)/q —e.

From the formula computing x in Rec, we have x = Bv/g — 02/q = Bv'/g — 02/q +
B(6y,01,02,205)" = kig + kig/q — /g + (01 — 02)/q + B(0, 01, 02,205)". Note that the last
term B(0p, 01,02,203)T € Z*, and in line 7 of Algorithm 48 we subtract [x] € Z* from x, so the
difference between x — |x] and kg in norm 1 is no more than 2/q+1/g + ||o1 — o2|/41/¢ < 1.
Hence, ko = k. O]

86

Algorithm 48 AKCN-4:1
1: procedure CoN(o; € Zg, k1 € {0,1}, params)
2 v=CVPp (g(o1 + ki(q +1)g)/q) mod (g,9,9,29)"
3 return v
4: end procedure
5. procedure REC(o9 € Zg,v € Zg X Zog, params)
6
7
8

x=Bv/g—02/q
return ks = 0 if ||x — |x]||1 < 1, 1 otherwise.
: end procedure

Theorem H.2. AKCN-4:1 depicted in Algorithm 48 is secure. Specifically, if o1 is subject to
uniform distribution over Z;l, then v and ki are independent.

Proof. Lety = (1 +k1(¢+1)g) mod q € Z;L. First we prove that y is independent of k1, when
o] — Z‘ql. Specifically, for arbitrary y € Z;l and arbitrary k€ {0,1}, we want to prove that
Prly =y | k1 = k1] = Pr[oy = (§ — ki(g + 1)g) mod ¢ | k1 = k1] = 1/¢*. Hence, y and k; are
independent.

For simplicity, denote by G the vector (g,9,9,29). Map ¢ : Z* — Zg X Zag is defined
by ¢(w) = CVPD4(gw/q) mod G. We shall prove that, for any 8 € Z*, ¢(w + ¢0) = ¢(w).
By definition of ¢, ¢(w + ¢0) = CVPD4(gw/q + g0) mod G. Taking x = gw/q + g0 into
Algorithm 47, we have CVPp, (gw/q + g0) = CVPp (gw/q) + B~1(g@). It is easy to check that
the last term B~!(g0) always satisfies B=!(gf) mod G = 0.

From the above property of ¢, we have ¢(y) = ¢((o1 + k1(¢+ 1)g) mod q) = ¢(o1 + k1(q +
1)g) = v. As k; is independent of y, and v only depends on y, k; and v are independent. (O [

I Implementing Hx” in SEC with Simple Bit Operations

uint16_t getCode(uintl6_t x)

{
uintl6_t c, p;
c = (x > 4) - x;
c = (c > 2) ~ c;
p = ((c > 1) "~ ¢c) & 1;
x = (x > 8) "~ x;
c = (x > 2) ~ x;
p = (((c > 1) ~¢c) & 1) | (p << 1);
x = (x > 4) =~ x;
p = (((x > 1) " x) & 1) | (p << 1);
x = (x > 2) ~ x;
p=(x&1) | (p << 1);
return p;
}

Listing 1: An implementation of Hx” with C language

87

J CCA-Secure KEM from OKCN-MLWE

The transformation from AKCN-MLWE to CCA-secure KEM is specified in detail in |].
Here, we present the CCA-secure KEM from OKCN-MLWE, which is instantiated from |).

For schemes based on MLWE, LWE and LWR, the security parameter # is set to be 256.%" Let
G :{0,1}* — {0,1}x{0,1}*x {0, 1}71(%) x {0, 1}P2(%) where p; and py are positive polynomials,
and H : {0,1}* — {0,1}" be two cryptographic hash functions (or any secure key derivation
function). We write (Xq, Eo, E,) <~ Sample(17;r1) to denote the process of sampling the noises:
Xo, Eq S,lfl and E, < 5, using randomness r; € {0, 1}7’1(”). Denote by Con(X5, params;rg)
the process of running Con(Xs, params) with randomness ro € {0, 1}P2(%),

Algorithm 49 (pk,sk) < KeyGen(1")

z+ {0,1}"

seed « {0,1}"

A := Gen(seed)

Xl, E1 — S%Xl

Y, = L(AXl + El)/2t1-|

return (pk := (seed, Y1),sk := {Xy,z, pk})

Algorithm 50 (ct, key) <— Encaps(pk)

S« {0,1}"

(k, w, I, I’Q) = G(pk, S)

(X2, E2,E;) < Sample(1%;r1)

A := Gen(seed)

Y, = L(A.TXQ + EQ)/Qtz_I

¥y :=20YTXy + E,

(Ko, V) < Con(X,, params; ra)

K = H(KQ) @ Se

return (ct := (Y, V, K, w), key := H(k,ct))’

“A variant is to set K = H(Kaz,ct) ®S.
*In practice, we may suggest to encrypt w with the symmetric-key encryption scheme
to be composed with KEM.

3%9For schemes based on RLWE, we may suggest x = 512.

88

Algorithm 51 key’ < Decaps(sk,ct = (Y2, V, K, @))
2, = XT(22Y,)
K; := Rec(X1, V, params)
S=HK;)eK
(K, =, vy, ry) = G(pk,S')
(X, B L) + Sample(1%:1))
A := Gen(seed)
= (AT} + B)) /207
¥, =20YTX, + EL
(K%, V') « Con(X),, params; rf)
if (Yo=Y,AV =V AK, =K, \w=w) then’
key' = H(K', ct)
: else
key' = H(z, ct)
: end if
. return key’

[R T
guls Wy 2o

?A can be directly specified as part of pk and sk in place of seed.
*The condition whether @ = w’ can be checked just after Step 4. We refrain from doing
so to be against potential side-channel attacks.

K More Variants of CNKE

We can have more variants of CNKE:?!

e Let G : {0,1}* — {0,1}* x {0,1}* x {0,1}7() and set (ra,da,r™) = G(sh™, 15, YY)
and (rp,dp, kem) = G(s} kem IA,th,th) The value d4 (resp., dp) is sent by I4 (resp.,
Ip) in the second (resp., thlrd) round, and is treated as a part of c5™) (resp., c&™). In

this case, r4 (resp., rg) does not need to be sent exphc1tly Specifically, in this case, we
set ¢4 EncKaP(HA,IAHY 'lmo) and c% EncKae(HB,Y VA,

o (ra,K%) = KDF'(shm ckem), and K% = KDF'(skm chem). For instance, let G :
{0,1}* — {o 1}% X {0,1}17(“, and set (dA rkem) = G(kem I, YH) and (dp,rfs™) =
G(shsm T4, YN Vi), The value ds (resp., dg) is sent by I4 (resp., Ip) in the sec-
ond (resp., thlrd) round, and is treated as a part of cke™) (resp., ck¥™). Let c% =
EncKae(HA,IAHY [lmo) and c% EncKae(HB,Y Y[V, In this case, ry (vesp., rg)
is sent implicitly.

e A more aggressive variant is that: the values of r4 and rp are removed from the AEAD
ciphertext parts ¢4 and c%’, but still kept in the input of KDF'. To our knowledge, as
long as the session run is complete, it does not cause any meaningful vulnerability.

31 All these variants are also applicable when using the CCA-secure KEMs proposed in | ,]

89

L More Parameters of OKCN-MLWE and AKCN-MLWE

K| n q n (n') g t l pg-sec (t-sec) err pk (B) cipher (B) bw. (B)

OKCN-MLWE-KE-light 256 256 7681 5(13) 25 4 2 102 (116) 27362 608 672 1280
OKCN-MLWE-KE 256 256 7681 2(10) 22 4 3 147 (183) 27501 896 928 1824
OKCN-MLWE-PKE-light 256 256 7681 5 (9) 2 3 2 102 (111) 271055 672 736 1408
OKCN-MLWE-PKE-1 256 256 7681 2(10) 2° 4 3 147 (183) 27803 896 1024 1920
OKCN-MLWE-PKE-2 256 256 7681 2 (6) 22 3 3 147 (171) 21664 992 1024 2016
AKCN-MLWE-PKE-light 256 256 7681 5(9) 22 3 2 102 (111) 271055 672 768 1440
AKCN-MLWE-PKE-1 256 256 7681 2(10) 26 4 3 147 (183) 27803 896 1056 1952
AKCN-MLWE-PKE-2 256 256 7681 2(6) 2% 3 3 147 (171) 21664 992 1056 2048
OKCN-MLWE-Alt1 256 256 7681 4 22 2 3 161 (171) 21427 1088 1120 2208
AKCN-MLWE-Alt1(Kyber) 256 256 7681 4 2 2 3 161 (171) 21427 1088 1152 2240
OKCN-MLWE-Alt2 256 256 7681 4 22 3 3 161 27719 992 1024 2016
OKCN-MLWE-AIt3 256 256 7681 4 24 3 3 161 2109 992 1088 2080
OKCN-MLWE-Alt3 256 256 7681 4 2t 4 3 161 27345 896 992 1888

Table 25: Parameters for OKCN/AKCN-MLWE. 7' = n + 2!71; “pg-sec (t-sec)” refers to the
best known quantum attack against the underlying lattice problem w.r.t. n (resp., n').

K| n q n g t l pa-sec err pk (B) cipher (B) bw. (B)

OKCN-MLWE-KE-108 256 256 7681 g 2f 3 2 108 2762 672 768 1440
OKCN-MLWE-PKE-108 256 256 7681 8 20 1 2 108 2-120.1 800 896 1696
AKCN-MLWE-KEM-108 256 256 7681 8 20 3 2 108 2549 672 768 1440
AKCN-MLWE-PKE-108 256 256 7681 8 2 1 2 108 21063 800 896 1696
OKCN-MLWE-KE-120 256 256 7681 16 2* 1 2 120 2308 800 896 1696
OKCN-MLWE-KE-120-SEC 191 256 7681 16 2* 1 2 120 2-66.6 800 904 1704
AKCN-MLWE-KEM-120 256 256 7681 16 2% 1 2 120 27274 800 896 1696
AKCN-MLWE-KEM-120-SEC 191 256 7681 16 2* 1 2 120 2-60 800 896 1696
OKCN-MLWE-KE-147 256 256 7681 2 2 4 3 147 2-76-1 896 992 1888
OKCN-MLWE-KE-147-SEC 191 256 7681 2 22 4 3 147 2157 896 1000 1896
OKCN-MLWE-PKE-147 256 256 7681 2 24 3 3 147 22531 992 1088 2080
AKCN-MLWE-KEM-147 256 256 7681 2 24 4 3 147 27671 896 992 1888
AKCN-MIWE-KEM-147-SEC 191 256 7681 2 2 4 3 147 2139 896 992 1888
AKCN-MLWE-PKE-147 256 256 7681 2 2% 3 3 147 9-222.6 992 1088 2080
OKCN-MLWE-KE-248 512 512 7681 8 20 0 2 248 2682 1696 1920 3616
OKCN-MLWE-KE-248 512 512 7681 8 20 1 2 248 2608 1568 1792 3360
OKCN-MLWE-KE-248 512 512 7681 8 20 3 2 248 27289 1312 1536 2848
OKCN-MLWE-KE-248 512 512 7681 8 26 0 2 248 2734 1696 2048 3744
OKCN-MLWE-KE-248 512 512 7681 8 26 1 2 248 2653 1568 1920 3488
AKCN-MLWE-KEM-248 512 512 7681 8 20 1 2 248 2537 1568 1792 3360
AKCN-MLWE-KEM-248 512 512 7681 8 20 2 2 248 2445 1440 1664 3104
AKCN-MLWE-KEM-248 512 512 7681 8§ 20 3 2 248 2257 1312 1536 2848
AKCN-MLWE-KEM-248 512 512 7681 8 26 0 2 248 272 1696 2048 3744
AKCN-MLWE-KEM-248 512 512 7681 8 26 1 2 248 2641 1568 1920 3488

Table 26: More Parameters for OKCN/AKCN-MLWE. For SEC-aided OKCN/AKCN-MLWE,
ng = 4.

90

K| n q n g t I pg-sec err pk (B) cipher (B) bw. (B)

OKCN-MLWE-KE-120-SEC-1 191 256 7681 16 2% 1 2 120 2670 800 904 1704
OKCN-MLWE-KE-120-SEC-2 191 256 7681 16 2% 1 2 120 2602 800 872 1672
AKCN-MLWE-KEM-120-SEC 191 256 7681 16 2* 1 2 120 2-60-2 800 896 1696
OKCN-MLWE-PKE-147-SEC-1 191 256 7681 2 24 4 3 147 21576 896 1000 1896
OKCN-MLWE-PKE-147-SEC-2 191 256 7681 2 2 4 3 147 9-139.6 896 968 1864
AKCN-MLWE-PKE-147-SEC-1 191 256 7681 2 2% 4 3 147 9-139.6 896 992 1888
AKCN-MLWE-PKE-147-SEC-2 191 256 7681 2 2% 4 3 147 21576 896 1024 1920
OKCN-MLWE-KE-248-SEC 464 512 7681 8 24 3 2 248 2618 1312 1543 2855
OKCN-MLWE-PKE-248-SEC-1 464 512 7681 8 261 2 248 21346 1568 1927 3495
OKCN-MLWE-PKE-248-SEC-2 464 512 7681 8 200 0 2 248 9-1508 1696 2055 3751
AKCN-MLWE-KEM-248-SEC 464 512 7681 8 2 3 2 248 27554 1312 1536 2848
AKCN-MLWE-PKE-248-SEC-1 464 512 7681 8 26 1 2 248 21322 1568 1920 3488
AKCN-MLWE-PKE-248-SEC-2 464 512 7681 8 26 0 2 248 2148 1696 2048 3744

Table 27: Recommended Parameters for SEC-aided OKCN/AKCN-MLWE, where ny = 4 for
OKCN/AKCN-MLWE-120/147 (resp., ng = 6 for OKCN/AKCN-MLWE-248).

91

	Introduction
	Our Contributions
	Applications to KEM, PKE and AKE
	Advantages and Disadvantages of OKCN vs. AKCN
	On Novelty of OKCN and AKCN
	Recommended Algorithms
	Other Algorithms for Considerations
	Concurrent and Subsequent Work

	Preliminaries
	Authenticated Encryption with Associated Data
	Key Encapsulation Mechanism (KEM)
	Public-Key Encryption (PKE)
	The LWE, LWR, and RLWE problems

	Key Consensus with Noise
	Efficiency Upper Bound of KC
	Construction and Analysis of OKCN
	Special Parameters, and Performance Speeding-Up

	Asymmetric Key Consensus with Noise
	Construction and Analysis of AKCN
	Simplified Variants of AKCN for Special Parameters

	LWR-Based Key Exchange from KC and AKC
	Security Proof of LWR-Based Key Exchange
	Analysis of Correctness and Error Rate
	Parameter Selection and Evaluation
	Proposed Parameters
	Security Estimation

	LWE-Based Key Exchange from KC and AKC
	Noise Distributions and Correctness
	Discrete Distributions

	Instantiations, and Comparisons with Frodo
	Benchmark

	Hybrid Construction of Key Exchange from LWE and LWR
	Security and Error Rate Analysis
	Parameter Selection

	RLWE-Based Key Exchange from KC and AKC
	Combining AKCN with Lattice Code in 4
	On the Independence of Errors in Different Positions
	Reducing Error Rate with Single-Error Correction Code
	Single-Error Correction Code
	AKC and KC with SEC code
	KEM Specification of AKCN-SEC in the Public-Key Settiing
	KEM Specification of OKCN-SEC in the Public-Key Setting

	Reducing Error Rate with Lattice Code in E8
	Combining AKCN with Lattice Code in E8

	On the Desirability of OKCN/AKCN-SEC and OKCN/AKCN-E8
	Extension to RLWR-Based KE

	MLWE-Based Key Exchange from KC and AKC
	Generic Construction of MLWE-Based KE
	KEM Specificiation of OKCN-MLWE in Public-Key Setting
	KEM Specificiation of AKCN-MLWE in Public-Key Setting

	Error Rate Analysis and Parameter Selection
	Parameter Selection and Comparison
	Comparison with Kyber

	Implementation
	Generation of Noise Polynomials
	The Keys and Ciphertext
	Encoding/Decoding of Objects
	NTT Technique

	Applications to CCA-Secure PKE
	Applications to Privacy-Preserving AKE
	Abstraction of Key-Exchange and Key-Transport
	Basic Construction of CNKE
	Design Rationale of CNKE, and the Actual Design
	Instantiation of CNKE from AKCN-MLWE

	Extension to MLWR-Based KE

	Consensus Mechanism of Frodo
	Consensus Mechanism of NewHope
	Proof of Corollary 3.2
	On KC/AKC vs. Fuzzy Extractor
	Overview of the Primal and Dual Attacks
	Security Estimation of the Parameters of Frodo
	Security Analysis of LWE-Based Key Exchange
	Construction and Analysis of AKCN-4:1
	Overview of NewHope
	Construction and Analysis of AKCN-4:1

	Implementing H xT in SEC with Simple Bit Operations
	CCA-Secure KEM from OKCN-MLWE
	More Variants of CNKE
	More Parameters of OKCN-MLWE and AKCN-MLWE

