
AKCN-E8: Compact and Flexible Key
Encapsulation Mechanism from Ideal Lattice

Abstract—A remarkable breakthrough in mathemat-
ics in recent years is the proof of the long-standing
conjecture: sphere packing (i.e., packing unit balls) in
the E8 lattice is optimal in the sense of the best density
[V17] for sphere packing in R8. In this work, we design
the E8 lattice code, referred to as AKCN-E8, for error
correction and asymmetric key consensus. The AKCN-
E8 code has independent interest and value, which can
have broad applications for communication protocols
like the IEEE 802.11a WLAN standard.

As a direct application of our AKCN-E8 code, we
present highly practical key encapsulation mechanism
(KEM) from the ideal lattice based on the ring learning
with errors (RLWE) problem. Compared to the RLWE-
based NewHope-KEM [NH-NIST], which is a variant of
NewHope-Usenix [NH-USENIX] and is now a promising
candidate in the second round of NIST post-quantum
cryptography (PQC) standardization competition, our
AKCN-E8-KEM has the following advantages:

• The size of shared-key is doubled, which is
important for the targeted security level against
Grover’s search algorithm and the possibility
of more sophisticated quantum cryptanalysis in
the long run.

• More compact ciphertexts, at the same or even
higher security level.

• More flexible parameter selection for tradeoffs
among security, ciphertext size and error prob-
ability. In particular, we provide parameters to
enjoy doubled shared-key size, smaller cipher-
text size, lower error probability, and stronger
security simultaneously.1

I. INTRODUCTION

Advancements in quantum computing have
spurred the development of new public-key
cryptographic primitives that are conjectured to
be secure against quantum attacks. One promising
class of these primitives is based on lattices, leading
to key encapsulation mechanisms (KEM) based on
the learning with errors (LWE) problem [NIST].
For cryptographic usage, compared with the classic
hard lattice problems such as SVP and CVP, the
LWE problem is proven to be much more versatile
[Reg09]. Nevertheless, LWE-based cryptosystems are

1The DOI is https://dx.doi.org/10.14722/ndss.2020.23xxx.

usually less efficient, which was then resolved by
the introduction of the ring-LWE (RLWE) problem
[LPR10] from ideal lattice. Among RLWE-based
asymmetric primitives, NewHope-KEM [NH-NIST]
is one of the leading KEM schemes, which is a
variant of NewHope-Usenix [NH-USENIX] (winner
of the 2016 Internet Defense Prize), and is now a
promising candidate in the second round of NIST
post-quantum cryptography (PQC) standardization
competition.

In this work, we review the modular and gen-
eralized framework, explicitly proposed in [JZ16],
[JZ19], for designing and analyzing KEM schemes
from LWE and its variant (in particular, RLWE).
This modular and generalized framework brings us
to focus on one key building block for achieving
KEMs from LWE and its variants, which is referred
to as asymmetric key consensus (AKC). Putting into
this framework, the underlying AKC mechanism of
NewHope-KEM is a lattice code in Z4, which encodes
one key bit into four polynomial coefficients. Then, we
design the E8 lattice code, referred to as AKCN-E8,
for error correction and asymmetric key consensus,
which encodes four key bits into eight coefficients.
As a direct application of the AKCN-E8 code, we
present highly practical KEM scheme based on the
RLWE assumption, which is referred to as AKCN-E8-
KEM. Compared with NewHope-KEM [NH-NIST],
our AKCN-E8-KEM has the following advantages:

• The size of shared-key is doubled, which
is important for the targeted security level
against Grover’s search algorithm and the
possibility of more sophisticated quantum
cryptanalysis in the long run.

• More compact ciphertexts, at the same or
even higher security level.

• More flexible parameter selection for trade-
offs among security, ciphertext size and error
probability. In particular, we provide parame-
ters to enjoy doubled shared-key size, smaller
ciphertext size, lower error probability, and
stronger security simultaneously.

The performance advantages of AKCN-E8, as well
as its flexibility in parameter selection, are (among
others) largely enabled by the underlying E8 lattice

code, which is much more dense than the underly-
ing Z4 lattice code used by NewHope-KEM [NH-
NIST], [PG13]. Actually, a remarkable breakthrough
in mathematics in recent years is the proof of the
long-standing conjecture: sphere packing in the E8

lattice is optimal in the sense of the best density [V17]
for packing in R8. More detailed comparisons and
discussions are given in Section V.

Leech lattice is also proven to be the densest for
sphere packing in dimension 24 [CKM+17], and has
already been used for error correction in communi-
cation protocols [CS93], [VB93], for example in the
IEEE 802.11a WLAN standard https://standards.ieee.
org/standard/802 11-2016.html. On the one hand, its
encoding and decoding are more complex and less
efficient than our AKCN-E8 code. On the other hand,
and more importantly, it is difficult to find parameters
of RLWE [Pop16], since it is a 24-dimension lattice.
For RLWE-based cryptosystems, we usually use NTT
algorithms to speed up the polynomial multiplications.
The NTT algorithms can make the most use of the
computational resource when the dimension of RLWE
is a power of 2. However, one cannot hope for setting
the parameter n to be a power of 2 and a multiple of
24 at the same time. The same issue also occurs when
setting the key length for Leech lattice, since the key
size usually will be a multiple of 12. In comparison,
the E8 lattice doesn’t have the aforementioned prob-
lems. In this sense, we believe our AKCN-E8 code can
have much broader applications for communication
protocols beyond RLWE-based public-key encryption.

II. PRELIMINARIES

A string or value α means a binary one, and |α| is
its binary length. For any real number x, bxc denotes
the largest integer that less than or equal to x, and
bxe = bx + 1/2c. For any positive integers a and
b, denote by lcm(a, b) the least common multiple of
them. For any i, j ∈ Z such that i < j, denote by
[i, j] the set of integers {i, i + 1, · · · , j − 1, j}. For
any positive integer t, we let Zt denote Z/tZ. The
elements of Zt are represented, by default, as [0, t−1].
Nevertheless, sometimes, Zt is explicitly specified to
be represented as [−b(t− 1)/2c, bt/2c].

If S is a finite set, then |S| is its cardinality,
and x ← S is the operation of picking an element
uniformly at random from S. For two sets A,B ⊆ Zq ,
define A+B , {a+b|a ∈ A, b ∈ B}. For an addictive
group (G,+), an element x ∈ G and a subset S ⊆ G,
denote by x+S the set containing x+s for all s ∈ S.
For a set S, denote by U(S) the uniform distribution
over S. For any discrete random variable X over R,
denote Supp(X) = {x ∈ R | Pr[X = x] > 0}.

We use standard notations and conventions below
for writing probabilistic algorithms, experiments and

interactive protocols. If D denotes a probability distri-
bution, x← D is the operation of picking an element
according to D. If α is neither an algorithm nor a
set, x ← α is a simple assignment statement. If A is
a probabilistic polynomial-time (PPT) algorithm, then
A(x1, x2, · · · ; r) is the result of running A on inputs
x1, x2, · · · and coins r. We let y ← A(x1, x2, · · ·)
denote the experiment of picking r at random and
letting y be A(x1, x2, · · · ; r). By Pr[R1; · · · ;Rn : E]
we denote the probability of event E, after the ordered
execution of random processes R1, · · · , Rn. A func-
tion f(λ) is negligible, if for every c > 0 there exists
an λc such that f(λ) < 1/λc for all λ > λc.

A. Key Encapsulation Mechanism (KEM)

We review the definition of KEM given in [D02],
[HHK17]. A key encapsulation mechanism KEM =
(KeyGen,Encaps,Decaps) consists of three algo-
rithms. On a security parameter κ, the PPT key gen-
eration algorithm KeyGen outputs a key pair (pk, sk),
where pk also defines a finite key space K. The PPT
encapsulation algorithm Encaps, on input pk, outputs
a tuple (K, c) where c is said to be an encapsula-
tion of the key K which is contained in key space
K. The deterministic polynomial-time decapsulation
algorithm Decaps, on input sk and an encapsulation
c, outputs either a key K := Decaps(sk, c) ∈ K or a
special symbol ⊥/∈ K to indicate that c is not a valid
encapsulation. We call KEM δ-correct if

Pr[Decaps(sk, c) 6= K|(pk, sk)← KeyGen(1κ);

(K, c)← Encaps(pk)] ≤ δ.

The security notion, indistinguishability under
chosen ciphertext attacks (CCA), is defined
w.r.t. Figure 1. For any PPT adversary A,
define its CCA-advantage as AdvCCAKEM (A) :=
|Pr[GAME CCA outputs 1]] − 1/2|. We say the
KEM scheme is CCA-secure, if for any sufficiently
larger security parameter and any PPT adversary A,
AdvCCAKEM (A) is negligible.

GAME IND-CCA
(pk, sk)← Gen

b
$← {0, 1}

(K∗0 , c
∗)← Encaps(pk)

K∗1
$← K

b′ ← ADECAPS(c∗,K∗b)
return [b′ = b]

DECAPS(c 6= c∗)

K := Decaps(sk, c)
return K

Fig. 1: CCA game for KEM

2

https://standards.ieee.org/standard/802_11-2016.html
https://standards.ieee.org/standard/802_11-2016.html

B. Public-Key Encryption (PKE)

We review the definition of PKE given in [FO13],
[HHK17]. A public-key encryption scheme is given
by a triple of algorithms, PKE = (K, E ,D), where
for every sufficiently large κ ∈ N.

• KeyGen, the key-generation algorithm, is
a probabilistic polynomial-time (in κ) algo-
rithm which on input 1κ outputs a pair of
strings, (pk, sk), called the public and secret
keys, respectively. This experiment is written
as (pk, sk)← KeyGen(1κ).

• E , the encryption algorithm, is a probabilistic
polynomial-time (in κ) algorithm that takes
public key pk and message M from the
message space MSP, draws coins r uniformly
from coin space COIN, and produces cipher-
text C := Epk(M ; r). This experiment is
written as C ← Epk(x).

• D, the decryption algorithm, is a deterministic
polynomial-time (in κ) algorithm that takes
secret key sk and ciphertext C ∈ {0, 1}∗, and
returns message M ∈ MSP.

We say a PKE scheme is δ-correct, if for every
sufficiently large κ ∈ N, every (pk, sk) generated by
KeyGen(1κ) and every M ∈ MSP, we always have
E[maxM∈MSP Pr[Dsk(Epk(M)) 6= M]] ≤ δ.

Definition II.1 (CCA-security). Let PKE =
(KeyGen, E ,D) be an asymmetric encryption scheme,
and A = (A1,A2) be an adversary for PKE. For
κ ∈ N, define the following CCA-advantage:

AdvCCA
A (κ) = 2 · Pr[(pk, sk)← KeyGen(1κ);

(M0,M1, st)← ADsk
1 (pk);

b← {0, 1};C∗ ← Epk(Mb) :

ADsk
2 (C∗, st) = b]− 1.

We say that the PKE scheme is CCA-secure, if for
every sufficiently large security parameter κ, and PPT
adversary A, its CCA-advantage AdvCCA

A is negligi-
ble in κ. We say the PKE scheme is secure against
chosen plaintext attacks (CPA-secure, for short), if the
advantage of A is negligible when the access to the
decryption oracle Dsk is denied.

C. The LWE, and Ring-LWE (RLWE) problems

Given positive continuous σ > 0, define the real
Gaussian function ρσ(x) , exp(−x2/2σ2)/

√
2πσ2

for x ∈ R. Let DZ,σ denote the one-dimensional
discrete Gaussian distribution over Z, which is deter-
mined by its probability density function DZ,σ(x) ,
ρσ(x)/ρσ(Z), x ∈ Z. Finally, let DZn,σ denote the n-
dimensional spherical discrete Gaussian distribution

over Zn, where each coordinate is drawn indepen-
dently from DZ,σ .

Given positive integers n and q that are both
polynomials in the security parameter λ, an integer
vector s ∈ Znq , and a probability distribution χ on Zq ,
let Aq,s,χ be the distribution over Znq ×Zq obtained by
choosing a ∈ Znq uniformly at random, and an error
term e← χ, and outputting the pair (a, b = aT s+e) ∈
Znq × Zq . The error distribution χ is typically taken
to be the discrete Gaussian probability distribution
DZ,σ defined previously; However, as suggested in
[BCD+16] and as we shall see in Section V, other
alternative distributions of χ can be taken. Briefly
speaking, the (decisional) learning with errors (LWE)
assumption [Reg09] says that, for sufficiently large
security parameter λ, no probabilistic polynomial-time
(PPT) algorithm can distinguish, with non-negligible
probability, Aq,s,χ from the uniform distribution over
Znq × Zq . This holds even if A sees polynomially
many samples, and even if the secret vector s is drawn
randomly from χn [ACPS09].

For the positive integer m that is polynomial
in the security parameter λ, let n , ϕ(m) denote
the toties of m, and K , Q(ζm) be the number
field obtained by adjoining an abstract element ζm
satisfying Φm(ζm) = 0, where Φm(x) ∈ Z[x] is the
m-th cyclotomies polynomial of degree n. Moreover,
let R , OK be the ring of integers in K. Finally,
given a positive prime q = poly(λ) such that q ≡ 1
(mod m), define the quotient ring Rq , R/qR.

We briefly review the RLWE problem, and its
hardness result [LPR10], [LPR13b], [DD12]. In this
work, we focus on a special case of the RLWE
problem defined in [LPR10]. Let n ≥ 16 be a power-
of-two and q = poly(λ) be a positive prime such that
q ≡ 1 (mod 2n). Given s ← Rq , a sample drawn
from the RLWE distribution An,q,σ,s over Rq×Rq is
generated by first choosing a ← Rq, e ← DZn,σ ,
and then outputting (a,a · s + e) ∈ Rq × Rq .
Roughly speaking, the (decisional) RLWE assumption
says that, for sufficiently large security parameter
λ, no PPT algorithm A can distinguish, with non-
negligible probability, An,q,σ,s from the uniform dis-
tribution over Rq × Rq . This holds even if A sees
polynomially many samples, and even if the secret s
is drawn randomly from the same distribution of the
error polynomial e [DD12], [ACPS09]. Moreover, as
suggested in [NH-USENIX], alternative distributions
for the error polynomials can be taken for the sake of
efficiency while without essentially reducing security.

Recently, a polynomial-time (quantum) reduction
from worst-case ideal lattice problems directly to
the decision version of Ring-LWE is presented in
[PRS17]. In particular, the reduction works for any
modulus and any number field. Besides the above spe-

3

cial version of the RLWE problem [LPR10], another
suggested version of the RLWE problem is defined
over the polynomial ring Rn = Z[x]/Φn+1(x), where
n + 1 is a safe prime and Φn+1(x) = xn + xn−1 +
· · ·+ x+ 1 is the (n+ 1)-th cyclotomic polynomial.
This ring has a wider range of n to choose from.

III. A MODULAR AND GENERALIZED
FRAMEWORK FOR PKE/KEM FROM RING-LWE

A. Building Block: Asymmetric Key Consensus

Alice
σ1

k1 ∈ Zm

v ← Con(σ1, k1, params)

Bob
σ2

k2 ← Rec(σ2, v, params)

v

≈

Fig. 2: Depiction of AKC

Before presenting the definition of asymmetric key
consensus (AKC) scheme, we first introduce a new
function | · |q relative to a positive integer q ≥ 1:
|x|q = min{x mod q, q − x mod q}, ∀x ∈ Z,
where the result of modular operation is represented
in {0, ..., (q − 1)}. For instance, | − 1|q = min{−1
mod q, (q + 1) mod q} = min{q − 1, 1} = 1.
For any x = (x0, x1, x2, xµ−1)T ∈ Zµq , where
µ is a positive integer, denote by ‖x‖q,1 the sum
|x0|q + |x1|q + · · ·+ |xµ−1|q .
Definition III.1. An asymmetric key consensus
scheme AKC = (params,Con,Rec) is specified as
follows:

• params = (q,m, g, d, aux) denotes the sys-
tem parameters, where q, 2 ≤ m, g ≤ q, 1 ≤
d ≤ b q2c are positive integers, and aux
denotes some auxiliary values that are usually
determined by (q,m, g, d) and could be set to
be empty.

• v ← Con(σ1, k1,params): On input of
(σ1 ∈ Zµq ,k1 ∈ Zµ′m ,params), where µ is a
positive integer, the polynomial-time concili-
ation algorithm Con outputs the public hint
v ∈ Zµg .

• k2 ← Rec(σ2,v,params): On input of
(σ2 ∈ Zµq ,v ∈ Zµg ,params), the determin-
istic polynomial-time algorithm Rec outputs
k2 ∈ Zµ′m .

Correctness: An AKC scheme is correct, if it holds
k1 = k2 for any σ1, σ2 ∈ Zµq such that ‖σ1−σ2‖q,1 ≤
d.

Security: An AKC scheme is secure, if v is indepen-
dent of k1 whenever σ1 is uniformly distributed over
Zµq . Specifically, for arbitrary ṽ ∈ Zµg and arbitrary
k̃1, k̃

′
1 ∈ Zµ′m , it holds that Pr[v = ṽ|k1 = k̃1] =

Pr[v = ṽ|k1 = k̃′1], where the probability is taken
over σ1 ← Zµq and the random coins possibly used by
Con.

B. CPA-Secure PKE from AKC

Denote by (λ, n, q, σ,AKC) the system parame-
ters, where λ is the security parameter. q ≥ 2 is a
positive prime number, σ parameterizes the discrete
Gaussian distribution DZn,σ , n denotes the degree of
polynomials in Rq where for simplicity we assume
µ|n, and Gen is a pseudorandome generator (PRG)
generating a ∈ Rq from a small seed seed ←
{0, 1}κ. Let AKC = (params,Con,Rec) be a
correct and secure AKC scheme, where params =
(q, g,m, d). In this work, we mainly consider m = 2.
The AKC-based PKE from RLWE is depicted in
Figure 3 (page 5). Here, (seed,y1) serves as the
public key, while (y2,v) is the ciphertext. In the
protocol description, for presentation simplicity, the
Con and Rec functions are applied to polynomials,
meaning they are applied to each group of µ coef-
ficients respectively. For NewHope µ = 4, while for
AKCN-E8 µ = 8. For presentation simplicity, we also
referred to k1 = k2 as the shared-key.

It is well established that, under the assumptions
that (1) the underlying AKC scheme is both cor-
rect and secure, and (2) the (decisional) RLWE is
hard, the above modular construction of PKE scheme
is CPA-secure [Reg09], [LPR10], [LP11], [JZ16],
[BCD+16], [JZ19]. The above modular and gener-
alized framework for CPA-secure PKE from LWE
and its variants was explicitly proposed by Jin and
Zhao [JZ16], by explicitly defining and studying the
underlying building tool AKC. All the previous works
used AKC implicitly in a non-black-box way. The
literature should appreciate such an effort of abstrac-
tion and generalization. In general, abstraction and
generalization are fundamental to natural science (e.g.,
mathematics, physics), and are particularly important
to cryptography. For example, in the area of signa-
ture, Schnorr signature is generalized via Fiat-Shamir
transformation [FS86], with abstraction of Σ-protocol
[CDS94]. The similar abstraction and generalization
also plays a fundamental role in CCA-secure PKE,
and in many more areas of modern cryptography.
Abstraction and generalization are particularly helpful
and expected for lattice-based cryptography, as they
are usually less easy to understand and evaluate,
and are related to the ongoing NIST post-quantum
cryptography standardization [NIST].

4

Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1, e1 ← DZn,σ

y1 = (a · x1 + e1)

Responder

k2 ∈ Zn/µm

a = Gen(seed)
x2, e2 ← DZn,σ

y2 = b(a · x2 + e2)/2
te

e′2 ← DZn,σ

σ2 = y1 · x2 + e′2 ∈ Rq
v← Con(σ2,k2, params)

σ1 = 2ty2 · x1 ∈ Rq
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rq

y2 ∈ Rq,v ∈ Rg

Fig. 3: Depiction of RLWE-based CPA-secure PKE from AKC

C. Transformation from CPA-PKE to CCA-KEM

There are well-established approaches from CPA-
secure PKE to CCA-secure KEM [FO99], [FO13],
[TU16], [HHK17], [HKSU18], [JZM19], with con-
crete security estimation in the quantum random or-
acle model (QROM). In this work, for presentation
simplicity and ease of comparison, we use the same
CCA transformation approach adopted by NewHope-
KEM. The reader is referred to [NH-NIST] for more
details.

IV. DESIGN AND ANALYSIS OF AKCN-E8

According to the above modular and generalized
framework from AKC to RLWE-based CPA and CCA
secure KEMs, all left is to develop a practical AKC
scheme, which is referred to AKCN-E8 to be devel-
oped and analyzed in this section. At the heart of
AKCN-E8 is a novel lattice code in E8.

We divide the coefficients of the polynomial σ1

and σ2 into n̂ = n/8 groups, where each group
is composed of 8 coefficients. In specific, denote
R = Z[x]/(x8 + 1), Rq = R/qR,K = Q[x]/(x8 + 1)
and KR = K ⊗ R ' R[x]/(x8 + 1). Then the poly-
nomial σ1 can be represented as σ1(x) = σ0(xn̂) +
σ1(xn̂)x + · · · + σn̂−1(xn̂)xn̂−1, where σi(x) ∈ Rq
for i = 0, 1, . . . n̂. σ2 can be divided in the same
way. Then we only need to construct the reconciliation
mechanism for each σi(x), and finally combine the
keys together. To do this, we need to first introduce
the lattice E8 and its encoding and decoding.

We construct lattice E8 from the Extended Ham-
ming Code in dimension 8, which is denoted as H8 for
presentation simplicity. H8 refers to the 4-dimension
linear subspace of 8-dimension linear space Z8

2.

H8 = {c ∈ Z8
2 | c = zH mod 2, z ∈ Z4}

where

H =

1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1


The encoding algorithm is straightforward: given a

4-bit string k1, calculate k1H. This operation can be
done efficiently by bitwise operations. The complete
algorithm is shown in Algorithm 1.2

Algorithm 1 AKCN-E8: Con with encoding in E8

1: procedure Con(σ1 ∈ Z8
q,k1 ∈ Z4

2,params)

2: v =
⌊
g
q

(
σ1 + q−1

2 (k1H mod 2)
)⌉

mod g3

3: return v
4: end procedure

The decoding algorithm finds the solution of the
closest vector problem (CVP) for the lattice E8. For

2For simplicity, we assume q is a prime and directly use q−1
2

in Con (rather than bq/2e). The construction and analysis can be
trivially changed to work with q+1

2
in Con. Also, when q is an

even number (e.g., power-of-two), it should be q
2

.

5

any given x ∈ R8, CVP asks which lattice point in
E8 is closest to x. Based on the structure of E8, we
propose an efficient decoding algorithm.

Fig. 4: Structure of E8.

Let C = {(x1, x1, x2, x2, x3, x3, x4, x4) ∈ Z8
2 |

x1+x2+x3+x4 = 0 mod 2}. In fact, C is spanned by
the up most three rows of H. Hence, E8 = C∪(C+c),
where c = (0, 1, 0, 1, 0, 1, 0, 1) is the last row of H.
For a given x ∈ R8, to solve CVP of x in E8, we solve
CVP of x and x−c in C, and then choose the one that
has smaller distance. For a pictorial representation of
E8, refer to Figure 4.

Algorithm 2 AKCN-E8: Rec with decoding in E8

1: procedure Rec(σ2 ∈ Z8
q,v ∈ Z8

g,params)

2: k2 = DecodeE8

(⌊
q
gv
⌉
− σ2

)
3: return k2

4: end procedure

Then we consider how to solve CVP in C. For an
x ∈ R8, we choose (x1, x2, x3, x4) ∈ Z4

2, such that
(x1, x1, x2, x2, x3, x3, x4, x4) is closest to x. How-
ever, x1 + x2 + x3 + x4 mod 2 may equal to 1. In
such cases, we choose the 4-bit string (x′1, x

′
2, x
′
3, x
′
4)

such that (x′1, x
′
1, x
′
2, x
′
2, x
′
3, x
′
3, x
′
4, x
′
4) is secondly

closest to x. Note that (x′1, x
′
2, x
′
3, x
′
4) has at most

one-bit difference from (x1, x2, x3, x4). The detailed
algorithm is depicted in Algorithm 3. Considering
potential timing attack, all the “if” conditional state-
ments can be implemented by constant time bitwise
operations. In practice, Decode00C and Decode01C are
implemented as two subroutines.

For Algorithm 3 (page 7), in DecodeE8 , we cal-
culate costi,b, where i = 0, 1, . . . , 7, b ∈ {0, 1},
which refer to the contribution to the total 2-norm
when xi = b. Decode00C solves the CVP in lattice
C, and Decode01C solves the CVP in lattice C + c.
Then we choose the one that has smaller distance.
Decodeb0b1C calculates the ki, i = 0, 1, 2, 3 such that

q−1
2 (k0 ⊕ b0, k0 ⊕ b1, k1 ⊕ b0, k1 ⊕ b1, k2 ⊕ b0, k2 ⊕
b1, k3 ⊕ b0, k3 ⊕ b1) is closest to x. We use mind
and mini to find the second closest vector. Finally,
we check the parity to decide which one should be
returned.

The following theorem gives a condition of suc-
cess of the encoding and decoding algorithm in Al-
gorithm 1 and Algorithm 2. For simplicity, for any
σ = (x0, x1, . . . , x7) ∈ Z8

q , we define ‖σ‖2q,2 =∑7
i=0 |xi|2q .

Theorem IV.1. If ‖σ1 − σ2‖q,2 ≤ (q − 1)/2 −√
2
(
q
g + 1

)
, then k1 and k2 calculated by Con and

Rec are equal.

Proof: The minimal Hamming distance of the
Extended Hamming code H8 is 4. Hence, the minimal

distance in the lattice we used is 1
2

√(
q−1
2

)2 × 4 =
(q − 1)/2.

We can find ε, ε1 ∈ [−1/2, 1/2]8,θ ∈ Z8 such
that⌊
q

g
v

⌉
− σ2 =

q

g
v + ε− σ2

=
q

g

(
g

q

(
σ1 +

q − 1

2
k1H

)
+ ε+ θg

)
+ ε1 − σ2

= (σ1 − σ2) +
q − 1

2
k1H +

q

g
ε+ ε1 + θq

Hence, the bias from q−1
2 k1H is no larger than ‖σ1−

σ2‖q,2+ q
g‖ε‖+

√
2 ≤ ‖σ1−σ2‖q,2+

√
2
(
q
g + 1

)
. If

this value is less than the minimal distance (q−1)/2,
the decoding will be correct, which implies k1 = k2.

Proposition IV.1. AKCN-E8 is secure. Specifically, if
σ1 is subject to uniform distribution over Z8

q , then v
and k1 are independent.

Proof: For arbitrary fixed k1, k1H mod 2 is
fixed. Since σ1 is uniform random, σ1 + q

2 (k1H mod
2) is uniform random over Zq . Thus, v is subject to the
distribution b gque mod g, where u is uniform random
over Zq . Hence, v is independent of k1.

A. Failure Rate Analysis

Now, with respect to the CPA-secure PKE scheme
described in Figure 3 with the underlying AKC is
replaced with AKCN-E8, we analyze the correctness
property by calculating its failure rate.

Denote ε = ax2 + e2 − 2tb(ax2 + e2)/2te. We
have

σ1 − σ2 = x1(2ty2)− (y1x2 + e′2)

6

Algorithm 3 Decoding in E8 and C

1: procedure DecodeE8(x ∈ Z8
q)

2: for i = 0 . . . 7 do
3: costi,0 = |xi|2q
4: costi,1 = |xi − q−1

2 |2q
5: end for
6: (k00,TotalCost00)← Decode00C (costi∈0...7,b∈{0,1})
7: (k01,TotalCost01)← Decode01C (costi∈0...7,b∈{0,1})
8: if TotalCost00 < TotalCost01 then
9: b = 0

10: else
11: b = 1
12: end if
13: (k0, k1, k2, k3)← k0b

14: k2 = (k0, k1 ⊕ k0, k3, b)
15: return k2

16: end procedure
17: procedure Decodeb0b1C (costi∈0...7,b∈{0,1} ∈ Z8×2)
18: mind = +∞
19: mini = 0
20: TotalCost = 0
21: for j = 0 . . . 3 do
22: c0 ← cost2j,b0 + cost2j+1,b1

23: c1 ← cost2j,1−b0 + cost2j+1,1−b1
24: if c0 < c1 then
25: ki ← 0
26: else
27: ki ← 1
28: end if
29: TotalCost← TotalCost+ cki
30: if c1−ki − cki < mind then
31: mind ← c1−ki − cki
32: mini ← i
33: end if
34: end for
35: if k0 + k1 + k2 + k3 mod 2 = 1 then
36: kmini ← 1− kmini

37: TotalCost← TotalCost+mind

38: end if
39: k = (k0, k1, k2, k3)
40: return (k,TotalCost)
41: end procedure

7

|K| n q η g t c-sec pq-sec err pk (B) cipher (B)
NewHope-512-CPA 128 512 12289 8 23 0 112 101 2−213 928 1088

AKCN-E8-512-S-CPA 256 512 12289 14 24 3 121 110 2−224 928 960
AKCN-E8-512-E-CPA 256 512 12289 8 24 4 112 101 2−256 928 896
AKCN-E8-512-C-CPA 256 512 12289 8 23 4 112 101 2−150 928 832

NewHope-512-CCA 128 512 12289 8 23 0 112 101 2−213 928 1120
AKCN-E8-512-S-CCA 256 512 12289 14 24 3 121 110 2−224 928 992
AKCN-E8-512-E-CCA 256 512 12289 8 24 4 112 101 2−256 928 928
AKCN-E8-512-C-CCA 256 512 12289 8 23 4 112 101 2−150 928 864
NewHope-1024-CPA 256 1024 12289 8 23 0 257 233 2−216 1824 2176

AKCN-E8-1024-S-CPA 512 1024 12289 10 24 2 265 240 2−274 1824 2048
AKCN-E8-1024-E-CPA 512 1024 12289 8 24 3 257 233 2−280 1824 1920
AKCN-E8-1024-C-CPA 512 1024 12289 4 23 3 236 214 2−500 1824 1792

NewHope-1024-CCA 256 1024 12289 8 23 0 257 233 2−216 1824 2208
AKCN-E8-1024-S-CCA 512 1024 12289 10 24 2 265 240 2−274 1824 2080
AKCN-E8-1024-E-CCA 512 1024 12289 8 24 3 257 233 2−280 1824 1952
AKCN-E8-1024-C-CCA 512 1024 12289 4 23 3 236 214 2−500 1824 1824

TABLE I: Parameters for AKCN-E8-KEM and comparison with NewHope-KEM [NH-NIST]. |K| refers to the
size of shared-key k1 = k2, “pk(B)” refers to the size of (y1, seed) in bytes; “cipher(B)” refers to the size
of (y2, v); “pq-sec” refers to the security of the underlying RLWE problem against the best known quantum
attacks.

|K| n q η g t pq-sec err pk (B) cipher (B)
AKCN-E8-512-CPA-Recom 256 512 7681 4 23 4 98 2−132 864 768
AKCN-E8-512-CPA-Option 256 512 7681 6 23 3 104 2−204 864 832
AKCN-E8-512-CCA-Recom 256 512 7681 4 23 4 98 2−125 864 800
AKCN-E8-512-CCA-Option 256 512 7681 6 23 3 104 2−204 864 864
AKCN-E8-768-CPA-Recom 384 768 7681 4 23 3 161 2−245 1280 1248
AKCN-E8-768-CPA-Option 384 768 7681 2 23 4 147 2−197 1280 1152
AKCN-E8-768-CCA-Recom 384 768 7681 4 23 3 161 2−245 1280 1280
AKCN-E8-768-CPA-Option 384 768 7681 2 23 4 147 2−197 1280 1184

AKCN-E8-1024-CPA-Recom 512 1024 7681 4 24 3 227 2−303 1696 1792
AKCN-E8-1024-CPA-Option-S 512 1024 7681 6 24 2 239 2−267 1696 1960
AKCN-E8-1024-CPA-Option-C 512 1024 7681 2 23 3 208 2−471 1696 1664
AKCN-E8-1024-CCA-Recom 512 1024 7681 4 24 3 227 2−303 1696 1824

AKCN-E8-1024-CPA-Option-S 512 1024 7681 6 24 2 239 2−267 1696 1992
AKCN-E8-1024-CCA-Option-C 512 1024 7681 2 23 3 208 2−471 1696 1696

TABLE II: Recommended parameters for AKCN-E8-7681. “Recom” (resp., “Option”) stands for “Recom-
mended” (resp., “Optional”). We recommend to use the same η = 4 for all the three sets of parameters:
AKCN-E8-512, 768 and 1024.

= 2tx1b(ax2 + e2)/2te − ((ax1 + e1)x2 + e′2)

= x1(ax2 + e2 − ε)− (ax1x2 + e1x2 + e′2)

= x1(e2 − ε)− (e1x2 + e′2)

From RLWE assumption, (a,ax2 + e2) is indis-
tinguishable with (a,u), where u is subject to the
uniform distribution. Then, ε should be closed to
u−2tbu/2te. We can roughly regard each coefficients
of polynomials in u−2tbu/2te as uniform distribution
over [−2t−1, 2t−1]n. Let σt be the standard deviation
of uniform distribution over [−2t−1, 2t−1]n. Then we
can calculate the standard deviation of each coeffi-
cients of polynomials in σ2 − σ1, denote it as s. We

have

s2 = nσ2
(
2σ2 + σ2

t

)
+ σ2

= nσ2

(
2σ2 +

(1 + 2t)2 − 1

12

)
+ σ2

By the Central Limit Theorem, each coefficient of
the polynomials in σ2−σ1 is close to a Gaussian dis-
tribution. From Theorem IV.1, the AKCN-E8 scheme
is correct with probability

Pr

[
d′ ← χ2(8) :

√
d′ ≤

(
q − 1

2
−
√

2

(
q

g
+ 1

))
/s

]

8

|K| n q η g t pq-sec err pk (B) cipher (B)
NewHope-512-CPA 128 512 12289 8 23 0 101 2−213 928 1088

AKCN-E8-3329-512-CPA 256 512 3329 2 23 3 101 2−164 800 768
NewHope-512-CCA 128 512 12289 8 23 0 101 2−213 928 1120

AKCN-E8-3329-512-CCA 256 512 3329 2 23 3 101 2−164 800 800
NewHope-1024-CPA 256 1024 12289 8 23 0 233 2−216 1824 2176

AKCN-E8-3329-1024-E-CPA 512 1024 3329 2 24 2 230 2−303 1568 1792
AKCN-E8-3329-1024-C-CPA 512 1024 3329 2 23 2 230 2−178 1568 1664

NewHope-1024-CCA 256 1024 12289 8 23 0 233 2−216 1824 2208
AKCN-E8-3329-1024-E-CPA 512 1024 3329 2 24 2 230 2−303 1568 1824
AKCN-E8-3329-1024-C-CPA 512 1024 3329 2 23 2 230 2−178 1568 1696

TABLE III: Parameters for AKCN-E8-3329, and comparisons with NewHope-KEM [NH-NIST].

We provide a script to calculate the concrete
failure rate, which is (anonymously) available from
http://github.com/AKCN-E8.

V. PARAMETERS AND IMPLEMENTATION

The AKCN-E8-KEM scheme resulted from the
modular and generalized framework described in Sec-
tion III, with the underlying AKC mechanism replaced
with the AKCN-E8 scheme presented in Section IV,
works on any hard instantiation of the RLWE problem.
But if n is power of 2, and prime q satisfies q mod
2n = 1, then number-theoretic transform (NTT)
can be used to speed up polynomial multiplication.
The performance can be further improved by using
the Montgomery arithmetic and AVX2 instruction set
[NH-USENIX], [NH-NIST]. As in [NH-NIST], the
underlying noise distribution is the centered binomial
distribution Sη: for some positive integer η, sample
(a1, · · · , aη, b1, · · · , bη) ← {0, 1}2η and then output∑η
i=1(ai − bi). For the centered binomial distribu-

tion Sη , its standard deviation is σ =
√
η/2. In

NEWHOPE [NH-NIST], q = 12289, n = 512 or
n = 1024, η = 8. For ease of comparison, we use
the same CCA transformation and the same values of
(q, n) of NewHope [NH-NIST] for the construction
and implementation of AKCN-E8-KEM.

We use the same script of NewHope-KEM [NH-
NIST] for concrete security estimation against the
underlying RLWE problem by the best known quan-
tum attacks, and omit the details here for presentation
simplicity. The reader is referred to [NH-NIST] for
the method and script of concrete security estimation,
which is also available from https://newhopecrypto.
org/. NewHope-1024 (resp., NewHope-5512) aims for
233-bit (resp., 101-bit) post-quantum security (pq-
sec, for short), but gets consensus on the shared-
key k1 = k2 of size 256 (resp., 128) bits by using
a technique first described in [PG13] that encodes
one key bit into four polynomial coefficients. We
suggest that the shared-key size might not match
the target security level in the post-quantum era, in

view of the quadratic speedup by Grover’s search
algorithm and the possibility of more sophisticated
quantum cryptanalysis in the long run. Indeed, it is
commonly expected that symmetric-key cryptographic
primitives like AES need larger key sizes in the post-
quantum era. And, in some more critical areas than
public commercial usage, larger key sizes actually
have already been mandated nowadays. NewHope-
KEM is less flexible to increase its shared-key size;
for example, if we want a 512-bit shared-key with
NewHope-KEM, we have to use a polynomial of
degree 2048 that can be significantly less efficient.
Thanks to the powerful E8 lattice code, AKCN-E8-
1024 (resp., AKCN-E8-512) reaches the shared-key
of size 512 (resp., 256) bits.

The parameters and performance of AKCN-E8-
KEM are given in Table I. For both AKCN-E8-
512 and AKCN-E8-1024, we present three sets of
parameters: “S” stands for higher security level, “M”
stands for mild performance, and “C” stands for
smaller ciphertext size. Compared with NewHope-
KEM [NH-NIST], AKCN-E8 always doubles the size
of shared-key, which is important to ensure the target
security level in the post-quantum era against ad-
vanced quantum attacks like Grover algorithms. On
the proposed parameters, AKCN-E8 also has more
compact ciphertexts than NewHope-KEM. Besides the
double of shared-key size, for AKCN-E8-512-S and
AKCN-E8-1024-S, they also have stronger security,
lower error probability, and smaller ciphertext size
simultaneously, in comparison with the correspond-
ing versions of NewHope-KEM. For AKCN-E8-512,
we recommend to use AKCN-E8-512-C, as its er-
ror probability 2−150 has already been sufficiently
lower than the targeted 101-bit post-quantum security
level. The error probability 2−213 of NewHope-512
is unnecessarily low for the target security level. The
performance advantages of AKCN-E8, as well as its
flexibility in parameter selection, are largely enabled
by the underlying E8 lattice code, which is much
more dense than the underlying Z4 lattice code used
by NewHope-KEM [NH-NIST], [PG13]. Actually, a

9

http://github.com/AKCN-E8
https://newhopecrypto.org/
https://newhopecrypto.org/

remarkable breakthrough in mathematics in recent
years is that sphere packing (i.e., packing unit balls)
in the E8 lattice is proved to be optimal in the sense
of the best density [V17] for packing in R8.

A. Implementation and Benchmark

As we use the same CCA-transformation of
NewHope-KEM [NH-NIST], we only present the
specifications of CPA-secure AKCN-E8-KEM, which
are given in Algorithm 4, 5, 8. Similar to NewHope-
KEM [NH-NIST], we also use NTT to speed up
the multiplication of the polynomials. The benchmark
result for the implementation of AKCN-E8-1024-C-
CCA is given in Table IV. The source code is (anony-
mously) available from http://github.com/AKCN-E8.

In Algorithm 4, the key generation algorithm ran-
domly samples a seed, and then use the seed to de-
terministically generate seedPublic and seedPrivate.
Then the value â is generated honestly using
seedPublic. The seed seedPublic is set to be part of
the public key pk. The Encode(ŷ1) algorithm gathers
each 14-bit coefficient in ŷ1 together.

Algorithm 4 Key Generation
1: function KEYGEN
2: seed← {0, 1}256
3: (seedPublic, seedPrivate) = H(seed)
4: â = GenA(seedPublic)
5: x1 ← SampleNoise(seedPrivate, 0)
6: x̂1 ← NTT(x1)
7: e1 ← SampleNoise(seedPrivate, 1)
8: ê1 ← NTT(e1)
9: ŷ1 ← â ◦ x̂1 + ê1

10: return pk = (Encode(ŷ1), seedPublic), sk =
Encode(x̂1)

11: end function

Algorithm 5 Encryption
1: function ENCRYPT(pk,msg)
2: (ŷ1, seedPublic) = Decode(pk)
3: â = GenA(seedPublic)
4: x2, e2, e

′
2 ← SampleNoise()

5: x̂2 ← NTT(x2)
6: ê2 ← NTT(e2)
7: ê′2 ← NTT(e′2)
8: y2 = NTT−1(â ◦ x̂2 + ê2)
9: σ2 = NTT−1(ŷ1 ◦ x̂2 + ê′2)

10: v← Con(σ2,msg)
11: return ct = CompressAndEncode(y2,v)
12: end function

We use the following Algorithm 6 to encode and
compress the ciphertext. In more detail, for each
coefficient in y2, we round it to the range [0, 211−1].

For each coefficient in v, we round it to the range
[0, 23−1]. Then we put the rounded 11-bit coefficients
in y2 in high position, and rounded 3-bit coefficients
in v in low position to get 14-bit integers. To speed
up the rounding and other operations, we use bit-
operations. Finally we invoke the Encode algorithm
to gather the 14-bit integers together. In Algorithm 7,
we use a similar algorithm to decompress and decode
y2 and v.

We implement the algorithms on Ubuntu Linux
16.04, GCC version 5.4.0. We run the benchmark
on Intel(R) Core(TM) i7-4712MQ CPU @ 2.30GHz,
with HyperThreading off. The code is compiled with
the option -O3 -fomit-frame-pointer -march=native.
The result is in Table IV. We run key generation,
encryption and decryption each for 1000 times. The
reported time and CPU cycles in Table IV are the
average numbers.

Algorithm 6 Compress and Encode
1: function COMPRESSANDENCODE(y2,v)
2: c = 0
3: for i = 1 . . . 1024 do
4: hi = ((y2[i]� 11) + 6144)/12289
5: lo = ((v[i]� 3) + 6144)/12289
6: c[i] = (hi� 3) + lo
7: end for
8: return Encode(c)
9: end function

Algorithm 7 Decode and Decompress
1: function DECODEANDDECOMPRESS(ct)
2: c = Decode(ct)
3: for i = 1 . . . 1024 do
4: hi = (c[i]� 3) & 0x7FF
5: lo = c[i] & 3
6: y′2[i] = (hi ∗ 12289 + 0x400)� 11
7: v′[i] = (lo ∗ 12289 + 0x4)� 3
8: end for
9: return (y′2,v

′)
10: end function

Algorithm 8 Decryption
1: function DECRYPT(sk, ct)
2: x̂1 = Decode(sk)
3: (y′2,v

′) = DecodeAndDecompress(ct)
4: ŷ′2 ← NTT(ŷ′2)
5: σ1 ← NTT−1(ŷ′2 ◦ x̂1)
6: return Rec(σ1,v

′)
7: end function

10

http://github.com/AKCN-E8

AKCN-E8-1024 CCA NewHope-1024-CCA
Time(us) Cycle Time(us) Cycle

Gen 80 185361 91 210020
Enc 128 294398 129 295629
Dec 177 405440 148 338754

TABLE IV: Benchmark of AKCN-E8-1024-CCA and
NewHope-1024-CCA.

REFERENCES

[NH-USENIX] E. Alkim, L. Ducas, T. Pöppelmann, and P.
Schwabe. Post-quantum Key Exchange — A New
Hope. 25th USENIX Security Symposium (USENIX
Security 16), pages 327–343. Winner of the 2016
Internet Defense Prize (https://internetdefenseprize.
org/)

[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sa-
hai. Fast Cryptographic Primitives and Circular-
Secure Encryption Based on Hard Learning Prob-
lems. CRYPTO 2009: 595-618.

[BCD+16] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig,
V. Nikolaenko, A. Raghunathan, and D. Stebila.
Frodo: Take off the Ring! Practical, Quantum-Secure
Key Exchange from LWE. ACM CCS 2016: 1006-
1018.

[CKM+17] H. Cohn, A. Kumar, S. D. Miller, D. Radchenko,
M. Viazovska. The Sphere Packing Problem in
Dimension 24. Annuals of Mathematics, 185 (3):
1017-1033, 2017.

[CS93] J. H. Conway and N. Sloane. Sphere Packings,
Lattices, and Groups. Springer- Verlag, New York,
1993.

[CDS94] R. Cramer, I. Damgrd and B. Schoenmakers. Proofs
of Partial Knowledge and Simplified Design of Wit-
ness Hiding Protocols. CRYPTO 1994: 174187.

[D02] A. W. Dent. A Designers Guide to KEMs. Cryptology
ePrint Archive, Report 2002/174, 2002.

[DD12] L. Ducas and A. Durmus. Ring-LWE in Polynomial
Rings. PKC 2012: 34-51.

[FS86] A. Fiat and A. Shamir. How to Prove Yourself:
Practical Solutions to Identification and Signature
Problems. CRYPTO 1986: 186194.

[FO99] E. Fujisaki and T. Okamoto. How to Enhance the
Security of Public-Key Encryption at Minimum Cost.
IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences Volume 83,
Issue 1, pages 24-32, 1999.

[FO13] E. Fujisaki and T. Okamoto. Secure Integration
of Asymmetric and Symmetric Encryption Schemes.
Journal of Cryptology, Volume 26, Issue 1, pages 80-
101, 2013.

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A Modu-
lar Analysis of the Fujisaki-Okamoto Transformation.
TCC (1) 2017: 341-371.

[HKSU18] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh.
Generic Authenticated Key Exchange in the Quantum
Random Oracle Model. Cryptology ePrint Archive,
Report 2018/928.

[JZM19] H. Jiang, Z. Zhang, and Z. Ma. Tighter Security
Proofs for Generic Key Encapsulation Mechanism
in the Quantum Random Oracle Model. PQCrypto
2019: 227-248.

[JZ16] Z. Jin, and Y. Zhao. Optimal Key Consensus in
Presence of Noise. CoRR, abs/1611.06150 (2016)
https://arxiv.org/abs/1611.06150

[JZ19] Z. Jin, and Y. Zhao. Generic and Practical Key
Establishment from Lattice. ACNS 2019: 302-322.
(Best Student Paper)

[LP11] R. Lindner and C. Peikert. Better Key Sizes (and
Attacks) for LWE-Based Encryption. CT-RSA 2011:
319-339.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On
Ideal Lattices and Learning with Errors over Rings.
EUROCRYPT 2010: 1-23.

[LPR13b] V. Lyubashevsky, C. Peikert, and O. Regev. A Toolkit
for Ring-LWE Cryptography. EUROCRYPT 2013:
35-54

[NIST] NIST. Post-Quantum Cryptography
Standardization. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization

[PRS17] C. Peikert, O. Regev and N. Stephens-Davidowitz.
Pseudorandomness of Ring-LWE for Any Ring and
Modulus. STOC 2017: 461-473.

[Pop16] A.V. Poppelen, Cryptographic Decoding of the
Leech Lattice. Cryptology ePrint Archive, Report
2016/1050, 2016.

[NH-NIST] T. Pöppelmann, E. Alkim, R. Avanzi, J. Bos, L.
Ducas, A. Piedra, P. Schwabe, D. Stebila, M.
Albrecht, E. Orsini, V. Osheter, K. Paterson, G. Peer,
and N. Smart. Supporting documentation: Newhope.
Technical report, National Institute of Standards
and Technology. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/round-2-submissions

[PG13] T. Pöppelmann and T. Güneysu. Towards Practical
Lattice-Based Public-Key Encryption on Reconfig-
urable Hardware. SAC 2013: 68-85.

[Reg09] O. Regev. On Lattices, Learning with Errors, Random
Linear Codes, and Cryptography. Journal of the ACM
(JACM), Volume 56, Issue 6, pages 34, 2009.

[Res] E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3.

[TU16] E. E. Targhi and D. Unruh. Post-Quantum Security of
the Fujisaki-Okamoto and OAEP Transforms. TCC
2016-B: 192-216.

[VB93] A. Vardy, and Y. Be’ery. Maximum Likelihood
Decoding of the Leech Lattice. IEEE Transactions
on Information Theory, 39(4):1435-1444, 1993.

[V17] M. S. Viazovska. The Sphere Packing Problem in
Dimension 8. Annuals of Mathematics, 185(3): 991-
1015, 2017.

11

https://internetdefenseprize.org/
https://internetdefenseprize.org/
https://arxiv.org/abs/1611.06150
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions

	Introduction
	Preliminaries
	Key Encapsulation Mechanism (KEM)
	Public-Key Encryption (PKE)
	The LWE, and Ring-LWE (RLWE) problems

	A Modular and Generalized Framework for PKE/KEM from Ring-LWE
	Building Block: Asymmetric Key Consensus
	CPA-Secure PKE from AKC
	Transformation from CPA-PKE to CCA-KEM

	Design and Analysis of AKCN-E8
	Failure Rate Analysis

	Parameters and Implementation
	Implementation and Benchmark

	References

