AKCN-E8: Compact and Flexible Key
Encapsulation Mechanism from Ideal Lattice

Abstract—A remarkable breakthrough in mathemat-
ics in recent years is the proof of the long-standing
conjecture: sphere packing (i.e., packing unit balls) in
the E lattice is optimal in the sense of the best density
[V17] for sphere packing in R®. In this work, we design
the FEg lattice code, referred to as AKCN-ES, for error
correction and asymmetric key consensus. The AKCN-
E8 code has independent interest and value, which can
have broad applications for communication protocols
like the IEEE 802.11a WLAN standard.

As a direct application of our AKCN-E8 code, we
present highly practical key encapsulation mechanism
(KEM) from the ideal lattice based on the ring learning
with errors (RLWE) problem. Compared to the RLWE-
based NewHope-KEM [ ], which is a variant of
NewHope-Usenix [ ] and is now a promising
candidate in the second round of NIST post-quantum
cryptography (PQC) standardization competition, our
AKCN-ES8-KEM has the following advantages:

e The size of shared-key is doubled, which is
important for the targeted security level against
Grover’s search algorithm and the possibility
of more sophisticated quantum cryptanalysis in
the long run.

e  More compact ciphertexts, at the same or even
higher security level.

e  More flexible parameter selection for tradeoffs
among security, ciphertext size and error prob-
ability. In particular, we provide parameters to
enjoy doubled shared-key size, smaller cipher-
text size, lower error probability, and stronger
security simultaneously."

I. INTRODUCTION

Advancements in quantum computing have
spurred the development of new public-key
cryptographic primitives that are conjectured to
be secure against quantum attacks. One promising
class of these primitives is based on lattices, leading
to key encapsulation mechanisms (KEM) based on
the learning with errors (LWE) problem [ ].
For cryptographic usage, compared with the classic
hard lattice problems such as SVP and CVP, the
LWE problem is proven to be much more versatile
[ ]. Nevertheless, LWE-based cryptosystems are
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usually less efficient, which was then resolved by
the introduction of the ring-LWE (RLWE) problem
[ ] from ideal lattice. Among RLWE-based
asymmetric primitives, NewHope-KEM [ ]
is one of the leading KEM schemes, which is a
variant of NewHope-Usenix [ ] (winner
of the 2016 Internet Defense Prize), and is now a
promising candidate in the second round of NIST
post-quantum cryptography (PQC) standardization
competition.

In this work, we review the modular and gen-
eralized framework, explicitly proposed in [ 1,
[ ], for designing and analyzing KEM schemes
from LWE and its variant (in particular, RLWE).
This modular and generalized framework brings us
to focus on one key building block for achieving
KEMs from LWE and its variants, which is referred
to as asymmetric key consensus (AKC). Putting into
this framework, the underlying AKC mechanism of
NewHope-KEM is a lattice code in Z,4, which encodes
one key bit into four polynomial coefficients. Then, we
design the Fjg lattice code, referred to as AKCN-ES,
for error correction and asymmetric key consensus,
which encodes four key bits into eight coefficients.
As a direct application of the AKCN-E8 code, we
present highly practical KEM scheme based on the
RLWE assumption, which is referred to as AKCN-ES8-
KEM. Compared with NewHope-KEM [ 1,
our AKCN-E8-KEM has the following advantages:

e The size of shared-key is doubled, which
is important for the targeted security level
against Grover’s search algorithm and the
possibility of more sophisticated quantum
cryptanalysis in the long run.

e More compact ciphertexts, at the same or
even higher security level.

e More flexible parameter selection for trade-
offs among security, ciphertext size and error
probability. In particular, we provide parame-
ters to enjoy doubled shared-key size, smaller
ciphertext size, lower error probability, and
stronger security simultaneously.

The performance advantages of AKCN-ES, as well
as its flexibility in parameter selection, are (among
others) largely enabled by the underlying Fg lattice



code, which is much more dense than the underly-
ing Z, lattice code used by NewHope-KEM [

1, [ ]. Actually, a remarkable breakthrough
in mathematics in recent years is the proof of the
long-standing conjecture: sphere packing in the FEjg
lattice is optimal in the sense of the best density [V 17]
for packing in R®. More detailed comparisons and
discussions are given in Section V.

Leech lattice is also proven to be the densest for
sphere packing in dimension 24 [ ], and has
already been used for error correction in communi-
cation protocols [ 1 [ ], for example in the
IEEE 802.11a WLAN standard https://standards.ieee.
org/standard/802_11-2016.html. On the one hand, its
encoding and decoding are more complex and less
efficient than our AKCN-E8 code. On the other hand,
and more importantly, it is difficult to find parameters
of RLWE [ ], since it is a 24-dimension lattice.
For RLWE-based cryptosystems, we usually use NTT
algorithms to speed up the polynomial multiplications.
The NTT algorithms can make the most use of the
computational resource when the dimension of RLWE
is a power of 2. However, one cannot hope for setting
the parameter n to be a power of 2 and a multiple of
24 at the same time. The same issue also occurs when
setting the key length for Leech lattice, since the key
size usually will be a multiple of 12. In comparison,
the Fg lattice doesn’t have the aforementioned prob-
lems. In this sense, we believe our AKCN-ES8 code can
have much broader applications for communication
protocols beyond RLWE-based public-key encryption.

II. PRELIMINARIES

A string or value o means a binary one, and |«| is
its binary length. For any real number z, |x] denotes
the largest integer that less than or equal to =, and
|z] = |x + 1/2]. For any positive integers a and
b, denote by lcm(a, b) the least common multiple of
them. For any i,7 € Z such that ¢+ < j, denote by
[i, 7] the set of integers {i, i+ 1,---,j — 1,5}. For
any positive integer t, we let Z; denote Z/tZ. The
elements of Z, are represented, by default, as [0, ¢—1].
Nevertheless, sometimes, Z; is explicitly specified to
be represented as [—| (¢t —1)/2], |t/2]].

If S is a finite set, then |S| is its cardinality,
and x < S is the operation of picking an element
uniformly at random from S. For two sets A, B C Z,
define A+B £ {a+bla € A,b € B}. For an addictive
group (G,+), an element € G and a subset S C G,
denote by x+ .S the set containing z+ s for all s € S.
For a set S, denote by U/(S) the uniform distribution
over S. For any discrete random variable X over R,
denote Supp(X) = {z € R | Pr[X = z] > 0}.

We use standard notations and conventions below
for writing probabilistic algorithms, experiments and

interactive protocols. If D denotes a probability distri-
bution, x <— D is the operation of picking an element
according to D. If « is neither an algorithm nor a
set, x < « is a simple assignment statement. If A is
a probabilistic polynomial-time (PPT) algorithm, then
A(zq, 22, -+ ;7) is the result of running A on inputs
x1,Za, - and coins r. We let y <+ A(xy,za, )
denote the experiment of picking r at random and
letting y be A(x1,x2,--- ;7). By Pr[Ry;--- ; Ry : E]
we denote the probability of event F, after the ordered
execution of random processes Ry, -, R,. A func-
tion f(\) is negligible, if for every ¢ > 0 there exists
an A such that f(\) < 1/A° for all A > A..

A. Key Encapsulation Mechanism (KEM)

We review the definition of KEM given in [ 1,
[ ]. A key encapsulation mechanism KEM =
(KeyGen, Encaps, Decaps) consists of three algo-
rithms. On a security parameter «, the PPT key gen-
eration algorithm KeyGen outputs a key pair (pk, sk),
where pk also defines a finite key space K. The PPT
encapsulation algorithm Encaps, on input pk, outputs
a tuple (K, c) where ¢ is said to be an encapsula-
tion of the key K which is contained in key space
KC. The deterministic polynomial-time decapsulation
algorithm Decaps, on input sk and an encapsulation
¢, outputs either a key K := Decaps(sk,c) € K or a
special symbol L¢ K to indicate that ¢ is not a valid
encapsulation. We call KEM é-correct if

Pr[Decaps(sk, ¢) # K|(pk, sk) < KeyGen(1");
(K, c) + Encaps(pk)] < 6.

The security notion, indistinguishability under
chosen ciphertext attacks (CCA), is defined
wrt. Figure 1. For any PPT adversary A,
define its CCA-advantage as Adv{%4,(A) =
|Pr[GAME CCA outputs 1]] — 1/2|. We say the
KEM scheme is CCA-secure, if for any sufficiently
larger security parameter and any PPT adversary A,
Adv$%4, (A) is negligible.

GAME IND-CCA
(pk, sk) + Gen

b & {0, 1)

(K§, ¢*) < Encaps(pk)
K&K

b o— ADECAPS(C*7K;;)
return [0 =]

DECAPS(c # c*)

K := Decaps(sk, c)
return K

Fig. 1: CCA game for KEM
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B. Public-Key Encryption (PKE)

We review the definition of PKE given in [ 1,
[ ]. A public-key encryption scheme is given
by a triple of algorithms, PKE = (K, &, D), where
for every sufficiently large x € N.

e KeyGen, the key-generation algorithm, is
a probabilistic polynomial-time (in ) algo-
rithm which on input 1% outputs a pair of
strings, (pk, sk), called the public and secret
keys, respectively. This experiment is written
as (pk, sk) < KeyGen(1%).

e &, the encryption algorithm, is a probabilistic
polynomial-time (in x) algorithm that takes
public key pk and message M from the
message space MSP, draws coins 7 uniformly
from coin space COIN, and produces cipher-
text C' = &pp(M;r). This experiment is
written as C' &y ().

e D, the decryption algorithm, is a deterministic
polynomial-time (in ) algorithm that takes
secret key sk and ciphertext C' € {0, 1}*, and
returns message M € MSP.

We say a PKE scheme is d-correct, if for every
sufficiently large x € N, every (pk, sk) generated by
KeyGen(1*) and every M € MSP, we always have
E[maxyremse Pr[Dsi(Epi(M)) # M]] < 6.

Definition II.1 (CCA-security). Let PKE =
(KeyGen, £, D) be an asymmetric encryption scheme,
and A = (A1, As) be an adversary for PKE. For
k € N, define the following CCA-advantage:

AdvSCA(k) = 2 Pr|(pk, sk) < KeyGen(1");
(Mo, My, st) < AT** (pk);
b+ {0, 1};0* — gpk(Mb> :
APk (C* st) = b] — 1.

We say that the PKE scheme is CCA-secure, if for
every sufficiently large security parameter k, and PPT
adversary A, its CCA-advantage Ade‘CA is negligi-
ble in k. We say the PKE scheme is secure against
chosen plaintext attacks (CPA-secure, for short), if the
advantage of A is negligible when the access to the
decryption oracle Dyy, is denied.

C. The LWE, and Ring-LWE (RLWE) problems

Given positive continuous o > 0, define the real
Gaussian function p,(z) = exp(—22/202)/V2m0?
for x € R. Let Dz, denote the one-dimensional
discrete Gaussian distribution over Z, which is deter-
mined by its probability density function Dz ,(z) =
po()/ps(Z),x € Z. Finally, let Dz , denote the n-
dimensional spherical discrete Gaussian distribution

over Z", where each coordinate is drawn indepen-
dently from Dz .

Given positive integers n and ¢ that are both
polynomials in the security parameter A, an integer
vector s € ZZ;, and a probability distribution x on Z,,
let A, sy be the distribution over Z; x Z, obtained by
choosing a € Z; uniformly at random, and an error
term e < , and outputting the pair (a,b = a’'s+e) €
Ly X Zq. The error distribution y is typically taken
to be the discrete Gaussian probability distribution
Dz, defined previously; However, as suggested in
[ ] and as we shall see in Section V, other
alternative distributions of x can be taken. Briefly
speaking, the (decisional) learning with errors (LWE)
assumption [ ] says that, for sufficiently large
security parameter A, no probabilistic polynomial-time
(PPT) algorithm can distinguish, with non-negligible
probability, A, s, from the uniform distribution over
Zy x L. This holds even if A sees polynomially
many samples, and even if the secret vector s is drawn
randomly from x™ [ ].

For the positive integer m that is polynomial
in the security parameter \, let n = ((m) denote
the toties of m, and K = Q((,,) be the number
field obtained by adjoining an abstract element (,,
satisfying ®,,,((n) = 0, where ®@,,(x) € Z[z] is the
m-th cyclotomies polynomial of degree n. Moreover,
let R £ O be the ring of integers in K. Finally,
given a positive prime ¢ = poly(\) such that ¢ = 1
(mod m), define the quotient ring R, = R/qR.

We briefly review the RLWE problem, and its
hardness result [ 1 [ 1, [ ]. In this
work, we focus on a special case of the RLWE
problem defined in [ ]. Let n > 16 be a power-
of-two and ¢ = poly () be a positive prime such that
g = 1 (mod 2n). Given s < R, a sample drawn
from the RLWE distribution A,, 4+ s over Ry x R4 is
generated by first choosing a < Rg,e < Dzn o,
and then outputting (a,a -s +e) € Ry X Ry.
Roughly speaking, the (decisional) RLWE assumption
says that, for sufficiently large security parameter
A, no PPT algorithm A can distinguish, with non-
negligible probability, A,, 4.+ from the uniform dis-
tribution over R, x R,. This holds even if A sees
polynomially many samples, and even if the secret s
is drawn randomly from the same distribution of the
error polynomial e [ 1 [ 1. Moreover, as
suggested in [ ], alternative distributions
for the error polynomials can be taken for the sake of
efficiency while without essentially reducing security.

Recently, a polynomial-time (quantum) reduction
from worst-case ideal lattice problems directly to
the decision version of Ring-LWE is presented in
[ ]. In particular, the reduction works for any
modulus and any number field. Besides the above spe-



cial version of the RLWE problem [ ], another
suggested version of the RLWE problem is defined
over the polynomial ring R,, = Z[z]/®y+1(x), where
n + 1 is a safe prime and ®,, () = 2™ + 2" ! +
-+ + x4+ 1 is the (n + 1)-th cyclotomic polynomial.
This ring has a wider range of n to choose from.

III. A MODULAR AND GENERALIZED
FRAMEWORK FOR PKE/KEM FROM RING-LWE

A. Building Block: Asymmetric Key Consensus

Alice Bob
o1 ~ 09
k?l c Z,n

v  Con(oy, ky, params)

v
_—

ko < Rec(o2, v, params)

Fig. 2: Depiction of AKC

Before presenting the definition of asymmetric key
consensus (AKC) scheme, we first introduce a new
function | - |, relative to a positive integer ¢ > 1:
|z|;, = min{r mod ¢,¢ — z mod ¢}, Vz € Z,
where the result of modular operation is represented
in {0,...,(¢ — 1)}. For instance, | — 1|, = min{—1
mod ¢, (¢ + 1) mod ¢} = min;q - 1,1} = 1.
For any x = (zo,71,%2,2,-1)" € Zl, where
p is a positive integer, denote by ||x||;1 the sum
|Tolq + |z1lg + - + |zp—1lq:

Definition III.1. An asymmetric key consensus
scheme AKC = (params, Con, Rec) is specified as
follows:

e params = (q,m,g,d,aux) denotes the sys-
tem parameters, where ¢, 2 < m,g < q,1 <
d < |Z] are positive integers, and aux
denotes some auxiliary values that are usually
determined by (q,m, g,d) and could be set to
be empty.

e Vv <« Con(oi,ki,params): On input of
(01 € Zi, kg € 7/ params), where yu is a
positive integer, the polynomial-time concili-
ation algorithm Con outputs the public hint
v € Zy.

e ky « Rec(os,v,params): On input of
(02 € ZY,v € 7, params), the determin-
istic polynomial-time algorithm Rec outputs
ky € 71

Correctness: An AKC scheme is correct, if it holds
ki = ko for any 01,04 € Zl} such that lo1i—o2llg1 <

d.

Security: An AKC scheme is secure, if v is indepen-
dent of k1 whenever o1 is uniformly distributed over
Zl. Specifically, for arbitrary v € Z and arbitrary

ki, k| € ZF, it holds that Pr[v = v|k, = ki] =
Pr[v = v|k; = K{], where the probability is taken
over o1 < Ll and the random coins possibly used by

Con.

B. CPA-Secure PKE from AKC

Denote by (A, n,q,0, AKC) the system parame-
ters, where A is the security parameter. ¢ > 2 is a
positive prime number, ¢ parameterizes the discrete
Gaussian distribution Dz~ ,, n denotes the degree of
polynomials in R, where for simplicity we assume
p|n, and Gen is a pseudorandome generator (PRG)
generating a € R, from a small seed seed <«
{0,1}*. Let AKC = (params,Con,Rec) be a
correct and secure AKC scheme, where params =
(¢, 9, m,d). In this work, we mainly consider m = 2.
The AKC-based PKE from RLWE is depicted in
Figure 3 (page 5). Here, (seed,y;) serves as the
public key, while (y2,v) is the ciphertext. In the
protocol description, for presentation simplicity, the
Con and Rec functions are applied to polynomials,
meaning they are applied to each group of u coef-
ficients respectively. For NewHope p = 4, while for
AKCN-ES8 i = 8. For presentation simplicity, we also
referred to k; = ko as the shared-key.

It is well established that, under the assumptions
that (1) the underlying AKC scheme is both cor-
rect and secure, and (2) the (decisional) RLWE is
hard, the above modular construction of PKE scheme
is CPA-secure [ 1, [ 1, [ 1, [ 1,
[ 1, [ ]. The above modular and gener-
alized framework for CPA-secure PKE from LWE
and its variants was explicitly proposed by Jin and
Zhao [ ], by explicitly defining and studying the
underlying building tool AKC. All the previous works
used AKC implicitly in a non-black-box way. The
literature should appreciate such an effort of abstrac-
tion and generalization. In general, abstraction and
generalization are fundamental to natural science (e.g.,
mathematics, physics), and are particularly important
to cryptography. For example, in the area of signa-
ture, Schnorr signature is generalized via Fiat-Shamir
transformation [ ], with abstraction of Y-protocol
[ ]. The similar abstraction and generalization
also plays a fundamental role in CCA-secure PKE,
and in many more areas of modern cryptography.
Abstraction and generalization are particularly helpful
and expected for lattice-based cryptography, as they
are usually less easy to understand and evaluate,
and are related to the ongoing NIST post-quantum
cryptography standardization [ ].



Initiator
seed < {0,1}"
a = Gen(seed) € R,
X1,€1 < DZn’G-
yi=(a-x;+e)

Responder

seed,y1 € Ry

ko € Zzl/#
a = Gen(seed)
X2, €9 < Dzn)o—
y2 = [(a-x2 +e2)/2"]
8/2 — DZ”,U
o2=y1-X2+eh ER,
v < Con(o 2, ko, params)

Y2 ERq,VERg

o1 :2ty2'X1 ERq
k; < Rec(oq, v, params)

Fig. 3: Depiction of RLWE-based CPA-secure PKE from AKC

C. Transformation from CPA-PKE to CCA-KEM

There are well-established approaches from CPA-
secure PKE to CCA-secure KEM [ 1, [ 1,
[ ]5 [ ]9 [ ]7 [ ]9 W]th con-
crete security estimation in the quantum random or-
acle model (QROM). In this work, for presentation
simplicity and ease of comparison, we use the same
CCA transformation approach adopted by NewHope-
KEM. The reader is referred to [ ] for more
details.

IV. DESIGN AND ANALYSIS OF AKCN-E8

According to the above modular and generalized
framework from AKC to RLWE-based CPA and CCA
secure KEMs, all left is to develop a practical AKC
scheme, which is referred to AKCN-E8 to be devel-
oped and analyzed in this section. At the heart of
AKCN-ES is a novel lattice code in Ejg.

We divide the coefficients of the polynomial o
and o9 into 7 = n/8 groups, where each group
is composed of 8 coefficients. In specific, denote
R =Z[x)/(@®+1), R, = R/qR, K = Qla]/(z®+1)
and Kg = K ® R ~ R[z]/(2® + 1). Then the poly-
nomial o can be represented as o (z) = ao(z™) +
o1(z™)x + - + op_1(z™)2" L, where o;(x) € R,
for i = 0,1,...n. oy can be divided in the same
way. Then we only need to construct the reconciliation
mechanism for each o;(z), and finally combine the
keys together. To do this, we need to first introduce
the lattice Eg and its encoding and decoding.

We construct lattice Fg from the Extended Ham-
ming Code in dimension 8, which is denoted as Hg for
presentation simplicity. Hg refers to the 4-dimension
linear subspace of 8-dimension linear space Z3.

Hg ={ce€Z§|c=2zHmod 2,z c Z}

where
1 1.1 1 0 0 O O
0O 01 1 1 1 00
H=10000 111 1
01 0 1 01 0 1

The encoding algorithm is straightforward: given a
4-bit string k;, calculate k; H. This operation can be
done efficiently by bitwise operations. The complete
algorithm is shown in Algorithm 1.

Algorithm 1 AKCN-E8: Con with encoding in Eg
1: procedure Con(o € Z$, k; € Z3,params)

2: v = {% (o1 + % (kyH mod 2))-‘ mod ¢°

3: return v
4: end procedure

The decoding algorithm finds the solution of the
closest vector problem (CVP) for the lattice Eg. For

2For simplicity, we assume ¢ is a prime and directly use q%l

in Con (rather than |q/2]). The construction and analysis can be
trivially changed to work with 2+L in Con. Also, when q is an
even number (e.g., power-of-two), it should be %.



any given x € R8, CVP asks which lattice point in
FEyg is closest to x. Based on the structure of FEg, we
propose an efficient decoding algorithm.

Fig. 4: Structure of Ej.

Let C' = {(x1,21,%2, %2, 23,23, 24,24) € L5 |
x1+xotxs+x4 = 0 mod 2}. In fact, C is spanned by
the up most three rows of H. Hence, Es = CU(C+-c),
where ¢ = (0,1,0,1,0,1,0,1) is the last row of H.
For a given x € R8, to solve CVP of x in Ejg, we solve
CVP of x and x—c in C, and then choose the one that
has smaller distance. For a pictorial representation of
FEs, refer to Figure 4.

Algorithm 2 AKCN-E8: Rec with decoding in Fg
1: procedure Rec(o; € Z}, v € 7, params)

2: ks = Decodeg, Q%v — 09
3: return ko
4: end procedure

Then we consider how to solve CVP in C'. For an
x € R®, we choose (21,72, 23,24) € Z3, such that
(z1,21, %9, T2, T3, T3, T4, Tq) is closest to x. How-
ever, x1 + T2 + 3 + x4 mod 2 may equal to 1. In
such cases, we choose the 4-bit string (2, 25, z%, )
such that (xf, 2!, x5, xh, x5, x5, ), x)) is secondly
closest to x. Note that (z, x4, x4, 2)) has at most
one-bit difference from (x1,x2,x3,x4). The detailed
algorithm is depicted in Algorithm 3. Considering
potential timing attack, all the “if” conditional state-
ments can be implemented by constant time bitwise
operations. In practice, Decodeg) and Decode%1 are
implemented as two subroutines.

For Algorithm 3 (page 7), in Decodeg,, we cal-
culate cost;p, where ¢ = 0,1,...,7,b € {0,1},
which refer to the contribution to the total 2-norm
when z; = b. Decodely solves the CVP in lattice
C, and Decodeoc1 solves the CVP in lattice C' + c.
Then we choose the one that has smaller distance.

Decodelé“b1 calculates the k;,7 = 0,1,2,3 such that

q%l(ko @ bo, ko @ b1, k1 ® by, k1 D b1, k2 @ by, ko B
b1, ks @ bo, ks @ by) is closest to x. We use ming
and min; to find the second closest vector. Finally,
we check the parity to decide which one should be
returned.

The following theorem gives a condition of suc-
cess of the encoding and decoding algorithm in Al-
gorithm 1 and Algorithm 2. For simplicity, for any
o = (zo,1,...,27) € LY, we define |o]2, =

Theorem IV.1. If |lo1 — o022 < (¢ — 1)/2 —
V2 (% + 1), then ky and ko calculated by Con and
Rec are equal.

Proof: The minimal Hamming distance of the
Extended Hamming code Hy is 4. Hence, the minimal

distance in the lattice we used is 31/ (%)2 x4 =
(g—1)/2.

We can find €,e; € [-1/2,1/2]%,6 € Z8 such
that

\‘qv—‘ —Ug:gv—&—e—ag
9

g
-1
:q<g (0'1—|—q k1H>+€+Hg>
9 \¢ 2

+e1— o2

q-—

= (o1 —02) + 3

1
k1H+g€+€1+0q

Hence, the bias from q;—lle is no larger than ||oy —
oallgzt Ll +VE < o1 —oallo+vE (4 +1). 1
this value is less than the minimal distance (¢ —1)/2,

the decoding will be correct, which implies k; = k.
|

Proposition IV.1. AKCN-ES is secure. Specifically, if
o1 is subject to uniform distribution over Zg, then v
and ky are independent.

Proof: For arbitrary fixed ki, kiH mod 2 is
fixed. Since o; is uniform random, oy + £ (k; H mod
2) is uniform random over Zg4. Thus, v is subject to the
distribution L%u] mod g, where u is uniform random
over Z4. Hence, v is independent of k;. [ |

A. Failure Rate Analysis

Now, with respect to the CPA-secure PKE scheme
described in Figure 3 with the underlying AKC is
replaced with AKCN-ES8, we analyze the correctness
property by calculating its failure rate.

Denote € = axy + ey — 2t (axa + e2)/2']. We
have

o1 — o2 =x1(2"y2) — (y1x2 + €5)



Algorithm 3 Decoding in Fg and C'

1: procedure Decodep(x € Z3)

2 fori=0...7do

3 cost; o = |1’Z‘g

4 cost; 1 = |1‘1 — %‘3

5: end for

6 (k%, TotalCost”) + Decode(? (cost;co. 7 pe{0.1})
7 (k" TotalCost”") +— Decode} (cost;c. .7 pe{0,1})
8 if TotalCost” < TotalCost"! then

9

b=0
10: else
11: b=1

12: end if

13: (k07k317/€27k‘3) ¢+ KOP

14: ko = (]{70, k1 & ko, ks, b)

15: return ko

16: end procedure

17 procedure Decodelé?b1 (costieq..7,pef0,1} € Z8*?)
18: ming = 400

19: min; = 0

20: TotalCost =0

21: for j=0...3do

22: Cp < Ccosty;p, + costajiq b,
23: €1 < costy;1p, + COSto;41,1-b,
24: if ¢y < ¢1 then

25: ki <0

26: else

27: ki1

28: end if

29: TotalCost <— TotalCost + ¢y,
30: if ¢i_, — ek, < ming then
31 ming $— Cl—k; — Ck;

32: min; < 1

33: end if

34: end for

35: if kg + k1 4+ ko + k3 mod 2 =1 then
36: kmzm —1- kmini

37: TotalCost < TotalCost + ming

38: end if

39: k = (ko,kl,kz,kg)

40: return (k, TotalCost)

41: end procedure




| K| n q n g t c-sec  pg-sec err  pk (B)  cipher (B)

NewHope-512-CPA 128 512 12280 8 2° 0 112 101 27218 928 1088
AKCN-E8-512-S-CPA 256 512 12289 14 2% 3 121 110 273224 928 960
AKCN-E8-512-E-CPA 256 512 12289 8 2% 4 112 101 2726 928 896
AKCN-E8-512-C-CPA 256 512 12280 8 2% 4 112 101 27180 928 832
NewHope-512-CCA 128 512 12280 8 2% 0 112 101 27218 928 1120
AKCN-E8-512-S-CCA 256 512 12289 14 2% 3 121 110 27322 928 992
AKCN-E8-512-E-CCA 256 512 122890 8 2% 4 112 101 27256 928 928
AKCN-E8-512-C-CCA 256 512 12280 8 2% 4 112 101 27190 928 864
NewHope-1024-CPA 256 1024 12289 8 25 0 257 233 27216 1824 2176
AKCN-E8-1024-S-CPA 512 1024 12289 10 2* 2 265 240 27274 1824 2048
AKCN-E8-1024-E-CPA 512 1024 12289 8 2% 3 257 233 27280 1824 1920
AKCN-E8-1024-C-CPA 512 1024 12289 4 23 3 236 214 27500 1824 1792
NewHope-1024-CCA 256 1024 12289 8 2% 0 257 233 27216 1824 2208
AKCN-E8-1024-S-CCA 512 1024 12289 10 2* 2 265 240 27274 1824 2080
AKCN-E8-1024-E-CCA 512 1024 12289 8 2% 3 257 233 27280 1824 1952
AKCN-E8-1024-C-CCA 512 1024 12289 4 23 3 236 214 27500 1824 1824

TABLE I: Parameters for AKCN-E8-KEM and comparison with NewHope-KEM [ ]. | K| refers to the
size of shared-key ki = ks, “pk(B)” refers to the size of (y;,seed) in bytes; “cipher(B)” refers to the size
of (y,,V); “pg-sec” refers to the security of the underlying RLWE problem against the best known quantum
attacks.

| K| n q n g t  pg-sec err  pk (B)  cipher (B)

AKCN-E8-512-CPA-Recom 256 512 7681 4 23 4 08 27132 864 768
AKCN-E8-512-CPA-Option 256 512 7681 6 2% 3 104 27204 864 832
AKCN-E8-512-CCA-Recom 256 512 7681 4 2% 4 98 27128 864 800
AKCN-E8-512-CCA-Option 256 512 7681 6 23 3 104 273204 864 864
AKCN-E8-768-CPA-Recom 384 768 7681 4 23 3 161 27245 1280 1248
AKCN-E8-768-CPA-Option 384 768 7681 2 2% 4 147 27197 1280 1152
AKCN-E8-768-CCA-Recom 384 768 7681 4 23 3 161 27245 1280 1280
AKCN-E8-768-CPA-Option 384 768 7681 2 23 4 147 27197 1280 1184
AKCN-E8-1024-CPA-Recom 512 1024 7681 4 2% 3 227 27303 1696 1792
AKCN-E8-1024-CPA-Option-S 512 1024 7681 6 2% 2 239 273267 1696 1960
AKCN-E8-1024-CPA-Option-C 512 1024 7681 2 23 3 208 27471 1696 1664
AKCN-E8-1024-CCA-Recom 512 1024 7681 4 2% 3 227 27303 1696 1824
AKCN-E8-1024-CPA-Option-S 512 1024 7681 6 2% 2 239 27267 1696 1992
AKCN-E8-1024-CCA-Option-C 512 1024 7681 2 2% 3 208 27471 1696 1696

TABLE II: Recommended parameters for AKCN-E8-7681. “Recom” (resp., “Option”) stands for “Recom-
mended” (resp., “Optional”’). We recommend to use the same 1 = 4 for all the three sets of parameters:
AKCN-ES8-512, 768 and 1024.

= 2'x; | (axs + €2)/2"] — ((ax) + e;)x2 + €5) have
= xl(ax2 + ey — E) — (ax1x2 +ejxs + 6/2)

2 2 2 2 2
(o9 (e + ) R,

14202 -1
= no? (202+“—12)> + 0?2

From RLWE assumption, (a,axs + e3) is indis-
tinguishable with (a,u), where u is subject to the

uniform distribution. Then, € should be closed to

u—2t[u/2!]. We can roughly regard each coefficients the pglynomials in o2 — o is close to a Gaussian dis-
of polynomials in u—2t lu /21&1 as uniform distribution tribution. From Theorem IV.1, the AKCN-E8 scheme

over [—2¢=1,2t=1]"_ Let o, be the standard deviation 1S correct with probability
of uniform distribution over [—2¢=1 2¢=1]", Then we

can calculate the standard deviation of each coeffi- / 200y /gl < (1= I q
cients of polynomials in o — o1, denote it as s. We Prid < x(8): = ( 2 V2 g L)) /s

By the Central Limit Theorem, each coefficient of



|K| n q n g t  pg-sec err  pk (B)  cipher (B)
NewHope-512-CPA 128 512 12280 8 23 0 101 27213 928 1088
AKCN-E8-3329-512-CPA 256 512 3329 2 23 3 101 27164 800 768
NewHope-512-CCA 128 512 12280 8 23 0 101 27213 928 1120
AKCN-E8-3329-512-CCA 256 512 3329 2 23 3 101 27164 800 800
NewHope-1024-CPA 256 1024 12289 & 2° 0 233 27216 1824 2176
AKCN-E8-3329-1024-E-CPA 512 1024 3329 2 2% 2 230 27303 1568 1792
AKCN-E8-3329-1024-C-CPA 512 1024 3329 2 23 2 230 27178 1568 1664
NewHope-1024-CCA 256 1024 12289 8 22 0 233 27216 1824 2208
AKCN-E8-3329-1024-E-CPA 512 1024 3329 2 24 2 230 27303 1568 1824
AKCN-E8-3329-1024-C-CPA 512 1024 3329 2 23 2 230 27178 1568 1696
TABLE II: Parameters for AKCN-E8-3329, and comparisons with NewHope-KEM [ ].

We provide a script to calculate the concrete
failure rate, which is (anonymously) available from
http://github.com/AKCN-ES.

V. PARAMETERS AND IMPLEMENTATION

The AKCN-E8-KEM scheme resulted from the
modular and generalized framework described in Sec-
tion III, with the underlying AKC mechanism replaced
with the AKCN-E8 scheme presented in Section 1V,
works on any hard instantiation of the RLWE problem.
But if n is power of 2, and prime ¢ satisfies ¢ mod
2n 1, then number-theoretic transform (NTT)
can be used to speed up polynomial multiplication.
The performance can be further improved by using
the Montgomery arithmetic and AVX2 instruction set
[ 1, [ ]. As in [ ], the
underlying noise distribution is the centered binomial
distribution S,,: for some positive integer 7, sample
(a1, @y, by, ,by) < {0,1}*7 and then output
7 ,(a; — b;). For the centered binomial distribu-
tion S, its standard deviation is ¢ = /n/2. In
NEWHOPE [ 1, ¢ = 12289, n = 512 or
n = 1024, n = 8. For ease of comparison, we use
the same CCA transformation and the same values of
(¢,n) of NewHope [ ] for the construction
and implementation of AKCN-E8-KEM.

We use the same script of NewHope-KEM [

] for concrete security estimation against the
underlying RLWE problem by the best known quan-
tum attacks, and omit the details here for presentation
simplicity. The reader is referred to [ ] for
the method and script of concrete security estimation,
which is also available from https://newhopecrypto.
org/. NewHope-1024 (resp., NewHope-5512) aims for
233-bit (resp., 101-bit) post-quantum security (pq-
sec, for short), but gets consensus on the shared-
key k; = ko of size 256 (resp., 128) bits by using
a technique first described in [ ] that encodes
one key bit into four polynomial coefficients. We
suggest that the shared-key size might not match
the target security level in the post-quantum era, in

view of the quadratic speedup by Grover’s search
algorithm and the possibility of more sophisticated
quantum cryptanalysis in the long run. Indeed, it is
commonly expected that symmetric-key cryptographic
primitives like AES need larger key sizes in the post-
quantum era. And, in some more critical areas than
public commercial usage, larger key sizes actually
have already been mandated nowadays. NewHope-
KEM is less flexible to increase its shared-key size;
for example, if we want a 512-bit shared-key with
NewHope-KEM, we have to use a polynomial of
degree 2048 that can be significantly less efficient.
Thanks to the powerful Fyg lattice code, AKCN-ES-
1024 (resp., AKCN-E8-512) reaches the shared-key
of size 512 (resp., 256) bits.

The parameters and performance of AKCN-ES8-
KEM are given in Table I. For both AKCN-ES8-
512 and AKCN-ES8-1024, we present three sets of
parameters: “S” stands for higher security level, “M”
stands for mild performance, and “C” stands for
smaller ciphertext size. Compared with NewHope-
KEM [ ], AKCN-E8 always doubles the size
of shared-key, which is important to ensure the target
security level in the post-quantum era against ad-
vanced quantum attacks like Grover algorithms. On
the proposed parameters, AKCN-E8 also has more
compact ciphertexts than NewHope-KEM. Besides the
double of shared-key size, for AKCN-E8-512-S and
AKCN-ES8-1024-S, they also have stronger security,
lower error probability, and smaller ciphertext size
simultaneously, in comparison with the correspond-
ing versions of NewHope-KEM. For AKCN-ES8-512,
we recommend to use AKCN-E8-512-C, as its er-
ror probability 27159 has already been sufficiently
lower than the targeted 101-bit post-quantum security
level. The error probability 2723 of NewHope-512
is unnecessarily low for the target security level. The
performance advantages of AKCN-ES, as well as its
flexibility in parameter selection, are largely enabled
by the underlying Eg lattice code, which is much
more dense than the underlying Z,4 lattice code used
by NewHope-KEM [ 1, [ ]. Actually, a
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remarkable breakthrough in mathematics in recent
years is that sphere packing (i.e., packing unit balls)
in the Ejg lattice is proved to be optimal in the sense
of the best density [V 17] for packing in RS,

A. Implementation and Benchmark

As we use the same CCA-transformation of
NewHope-KEM [ ], we only present the
specifications of CPA-secure AKCN-E8-KEM, which
are given in Algorithm 4, 5, 8. Similar to NewHope-
KEM [ ], we also use NTT to speed up
the multiplication of the polynomials. The benchmark
result for the implementation of AKCN-ES8-1024-C-
CCA is given in Table IV. The source code is (anony-
mously) available from http://github.com/AKCN-ES.

In Algorithm 4, the key generation algorithm ran-
domly samples a seed, and then use the seed to de-
terministically generate seedPublic and seedPrivate.
Then the value a is generated honestly using
seedPublic. The seed seedPublic is set to be part of
the public key pk. The Encode(y1) algorithm gathers
each 14-bit coefficient in ¥, together.

Algorithm 4 Key Generation

1: function KEYGEN
2. seed + {0,1}%%

3: (seedPublic, seedPrivate) = H(seed)

4: a = GenA(seedPublic)

5: x1 < SampleNoise(seedPrivate, 0)

6: X1 NTT(Xl)

7: e < SampleNoise(seedPrivate, 1)

8: €1 NTT(el)

9: 571 —aox;+¢e;

10: return pk = (Encode(y), seedPublic), sk =

Encode(x1)
11: end function

Algorithm 5 Encryption

1: function ENCRYPT(pk, msg)
2: (¥1, seedPublic) = Decode(pk)

3: a = GenA(seedPublic)

4: X3, €2, €5 <— SampleNoise()

5: Xg NTT(XQ)

6: €y — NTT(eg)

7: &, <+ NTT(e))

88  yo=NTT '(aoxy+é&)

9 oy =NTT 'y 0%y + &)

10: v < Con(og, msg)

11 return ct = CompressAndEncode(y2, v)

12: end function

We use the following Algorithm 6 to encode and
compress the ciphertext. In more detail, for each
coefficient in y», we round it to the range [0, 21t —1].
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For each coefficient in v, we round it to the range
[0, 23 —1]. Then we put the rounded 11-bit coefficients
in yo in high position, and rounded 3-bit coefficients
in v in low position to get 14-bit integers. To speed
up the rounding and other operations, we use bit-
operations. Finally we invoke the Encode algorithm
to gather the 14-bit integers together. In Algorithm 7,
we use a similar algorithm to decompress and decode
y2 and v.

We implement the algorithms on Ubuntu Linux
16.04, GCC version 5.4.0. We run the benchmark
on Intel(R) Core(TM) i7-4712MQ CPU @ 2.30GHz,
with HyperThreading off. The code is compiled with
the option -O3 -fomit-frame-pointer -march=native.
The result is in Table IV. We run key generation,
encryption and decryption each for 1000 times. The
reported time and CPU cycles in Table IV are the
average numbers.

Algorithm 6 Compress and Encode

1: function COMPRESSANDENCODE(yz2, V)
2: c=0

3 for z' =1...1024 do

4 ((yz[ | <« 11) + 6144) /12289
5: Io = ((v[i] < 3)+6144)/12289

6: c[i] = (hi< 3) +lo
7

8

9

end for
return Encode(c)
: end function

Algorithm 7 Decode and Decompress

1: function DECODEANDDECOMPRESS(ct)
2: ¢ = Decode(ct)

3 for i =1...1024 do

4; hi = (c[i] > 3) & Ox7FF
5 lo = C[Z] & 3
6

7

8

v5[i] = (hi* 12289 + 0x400) > 11
v'[i] = (lo % 12289 4 0x4) > 3
end for
o: return (y5,v’)
10: end function

Algorithm 8 Decryption
1: function DECRYPT(sk, ct)
2: X1 = Decode(sk)
3 (yQ, ") = DecodeAndDecompress(ct)
4 ¥o NTT(Yz)
5: o < NTT™ (y2 O)Ail)
6
7

: return Rec(o,v’)
: end function



http://github.com/AKCN-E8

AKCN-ES8-1024 CCA | NewHope-1024-CCA

[JZ16]

Time(us) Cycle Time(us) Cycle

Gen
Enc
Dec

80 185361
128 294398
177 405440

91 210020
129 295629
148 338754

[JZ19]

TABLE IV: Benchmark of AKCN-E8-1024-CCA and
NewHope-1024-CCA.

[NH-USENIX]

[ACPS09]

[BCD*16]

[CKM+17]

[CS93]

[CDS94]

[D02]
[DD12]

[FS86]

[FO99]

[FO13]

[HHK17]

[HKSU18]

[JZM19]
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