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第1章 前  言
1.1 模式识别概述
模式识别(Pattern Recognition)是通过分析感知数据（图像、视频、语音等），对数据中包含的模式（物体、行为、现象等）进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统，是人和动物获取外部环境知识，并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器模拟人的感知过程实现对感知数据的模式分析与识别，是人工智能领域的一个重要分支。模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化（如使每一类样本的表达误差最小或使不同类别样本的分类误差最小）的过程，也就是一个机器学习过程。近年来，模式识别与机器学习的方法也被广泛用于感知数据以外的数据（如文本、互联网数据、传感网数据、基因表达数据等）分析问题，形成了数据挖掘领域。

由于模式识别的对象是存在于感知数据中的物体和现象，它研究的内容还包括信号/图像/视频的处理、分割、形状分析、运动分析、上下文分析等。具体地说，模式识别的研究内容主要包括：

· 模式描述和分类。模式分类是建立在适当的模式（这里指单个模式样本）和类别描述基础之上的。按照模式和类别的描述方式，模式分类方法可以分为统计模式识别、句法结构模式识别、人工神经网络、核方法、集成分类方法等。模式的特征提取、特征选择、分类和聚类等同时也是机器学习的重要研究内容。

· 计算机视觉与图像/视频分析。视觉是人类获取信息的最主要来源。图像/视频信号处理、分割（模式/背景分离及模式与模式分离）、三维视觉建模、场景分析、运动分析、形状建模和匹配等都是模式识别的重要研究内容。

· 模式识别和视觉技术应用。模式识别技术广泛用于工业生产、社会生活和国防安全等领域，进行自动信息处理和判别，以提高生产、管理、生活、安全监控等的效率。具体应用包括工业视觉检查、机器人感知、文字识别/文档分析、语音识别、生物认证、医学图像分析（计算机辅助诊断）、遥感图像分析、网络内容分析与检索等。

20世纪50年代可以认为是模式识别学科的形成期，当时发表了一些关于统计模式识别的重要论文，人工神经网络“感知机”(Perceptron)也对模式识别和人工智能产生了重要影响。60年代召开了第一个以“模式识别”为题的学术会议。1972年，第一届国际模式识别大会(ICPR，前几届称为IJCPR)召开。国际模式识别学会(IAPR)在1974年第二届ICPR上筹建，并于1978年正式成立。
模式识别领域早期的方法主要是统计模式识别，其数学基础可以追溯到18世纪出现的贝叶斯规则及后来的高斯分布、伯努利分布、Fisher判别分析等。20世纪70到80年代，句法和结构模式识别方法受到高度重视。80年代末到90年代中，人工神经网络非常热门，后来逐渐被支撑向量机和核方法盖过了风头。90年代末到21世纪以来，随着模式识别应用普及和面对的问题越来越复杂，多种新的模式分类器学习方法快速发展，如集成学习、半监督学习、多标签学习、迁移学习、多任务学习等。近几年，在多层神经网络基础上发展起来的深度学习和深度神经网络在很多模式识别应用领域产生了领先的性能，成为当前最热门的方法。21世纪以来也是计算机视觉领域和机器学习领域快速发展的时期，相关学术会议Computer Vision and Pattern Recognition (CVPR)，International Conference on Computer Vision (ICCV), International Conference on Machine Learning (ICML)等日益受到高度重视。
1.2 本白皮书内容组织

本白皮书旨在介绍模式识别领域的基本状况，近几年（尤其是过去5年）在基础理论与方法、计算机视觉、应用技术研究方面的重要进展，产业应用情况，面临的挑战和发展趋势等。供模式识别及其应用相关领域的研究生、研究者和技术开发人员参考。

下面第2章介绍近几年模式识别领域研究进展状况，包括模式识别基础、计算机视觉、应用（主要是生物特征识别、文字识别、语音识别）基础研究。第3章介绍主要技术应用和产业发展状况。第4章分析国内在模式识别领域的研究特色及与国际前沿的差距。第5章分析模式识别领域的当前挑战和发展趋势。第6章为结束语。
第2章 模式识别研究现状
2.1模式识别基础理论
模式识别的基础理论主要包括特征表示与学习、聚类、分类器学习等。最近几年的主要研究进展如下。
2.1.1特征表示与学习
特征表示与学习是模式识别的核心问题之一。如何学习获得高效、鲁棒的特征表示是模式系统成功的关键。近几年的研究主要在稀疏表示和低秩分解两个方面展开。传统的特征提取与特征选择仍然有研究者关注，但相对来说进展不多。
（1）稀疏表示

有关生理学的研究成果表明：人类的视觉系统具有对图像的稀疏表示特性。科学工作者们揭示了在低层和中层的人类视觉系统中，视觉通道中的许多神经元对大量的具体的刺激，比如目标的颜色、纹理、朝向和尺度等，具有选择性。若将这些神经元视为视觉阶段的超完备集中的信号基元的话，神经元对于输入图像的激活机制具有高度的稀疏性。

稀疏性思想方法已经成功应用到模式识别领域。美国UIUC大学的J. Wright等[1]利用模式间的稀疏性设计出一种基于稀疏表示分类(Sparse representation-based classification)方法，该方法的基本思想是，一个待识别的图像样本，在各类训练样本总体构成的基底上的表示系数（表示系数通过求解一个通用的稀疏表示模型得到）是稀疏的，也就是说，表示系数大部分为零，不为零的部分应为在同类样本上的表示系数。在稀疏表示分类的基础上，E. Elhamifar等[2]提出了结构化的稀疏表示分类器。J. Yang等[3]讨论了稀疏表示分类器的机理问题，为基于L1范数的稀疏表示分类提供了理论依据。他们指出，稀疏表示分类器只所以有效的根本原因在于L1-optimizer 解的邻近性，而不是L0-optimizer解的“稀疏”性。稀疏表示分类器的有效性依赖于L1-假设（邻近性假设）：在所有的样本中，依赖于同类样本的表示所产生的表示系数的L1-范数最小。利用了商多面体的k-睦邻（k-neighborly）理论，揭示了L1-optimizer在模式分类中的作用。

从理论上讲，基于L1范数的稀疏表示对服从Laplacian分布的噪声是最优的，对更为复杂的噪声显然不是最优的。为了进一步提升稀疏表示的稳健性，M. Yang等[4]借鉴稳健回归的思想，提出了正则化的稳健稀疏编码方法，R. He等[5]提出了基于半二次型的稳健稀疏表示方法。这两种方法的性能优势在存在复杂噪声的人脸识别实验中得到了证实。
除了分类以外，稀疏表示的方法还被广泛应用于特征抽取领域，典型的例子如稀疏主分量分析、稀疏鉴别学习以及是在深度学习的稀疏自动编码器模型等。
（2）低秩分解

在很多工程问题中，数据矩阵中常常有部分元素缺失或受噪声污染，在该情况下如何恢复数据矩阵成为一个非常重要的问题。低秩先验为数据矩阵的完善和恢复提供一种可能。当噪声较小且独立同分布于高斯分布，经典的主分量分析提供了一种数据矩阵估计的最优工具。然而实际中数据的污染形式可能是任意的，比如噪声较大且是非高斯的，此时主分量分析无法提供一种准确的估计。针对这一问题，E. J. Candes, Y. Ma, 和 J. Wright等提出了稳健主分量分析（Robust PCA）理论与方法[6,7]，该理论假设污染是稀疏的而数据矩阵是低秩的，从而将数据矩阵分解为两部分: 低秩部分（真实数据的估计项）和稀疏部分（噪声等污染项）。稳健主分量分析的基本模型如下
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其中矩阵A,L,S,分别代表观测到的数据,低秩数据和稀疏数据。

受稳健主分量分析启发，G. Liu [8] 等提出了低秩表示方法并用于子空间分割。两种方法均假设噪声是稀疏的，但低秩表示假设表示系数矩阵是低秩的，而稳健主分量分析则假定真实数据是低秩的。
当前的稀疏表示或稳健稀疏表示方法都是基于一维向量的残差刻画，这些方法面临着两个基本的问题：（1）假设残差像素是独立同分布的，而实际中连续遮挡所产生的噪声往往是高度相关的；（2）独立刻画残差像素的方式完全忽视了残差的整体结构信息。针对这两个问题，Chen等假设噪声服从矩阵变量分布，从而导出采用核范数来刻画噪声，提出了矩阵变量稀疏表示方法。另外，Zhang等假设数据矩阵是低秩的，而每个噪声图像也是低秩的，据此提出了基于双核范数的矩阵分解方法。
2.1.2聚类
作为模式识别最基本的分类方法之一，数据聚类在各科学领域的数据分析中扮演着重要的角色，如计算机科学、医学、社会科学和经济学等。给定一个由样本点组成的数据集，数据聚类的目标是将样本点划分成若干类，使得属于同一类的样本点非常相似，而属于不同类的样本点不相似。下面我们将介绍最近几年聚类研究的主要代表性进展，包括非线性聚类、集成聚类、多视图聚类等，以及展望聚类研究中的诸如大规模聚类、聚类中的无监督特征选择等的前沿挑战。

（1）非线性聚类
根据类的分布形状，聚类问题可以分成线性可分聚类问题和非线性可分聚类问题。对一个数据集，若至少包含一个非凸形状边界的类，则该数据集称为非线性可分的，也称为是具有任意形状边界或非球状的类，如图1展示了线性可分数据集和非线性可分数据集。由于现实数据的复杂流形分布，非线性可分聚类是最流行且最被广泛研究的聚类问题之一。最经典的方法是发表于1996 SIGKDD的DBSCAN算法[11]。除此之外，核方法[12]、多中心点模型[13]也是典型的非线性聚类算法。特别是，Science杂志2004年发表了一个结合了密度和距离信息的非线性聚类算法[14]，把非线性聚类研究推向了研究高峰。该算法结构简单、极具技巧性，但缺乏全局目标函数以及存在若干极度敏感的阈值。
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(a) 非线性可分数据集            (b) 线性可分数据集
图1. 非线性可分数据集与线性可分数据集
（2）集成聚类
已有聚类算法各有优势，也各有局限性；在缺少先验知识的情况下，从众多聚类算法中选择一个合适的聚类算法是非常困难的；甚至，给定一个聚类算法，为其选择出合适的参数都是不容易的。相对于使用单一算法得到单一聚类的传统作法，集成聚类（ensemble clustering）可以将多个聚类算法所得的聚类结果（每一个输入聚类称为一个基聚类）集成为一个更优、更鲁棒的聚类结果，如图2所示。近年来集成聚类的研究热点包括有以下几方面：(1)基聚类加权[15],即如何对基聚类质量进行估计并进行加权；(2)基聚类筛选[16]，即从基聚类集合选择得到一个子集，并对此(选择得到的高质量)子集进行集成以期得到更佳集成效果；(3)自动聚类个数估计[17]，即如何自动确定最终聚类中类的个数。
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图2. 集成聚类基本框架
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图3. 多视图数据示例：网页数据中包括超链接、视频、图像、文本
（3）多视图聚类
随着信息技术的发展，我们能够获取越来越多的多视图数据，也称为多源数据，即一个数据集中的每个样本存在着来自不同特征空间的多个表达，每一个表达称为一个视图或者数据源。来自多个视图的数据一般具有相类似的类结构。基于这个假设，多视图聚类就是将来自多个视图的数据进行有效整合，以得到比单视图分别聚类更加准确的聚类结果。代表性的工作有基于典型相关分析（canonical correlation analysis）的多视图聚类[18]与多视图谱聚类[19]，如图3所示。此外，带缺失数据的多视图聚类也是一个研究热点问题[20]。

2.1.3分类器学习
分类器学习方面，近几年最引人注目的进展在深度学习方面，即采用深度神经网络的特征学习和分类。深度学习被《MIT技术评论》评选为2013年突破性科学技术之一，它在人工智能的各个领域取得卓越性能，尤其是在图像识别、自然语言理解和语音识别领域[21]。与传统人工特征抽取方法不同，深度学习本质在于自主地学习大数据内在的复杂结构特征，它是运用误差反向传播算法(Back Propagation, BP)训练机器(如：深度前馈网络和递归网络等)如何从数据中学习到分层的抽象特征。下面我们将介绍深度学习的典型模型，包括无监督预训练、深度卷积网络和递归神经网络等，以及展望其未来挑战。
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图 4. 左图为深度信度网络，右图为深度玻尔兹曼机
（1）无监督预训练
众所周知，直接运用BP算法训练深度网络往往会陷入局部解而得到差强人意的结果。2006年Hinton等人发表了对深度结构有着决定性意义的预训练技术，即采用无监督预训练模型的逐层去初始化网络参数在一个“好”的局部最优解，再通过BP算法对参数进行微调，进而提升深度网络的分类和降维能力[22]。经典的方法有：深度信念网络和深度玻尔兹曼机等(如图4所示)。虽然从正则化和优化的角度可以揭示预训练技术的优势，但其有效性仍缺乏完善的理论解释。
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图5. 深度卷积网络(图片引自Yu CVPR'12 Tutorial)

（2）深度卷积网络
源于神经生物学的局部感受野原理，LeCun等人提出采用BP算法训练的深度卷积网络(Deep convolutional nets, DConvNets) [23]，它是由多个单层卷积神经网络组成，每个单层卷积神经网络包括卷积、非线性变换和下采样3个阶段，如图5所示。此结构对图像的平移、小尺度缩放和扭曲等具有高度不变性。随着GPU、ReLU激活函数、DropOut和数据增广的引入， DConvNets在图像分类问题上获得了惊人的结果，即在ImageNet挑战库上将前5选项错误率从26.5%降到15.3%[24] (2015年已降至4.94%[25])。除此之外，它还在目标探测、目标跟踪、场景识别和3D物体识别等方面取得了优异的性能。
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图 6. 递归神经网络[21]
（3）递归神经网络
与前馈神经网络不同之处是，递归神经网络(recurrent neural networks, RNN)将神经元的输出反馈到输入，并采用通过时间的反向传播算法(BPTT)进行训练，如图6所示。作为一类经典的RNN模型，长短时记忆网络(long short-term memory networks, LSTM)[26]能有效地学习和长期保存时间序列信息，并广泛地应用到自然语言理解和语音识别领域。特别是，结合DConvNets和LSTM[27]，深度学习能使机器从图像像素生成人类语言描述，进而像人一样去感知外界。
2.1.4多分类器集成学习
集成学习[28]是机器学习最基本的方法之一，曾被列为机器学习四大研究方向之首[29]，广泛应用于生物、医学、计算机视觉、图形图像处理等。其基本原理是利用一系列学习器进行学习，并使用某种规则把各学习结果进行整合从而获得比单一学习器更好学习效果的一种学习方法。实际应用中的问题一般都是多类学习问题。因而，我们将介绍最近几年多分类器集成学习研究的主要代表性进展，其中包括理论分析与算法设计，以及展望多分类集成学习在大数据背景下一些研究的前沿挑战。

（1）理论研究

学习理论的研究对机器学习的发展有着重要的支撑和指导作用。在学习理论中，可学习性刻画了一个多分类学习问题能否通过学习得到最优分类器；泛化性刻画了从已有数据中建立的模型能否很好地处理新的数据；一致性研究通过凸优化获得的分类器是否是多分类学习的最优分类器。近年来多分类器集成学习理论研究热点包括以下几方面：可学习性研究[30]、泛化性研究[31]、一致性研究[32]。
（2）算法设计

Boosting是一类著名的主流集成学习方法，其基本原理是将很多弱分类器进行有效结合、从而获得学习效果更好、更鲁棒的学习方法。Boosting方法是多类学习中较为经典的学习方法之一，被广泛研究。近年研究热点包括以下几方面：i)基于特征互享ShareBoost多分类学习算法[33]；ii)基于深度基学习器DeepBoost多分类学习算法[34]；iii)基于非对称基学习器Boosting多分类算法[35]；iv)在线LPBoosting多分类学习算法[36]；v)代价敏感Boosting多分类学习算法[37]等。
2.2计算机视觉

计算机视觉研究对视觉感知数据（图像视频）的分析与理解，是模式识别领域的重要研究方向，涉及的问题很多，目前的研究热点包括物体检测与识别（分类）、三维视觉、视频分析与监控等。

2.2.1 物体检测
物体检测是计算机视觉领域一个非常重要的研究方向。它的研究任务是：找出图像中的物体，并且给出这些物体的位置（通常以矩形框表示）。计算机视觉理论的奠基者Marr认为，计算机视觉要解决的问题是“What is where?”，即“在什么地方有什么物体”[38]。举一个简单的例子，在图7中，物体检测要解决的问题是：图片中有人吗？如果有，人在什么地方？（物体检测中常常用矩形框给出检测到的物体的位置）
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图7. 物体检测实例

物体检测在实际应用中有非常重要的作用，如视频监控、身份识别、自动驾驶等。它看似是一个简单的问题，但在应用中往往面临着诸多挑战。物体检测也面临着与物体分类类似的问题，例如待检测的物体可能在图像中的任意位置，同时物体的尺度和姿态也是任意的；不同光照，拍摄角度和距离会导致同一物体的图像差别很大；物体的非刚性形变和遮挡也会给检测带来诸多的困难[39]。又如，我们想要检测出某个特定类别的物体，但是同一类物体的不同实例往往会有千姿百态的变化；有时我们甚至想要同时检测出多类物体，或者想在一整段视频中进行实时的物体检测。这些因素都对检测算法提出了更高的要求。

为了解决物体位置、尺度、姿态的多样性问题，滑动窗口被主流的物体检测方法所采用，即对于待检测的图像，将不同尺度的窗口滑动到图像的不同位置，然后判断窗口内是否有待检测的物体。主流的算法一般会先对窗口内的图像提取特征，如梯度直方图（HOG）[40]，然后进行特征编码等处理，最后利用SVM等分类器做分类。为了解决物体的非刚性形变，一些研究者提出了形变部件模型（Deformable Part Models）[41]。将形变部件模型与结构化学习结合的隐条件随机场模型（latent CRFs）[42]，可以用来更好地替代SVM分类器。利用形状上下文和图像分割的技术也能提升物体检测算法的性能。自从2012年深度学习方法[24]在ImageNet物体分类问题上大获成功后，研究人员也成功地将深度学习用于物体检测[43]。虽然在大部分早期的研究中，物体检测和分割是两个分开的问题，但是近年来也出现了一些将检测和分割紧密耦合在一起的方法[44,45]。

2.2.2 物体分类
物体分类的任务是判断一幅图像中是否存在某类别的物体。物体分类的一个应用是基于关键词的图像搜索引擎。系统在离线阶段对图像库中的图像进行分类（一幅图像可以有多个类别）。在在线阶段，用户只需输入关键词，搜索引擎就可以返回相关图像。物体分类是一个很困难的问题，主要原因有类内差异大（不同种类的椅子），具体物体本身的变化多（摆出各种姿态的狗），以及成像条件不同（拍照视角、光照等）。但是近年来物体分类取得了很大发展，相关文献很多，每年举办的竞赛（PASCAL VOC竞赛[46]和ImageNet竞赛[47]）吸引了众多机构参赛。2012年前，主流的物体分类方法采用的是词袋（Bag-of-word）模型[48]加支持向量分类器。2012年之前每年PASCAL VOC竞赛的第一名采用的都是这一类方法。2012年Krzhevsky等人将卷积神经网络（CNN）[24]用到ImageNet物体分类竞赛中，获得了巨大的成功。ImageNet上2010和2011年的最佳算法的最低前五类错误率分别为28.2%和25.8%，而在2012年Krzhevsky等人的7层CNN将前五类错误率显著降至16.4%。在此之后的ImageNet最优算法也均使用了CNN。例如在2014年，最低前五类错误率达到6.7%，由Google公司的Szegedy等人实现。除了物体分类问题，场景分类也受到了很多关注[49,50]。
虽然这些物体检测与分类技术的原理可以推广到三维数据以及运动图像，但目前绝大部分研究是针对二维静态图像的。
2.2.3 三维视觉
既然二维图像是三维物体在成像平面的投影，基于三维信息的视觉模式识别从理论上讲应该具有更高的识别率，因此三维计算机视觉一直是计算机视觉领域的重要分支，其主要研究内容包括视觉特征匹配、多视几何理论、相机标定、相机定位、三维重建等。

图像匹配：如何将不同图像中的同一视觉特征（例如同一把椅子的某个角）对应起来，是视觉特征匹配需要解决的问题，也是三维视觉的基本出发点，因为其中很多问题都依赖于视觉特征匹配。目前主流的匹配方法是基于局部图像特征描述子的特征点匹配方法，它的基本步骤包括三步：首先在需要匹配的图像中进行特征点的提取；然后利用特征点周围的局部图像信息计算出一个向量对其进行描述，该向量称为局部图像特征描述子；最后计算待匹配图像之间特征点描述子之间的欧式距离，根据最近邻的原则得到特征点之间的匹配关系。SIFT［51］是该领域使用最多的视觉特征点提取与特征描述子计算方法，是目前通用性最强的方法，缺点是计算速度慢。FAST［52］是目前最快的视觉特征点检测算法，而BRIEF［53］等二进制特征描述子是目前最快的特征描述子计算方法。在鲁棒性方面的描述子研究中，Fan等[54]提出的基于灰度序的描述子对光照有着很强的鲁棒性，Xu等[55]等提出了旋转不变的鲁棒描述子。

多视几何理论：2000年，Hartley和Zisserman [56]出版专著《Multiple View Geometry》一书，标志着多视几何理论的研究趋于成熟。2005年，Kahl和Henrion[57]提出一个多视几何中的统计优化计算框架，解决了传统算法中给出的只是局部最优或者非优的问题，给出系列多视几何典型问题的全局最优解。之后若干年，多视几何理论研究进入一个在优化方面发展的热点时期。最近5年，也有相关的工作持续出现[58-60]。在其它方面，Pajdla等人[61]全面系统地给出了多视几何中的最小问题求解方法，同时Naroditsky等[62]给出最小几何问题的优化多项式求解方法。Ponce [63] 研究了射影形状的图像轮廓。一些改进和完善性的工作有：Fredriksson等[64]研究了两视图相机之间的平移快速与可靠估计；Ponce和Hebert[65]应用射影线几何给出了三视下可重构的收敛的充分必要条件。

相机标定: 最流行的相机标定方法是Zhang[136]的基于平面已知点的方法。由于点需要建立坐标系和进行匹配，一系列基于二次曲线的标定方法产生[67]。自2001年Geyer和Daniilidis[68]提出反射折射相机球射影模型后，全向相机标定的研究进入一个高潮时期，之后的每年都有专门的相关研讨会，最新的相关工作有[69]。最近，相机标定面向具体任务和深度相机（如[70][71], 或者给出更鲁棒的标定方法[72]。
相机定位: 基于图像的定位其实是对相机的定位或者是对景物和相机之间相对定位，可分为基于单张图像的定位和基于视频的定位。基于单张图像的定位，在小场景和大场景下的研究问题不同。基于视频的定位主要是SLAM（Simultaneously localization and mapping）的研究。

在小场景下的基于单张图像的相机定位主要是集中在PNP问题的研究上，寻找更优的解或者增减条件寻找相关的位置解[73][74]。

在大场景下的基于单张图像的相机定位主要是对输入的图像和图像库进行匹配或对输入的图像和三维点云进行匹配。前者是基于图像检索的方法，适用于查询图像与库图像间姿态差异较小的情况；后者是基于离线三维重建得到三维点云，将查询图像的2D特征与3D点云匹配，利用匹配结果计算相机位姿，能够得到精度更高的结果。这些方法在定位的精度上取得不错的结果，但速度却受到耗时的SIFT提取的极大限制。Lim等[75], Galvez-Lopez 和Tardos[76]采用二进制特征，提高了定位速度，但只能在同质图像上取得较好效果。Feng等[77]采用二进制特征，利用多标签监督学习建立了随机索引树，提出基于概率的优先搜索策略，得到大场景的适用于异质图像的相机快速定位方法，在公开数据库上的比较，定位速度提高了一个数量级的同时又保持了相当的定位精度。

基于视频的相机定位SLAM研究中，针对静态场景，基于GPU稠密性的SLAM有DTAM[78]; 为了适应于大场景，半稠密性的SLAM有[79]和基于图的方法有[80]; 为了提高定位的鲁棒性，结合IMU的长距离的SLAM有[81]。针对动态物体，大多数方法使用深度相机[82][83]; 使用非深度相机，基于2D视频的刚体重建与实时定位的工作有[84]。
三维重建: 基于图像的三维重建，即从二维图像恢复场景三维结构是计算机视觉研究中的一个经典和基础问题。在Marr的经典计算机视觉框架中，恢复物体的三维结构是中层视觉的本质目的。近年来，随着图像采集设备的不断进步，使用数码相机、街景车、无人机等设备可以方便的获取海量高分辨率图像数据，如何通过这些图像数据构建我们身边的三维世界日益成为许多领域的迫切需求。因此，在理论和应用层面，基于图像的三维重建，尤其是大规模场景的三维重建问题日益成为计算机视觉研究者的关注热点。大场景图像三维重建系统的基本框架由相机参数标定、稠密点云重建、点云模型化三部分构成，如图8所示。

图8. 大场景三维重建基本框架
大场景相机参数标定通常利用特征点在不同图像中的匹配关系，使用从运动恢复结构的方法（Structure from Motion, SfM）进行计算。SfM以特征点三维坐标的重投影误差最小化为目标函数，通过捆绑调整（Bundle Adjustment）进行非线性优化求取相机内外参数（焦距、主点、畸变参数、位姿等）和特征点三维坐标。为了处理大场景海量图像相机标定中存在的尺度差异大、覆盖范围广、场景结构复杂等问题，研究者们提出了一系列增量式SfM方法[85]，通过从两视图开始，不断添加新的图像迭代求解大规模SfM问题。同时近年来也出现了一系列利用多视图约束或者利用图像辅助信息的全局式大规模SfM求解方法[86]。在获得每幅图像的相机内外参数后，三维重建系统会计算图像中每一像素点对应的空间坐标，进而获得场景可视表面的稠密空间点云。现有的大场景稠密重建方法一类是将稀疏空间特征点进行局部扩散获得稠密点云，另一类是通过立体匹配方法在每一幅图像上计算深度图，并将深度图在空间进行融合获得稠密点云。三维重建的最后一个关键步骤是将稠密点云模型化获得最终的参数化三维模型,可以使用通用的点云三角化方法，也可以利用场景先验信息建立更具结构性的三维模型[87]。

2.2.4 视频分析与监控
近年来，越来越多的场所安装了视频监控系统。与静态图像相比，视频中包含的运动信息为人类的视觉模式识别提供了非常重要的线索，因此视频分析与监控一直是计算机视觉研究中的一个重要议题。早期研究者们构建由底层运动跟踪和高层行为分析一体的智能视频分析系统，如MIT的Stauffer和Grimson [88]首先通过背景建模等方法检测每帧图像中的前景目标，并通过时序预测算法完成前后帧之间前景目标的关联匹配，获得运动目标轨迹，并通过轨迹聚类或统计共生关系学习监控场景内的正常运动模式，并实现异常行为的自动检测。但在真实场景中，由于受光照、拍摄角度、遮挡、姿态变化等因素影响，运动目标跟踪本身就是一个极具挑战的研究问题，而如何在中层特征如轨迹、人体形状等无法鲁棒抽取的情况下进行高层语义行为识别也变得更为迫切。
近年来，围绕视频分析中运动目标鲁棒跟踪与真实环境中的行为识别，主要研究工作包括：
在目标跟踪方面，针对单目标鲁棒跟踪问题，很多研究者通过构建大规模的测试数据库重新定义了跟踪算法的有效性和可行性[89]。基于此，Struck[90]算法和TLD[91][93]与摄像头网络拓扑（the topology of camera network），行人再识别（person re-identification）以及单场景下的目标跟踪等问题有着紧密的联系。有综述表明[94]，通过协同优化的方式将上述问题联系到一起可以更好的应对视频分析中的挑战。92]也受到了人们的关注。然而，受限于有限的场景范围，单一场景下的目标跟踪能发挥的作用有限。随着监控网络的发展，从多摄像头获取视频进行分析越来越受到研究者的关注。多摄像头跟踪算法在这些大规模数据集上取得了非常好的跟踪效果。与此同时，单一场景下的多目标跟踪[
在行为识别方面，早期研究者基于抽取底层轨迹、形状特征，主要围绕时序建模问题展开研究，提出运动模板MEI和MHI [95]以及马尔科夫模型和动态贝叶斯网（DBN）等方法[96]。近来为了摆脱对中层特征抽取的依赖，主流的研究工作基于底层局部特征，如时空感兴趣点（STIP）[97]和稠密轨迹(Dense Trajectory)[98]，通过构建局部区域描述子和词频统计模型如统计直方图和主题模型(Topic Model)[99]等进行视频中的行为分类。近期，随着深度学习的研究不断取得突破，其在行为识别中的工作也不断增多，如Ji等[100]提出的三维卷积神经网络，Karpathy等[101]提出的慢融合模型（Slow Fusion Model)等。同时，为满足大规模模型学习与算法评估需要，大规模多视频行为数据库，如HMDB[102]和UCF101[103]等，也被建立起来。然而，当前大规模行为数据库样本大多来自互联网采集，如一些电影片段、体育视频以及用户上传视频等，其场景与数据质量与真实监控数据有较大不同，如何利用异质的大规模数据进行视频行为理解也是一个重要的研究方向[104]。
2.3应用基础研究

模式识别的应用方向主要包括生物特征识别、文字识别、语音识别、遥感图像分析、医学图像分析等。面向应用，结合模式识别基础理论与方法、图像处理和计算机视觉等开展了大量的研究工作，取得了很大的进展。其中，生物特征识别、文字识别、语音识别中更多地采用了模式分类和机器学习技术，在下面重点介绍。
2.3.1生物特征识别
生物特征识别领域经过50多年的发展，己经积累了丰富的理论和方法，在近距离光照可控条件下基本上可以正确识别高度配合的用户，但是在生物特征图像受到内在生理变化（如姿态、表情、运动）和外界环境变化（如光照、遮挡、距离）时生物特征识别的性能急剧下降，不能满足现实世界复杂环境下身份识别的需求，为了扩大生物特征识别技术在现实场景的应用范围，当前研究重点就是通过创新人机交互、获取装置和识别算法，增强生物特征识别系统对用户和环境的自适应能力，提高生物特征识别的易用性、鲁棒性、实时性、安全性，实现从人配合机器到机器主动适应人的重大技术跨越。生物特征识别研究正面临从受控条件走向复杂现实环境的历史机遇，研究热点和理论创新主要集中在新模态（例如静脉[105]、指节纹[106]、人耳[107]、脑电/心电信号[108]、眼动[109]、手机划屏[110]等）、新传感（例如RGB-D成像模式的Kinect、光场相机、3D人脸和掌纹、非接触指纹仪）、新模型（Sparse Representation、Deep Neural Network）、新安全（活体检测、模板保护）、新应用（监控场景人脸识别、刑侦应用指纹识别）。

指纹识别作为模式识别领域实用化、商业化最早的方向，一些基础问题已经得到较好解决，近些年热点问题包括指纹重建、整形指纹、模板安全和防伪等。在指纹特征提取方面，近几年最主要的进展是机器学习方法的成功引入[111]。传统的方向场估计方法采用各种经验公式，这些方法在处理极低质量的指纹图像（例如现场指纹、磨损严重的指纹）时，会出现严重的错误。一些研究者曾经尝试过将机器学习应用于指纹特征提取[112]，例如将细节点过滤视为分类问题，但是并不成功，性能不比传统方法优越。字典法[111][113][114]在离线阶段学习方向块字典或者脊线字典，在在线阶段通过查字典的方式重建信号，并通过能量最小化的方法解决字典的模糊性问题。这类方法在现场指纹数据库上的性能明显优于传统方法，在平面和滚动指纹库上也取得了更好的性能。
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图9. 基于字典法的指纹识别方法

指纹匹配方面的主要进展是MCC细节点描述子[115]。一个中央细节点的MCC记录的是相邻细节点在该中央细节点周围的空间分布。虽然以往的细节点描述子多数也利用的是相邻细节点与中央细节点之间的关系，但是MCC的编码方式更巧妙，对噪声比较鲁棒，可以通过调整参数实现平滑的量化和降维，两个MCC之间的相似度计算所需的运算量小，而且一套固定的参数可以适用于不同类型传感器、不同图像尺寸、以及不同的细节点提取算法。尽管基于MCC的原始匹配算法并不是FVC上性能排名最高的算法，但由于其以上优点，MCC受到了很大的关注。
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图10. 基于MCC的指纹识别方法

意大利Bologna 大学开发了一个在线测试指纹识别算法性能的网站FVC-ongoing（https://biolab.csr.unibo.it/fvcongoing/），当前主流指纹识别算法可以在高质量的测试库上最优达到0.1%左右的等错误率，在较低质量测试库可以达到0.687%的等错误率。

人脸识别近些年来成为稀疏和低秩表示、信号降维、深度机器学习、流形分析等模式识别和机器学习新理论和新方法的重要科研实验目标，针对人脸光照、表情、姿态、年龄变化和部分遮挡、监控场景低分辨等实际挑战问题取得重要进展。例如，Wright等人提出对光照遮挡等变化具有良好鲁棒性的稀疏表示方法（Sparse Representation Classification, SRC）[1]，在人脸识别领域产生了重要影响。He等人将相关熵理论和半二次优化引入稀疏表达，提出基于鲁棒稀疏表示模型的人脸识别方法[5]。互联网海量的人脸图像数据驱动深度机器学习在人脸识别领域的成功应用[116]，香港科技大学、Google、Facebook、Face++、百度的深度学习人脸识别算法在LFW人脸数据库上识别精度屡创新高（当前最好达到99.77%的识别精度）。但是更具挑战性的IJB-A人脸数据库(2015年发布)目前精度还只有88%(在千分之一的错误接收率条件下)，说明非受控场景人脸识别仍然存在进一步提升的空间。Liao等人提出了基于Multi-Keypoint Descriptors (MKD)的人脸识别方法，该方法不需要配准就可以实现较高精度的部分脸识别[117]。多源异质的人脸识别问题近些年引起学术界高度关注[118]，目前多源异质人脸识别主要的研究问题包括：1）素描人脸轮廓vs可见光人脸照片；2）可见光vs近红外人脸图像；3）可见光vs热红外人脸图像；4）二维人脸vs三维人脸图像；5）低分辨率人脸识别[119]；主要的研究方法包括跨模态图像合成的方法、基于特征变换或者空间映射的方法、基于不变特征的方法等。随着人脸识别在金融、边检等领域的广泛应用，对人脸假体攻击的担忧激发了人脸图像活体检测的研究热点[120]。

虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的圆环状薄膜，在红外光下呈现出丰富的视觉特征，如斑点、条纹、细丝、冠状、隐窝等。主流虹膜识别算法在受控场景可以达到近乎完美的识别精度。例如在印度UID项目的大规模实战测试中虹膜识别精度为99.73%。虹膜识别对于UID项目的成功起了关键作用：通过融合虹膜识别使身份识别错误率降为指纹识别的1/50，生物特征识别不适用人群比例降低92%。

近些年虹膜识别的研究进展集中在虹膜图像预处理、活体检测、特征表达、虹膜图像分类、跨设备虹膜识别等方面。为了测试虹膜识别方法在复杂应用场景中适应远距离、行进中、低质量虹膜图像的有效性，Proenca等人建设了NICE测试数据库，研究了可见光低质量虹膜图像的分割和识别方法，提出用神经网络进行低质量虹膜图像分割[121]。在虹膜图像特征表达方面，Sun等人提出了定序测量特征（Ordinal Measures, OM）来表达虹膜纹理图像的识别信息[122]，建立了虹膜特征信息表达的一般性框架，将国际上性能最好的一些虹膜识别算法所用的特征表达模型都解释成OM的特例，并提出了定序测量虹膜特征的加权匹配方法[123]和特征选择方法[124]。Sun等人提出了基于层次化视觉词典的虹膜分类方法[125]，采用统一框架解决活体检测、种族识别、虹膜粗分类三个科学问题，在亚洲人/非亚洲人虹膜图像的高精度分类实验结果证明虹膜基元的统计特征和种族、基因等存在相关性，打破了国际虹膜识别学术界认为虹膜图像是基因无关的随机纹理主流观点，可以从模式识别和图像分析这一新颖的角度为虹膜遗传方面的生物学研究提供科学证据，同时虹膜遗传相似特性在公安司法（例如嫌疑犯排查）和医学领域也有重要的应用价值和科学意义。虹膜识别的大规模应用也催生了许多新问题，如跨设备识别、特征检索、活体检测以及数据安全性等。Pillai等人使用核函数将不同设备的虹膜数据转换到新的空间来提升跨设备识别性能[126]。

2.3.2文字识别

文字识别，更广义地成为文档分析(Document Analysis)，内容包括文档图像预处理、版面分析、字符切分、字符识别、文本行识别等。文本行是文档图像的基本和相对容易分割的单元，因而文本行识别是最核心、也最难的问题，因为字符切分和字符识别不能分开，而且同时要考虑上下文信息（语言模型和几何上下文）。

近十年来，文字识别领域的研究重点跟过去相比有一些重要变化。首先，在成像手段上，数码相机和智能手机的普及化导致拍照文档图像越来越多。跟扫描图像相比，拍照图像具有光照不均、几何变形、容易模糊等特点，因而在图像增强和几何校正方面带来一些新的研究问题。除了纸张文档的识别，自然场景图像中的文本检测与识别成为一个新的研究热点。在识别单元上，单字识别已不是研究的重点，而是集成字符切分、识别和上下文的文本行识别（或者英文词识别）。在应用方面，历史文档（古籍）的图像分析和识别、检索受到广泛关注。由于文档成像的便利和应用增多，近几年文字识别领域的学术会议，如国际文档分析与识别会议(ICDAR)、国际手写识别前沿会议(ICFHR)吸引了越来越多的人参加。
在文档图像预处理方面，历史文档因纸张陈旧、污损等原因，即使是扫描的图像也呈现严重的背景噪声。因此如何将文本与背景分开成为一个重要的研究问题，传统的二值化和局部二值化方法性能不佳。近几年提出了一些结合灰度和边缘信息、结合多特征对像素进行分类的自适应二值化方法（如[127]）。对手写历史文档二值化的竞赛Competition on Handwritten Document Image Binarization (H-DIBCO 2010, 2012, 2014)吸引了大量研究者参加。另一个预处理问题，拍照文档的几何校正和光照矫正（如[128]）多采用立体视觉模型和几何分析模型。
场景图像文件检测与识别吸引了大量的研究者[129]。文本检测方法可分为基于纹理（区域分类）和基于连通部件两大类。近几年的主流方法是用最大稳定极值区域(MSER)方法提取候选连通部件，对连通部件进行过滤、聚合得到文本行。这类方法在多次竞赛和公开数据集上取得了领先的性能[130-132]。对于场景图像中的文本行识别，有的方法是在文本检测定位并得到二值图像的基础上用集成字符切分、分类器和上下文的传统方法进行识别（如[133]）,有的方法则把文本检测和识别同时进行，即用字符识别器进行文本检测，称为End-to-End方法[134]。在文本定位基础上，不用二值化直接对彩色图象进行字符切分和识别（结合上下文）的方法也取得了优良的性能[135]，尤其是采用深度神经网络的方法[136][137].

在手写文本行识别方面，一个典型的趋势是采用长短时记忆(LSTM)单元的再生神经网络(RNN)在英文和阿拉伯文手写识别中取得领先的性能[138]，而基于隐马尔可夫模型(HMM)和神经网络混合的方法仍然被广泛采用[139]. 在中文手写识别方面，随着一个大规模手写样本数据库的建立[140]和几次学术竞赛的举行[141]，在单字识别和文本行识别方面都取得了很大的进步。尤其是手写文本行识别近几年才受到重视，基于贝叶斯决策的上下文融合方法[142]和基于半马尔科夫条件随机场的方法[143]都取得了较高的字符切分和识别正确率。同时，在字符识别器的书写人自适应和文本行识别的语言模型适应方面也取得了新的进展[144][145]。一个值得注意的动向是，深度卷积神经网络(CNN)把手写汉字识别的精度提升了一大步（从竞赛结果[141]可以看出）。作为一个分类器，CNN可集成在文本行识别系统中，提高文本行识别性能。
历史文档分析的研究主要在西方语言中开展，中文古籍识别的工作还较少。由于历史文档中文本识别的精度不够高（词识别错误率一般大于10%），很多人研究关键词检索方法来克服识别错误的影响。关键词检索方法分为基于图像查询的方法(Query-by-Example)和基于文本查询的方法(Query-by-Keyboard). 近年提出把词图像和文本嵌入共同特征空间的方法，可同时用于词识别和关键词检索[146][147]。
2.3.3语音识别

随着统计机器学习方法的发展，以隐马尔可夫模型(Hidden Markov Model, HMM)和统计语言模型为基础的语音识别技术[148]，在20世纪末和21世纪初获得了较大进展，但受限于模型性能和训练数据量的大小，这一时期的语音识别技术多应用于语音评测、声讯服务和安全监控等领域，在互联网领域中尚未获得大规模的应用。
2011年，微软将深度神经网络引入到连续语音识别的声学模型中[149]，使用深度神经网络（Deep Neural Network, DNN）取代了传统的以GMM-HMM为代表的语音识别声学模型建模方法，给语音识别系统的性能带来了突破性的提升。它不仅显著提高了语音识别的准确率，而且使语音识别系统对环境噪声和方言口音更加鲁棒，为语音识别技术实现大规模的产业应用起到了重要作用。目前，语音识别框架下的深度神经网络的加速训练[150]、模型结构[151]、参数学习[152]、多语言训练[153]等技术成为了当前语音识别研究的热点和重点。更多的深度神经网络结构也已经应用到语音识别声学模型训练，如：卷积神经网络（Convolution Neural Network, CNN）[154]、长短时记忆递归神经网络（Long Short Term Memory Recurrent Neural Network, LSTM-RNN）等[155]。
在语音识别的声学模型获得重要进展的同时，其语言模型也获得很大改进。传统语音识别的语言模型多采用N-Gram等统计方法。2010年，递归神经网络（Recurrent Neural Network, RNN）被引入到语音识别的语言模型中[156]，它具有对历史信息的存储能力，并可以融入更多的语言学信息，能够学习出词与词之间复杂的非线性关系。相对传统统计语言模型，该方法有效地提升了语言模型的鲁棒性，从而进一步提升了语音识别的性能。由于RNN模型计算复杂度相对较高，有关该模型拓扑的简化和变换已成为目前学术界和工业界关注的热点[157]。与语言模型密切相关的是语音识别解码器，自20世纪末，加权有限状态机（Weighted Finite State Transducer, WFST）被应用于语音识别的解码器以来，近几年又经过了很多优化[158]，该方法可以减少搜索过程中动态构建搜索空间的时间代价，使系统能够在相同的时间内在更宽的范围内进行搜索，有效地提高了语音识别的解码速度和识别精度，目前已经获得了广泛的应用。同时，如何利用语言学等知识改善WFST搜索空间的构建、扩展和搜索复杂度，也成为研究人员进一步探索的目标[159]。
此外，在说话人识别研究中, 由于基于身份认证矢量(identity vector, i-vector) 的子空间建模的说话人识别方法[160]，性能显著优于之前广泛采用的高斯混合模型超矢量-支持矢量机(Gaussian mixture model super vector-support vector machine, GSV-SVM)以及联合因子分析(Joint factor analysis, JFA)，近几年已被广泛使用，并促进了说话人识别和语种识别的大规模应用。
消除环境噪声的影响，是语音识别技术的重要组成部分，传统维纳滤波、自适应滤波器等面对非平稳噪声环境往往难以达到很好的降噪性能。21世纪初一些人采用特征补偿或特征规划等方法，在一定程度上提高了语音识别系统对不同噪声环境的适应能力，但面对非平稳噪声的问题依然没有很好解决。2013年，研究人员利用深度神经网络的高性能回归计算能力，构建了一种基于映射的语音降噪模型[161]，实现了很高的非平稳语音噪声抑制的能力，对提升语音识别在噪声环境的应用起到了很好的积极作用。
近几年来，在语音识别技术获得一系列突破性进展的同时，集成了语音识别系统框架、深度神经网络、递归神经网络、WFST模型、隐马尔可夫模型等多种算法模型的开源工具包KALDI由众多设计者开发完成[162]，该工具包还支持基于GPU的运算优化和一些并行计算方法，为基于深度神经网络的语音识别技术的发展和更大规模的普及应用起到了非常重要的推动作用。
第3章 技术应用情况
模式识别和计算机视觉技术在互联网数据内容分析与搜索、公共安全监控、身份鉴定、文档数字化、人机交互等领域得到了广泛的应用。下面就几种主要的技术对应用情况进行介绍。
3.1 图像与视频检索
图像和视频检索是计算机视觉技术的一个比较成功的应用领域。图像检索的主要应用就是互联网上的各种图片搜索引擎，如大众常使用的百度图片搜索，其实就是一个基于文本的检索方法。当输入关键词后，图片搜索系统根据图片库中每个图片的注释或周边文本给出检索结果。但是这种方法依赖于标注，主观成分大，精度目前还不是很理想。
相比以图搜图，采用关键词搜图的难度更大，其中最大的障碍就是语义鸿沟问题，即：用户希望在语义层面查找相似图像，但是计算机智能用底层视觉特征来衡量图像之间的相似度。
目前，以图识图搜索引擎是图像检索的主要应用方向，它可以用来检索相同图像（用缩略图检索原图），也可以搜索相似图片。近年来，百度推出了以图搜图的基于内容的图像检索引擎——百度识图（stu.baidu.com），它是一款基于内容的图像搜索引擎。不同于百度传统图像搜索引擎，百度识图允许用户上传本地图片或输入网络图片的URL地址，通过对相应图片进行图像特征抽取并进行检索，找到互联网上与这张图片相同或相似的其它图片资源，同时为用户找到这张图片背后的相关的信息。百度识图测试版在2010年12月上线，之后百度识图的功能不断完善：在2012年12月，全网人脸搜索功能上线；2013年6月6日，相似图片搜索功能上线；2013年7月30日，美女图片搜索功能上线；2013年花卉品种搜索功能上线。以一张苹果图片为例，上传图片后百度识图能够提供上传图片可能的类别及其百度百科图片来源和相似图片（见图11）。
另外，市场上另外一个比较著名的图像搜索引擎是加拿大Idée公司研发的tineye（https://tineye.com/）。它是一个相似图片搜索引擎，也是第一个使用图像识别技术的网络图像搜索引擎。图12是用同一张苹果图片在tineye上的搜索结果。
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图11. 百度识图搜索结果示意图
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图12. Tineeye搜索结果示意图
可以看到Tineye的搜索结果和原图基本是一样的。Tineye的功能就是允许通过某张图片的一部分或者全部来搜索这张图片的完整版或者高清版等相似图片。这里的“相似”和百度识图的“相似”相比更加严苛。通过Tineye的搜索，可以实现以下目的：1、使用低分辨率图像来寻找较高分辨率的图像；2、在网上看到一张感兴趣的图片，但是只有图片的一部分或者图片被添加了水印或者注释之类，可以用Tineye来寻找原版图片；3、查看图片来源和相关信息；4、研究追踪图片在互联网上传播。
除了百度和Tineye，市场上还有很多其他的图像搜索引擎，比如：tiltomo（http://www.tiltomo.com/，由flicker开发的一个搜索工具，主要维护flicker自己的图片数据库，搜索算法主要基于相似的主题风格或相似的色调和材质）； Live.com（http://cn.bing.com/，先用关键字搜索，然后可以对每个搜索结果图片再次搜索相似图片）；Incogna（http://www.incogna.com，要求先输入关键词，然后点击搜索结果中的某张图得到改图的相似图片；它的特点是搜索速度非常快，算法主要基于色彩和形状上的相似性）等。
3.2智能视频监控

随着监控摄像机的海量铺设，迫切需要智能视频监控技术应用于公共安全监控、工业现场监控、居民小区监控、交通状态监控等各种监控场景中，实现犯罪预防、交通管制、意外防范和检测、老幼病残监护等功能，以显著提高监控效率，降低监控成本，因此，智能视频监控技术具有广泛的应用前景。
智能视频分析技术起源于国外，随着研究的进展，相继有很多智能视频监控系统被开发，如早期卡内基梅隆大学开发的VSAM（Visual Surveillance and Monitoring）系统、IBM开发的SSS（Smart Surveillance System）系统、中佛罗里达大学研发的Knight系统、中科院自动化所研发的Vstar系统等。在智能视频监控市场需求快速增长的刺激下，国内安防厂商和一些研究所开始进行自主研发及与外国公司进行技术合作从事产品生产。目前，国内专注于智能视频分析领域的厂商也越来越多，如天津天地伟业、浙江海康威视、北京汉王科技、上海卓扬科技、北京智安邦科技和北京文安科技等等。2013年到2018我国智能视频监控行业总产值预测如下图，从中我们可以看出，智能视频监控行业将会迎来更快的发展。
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图13. 2013~2018年智能视频监控供应形势及预测
目前，视频监控技术有两大方面应用：一方面是安全相关类应用。该类应用是智能视频监控的主要应用市场，尤其在“9·11”事件、“伦敦爆炸案”、“新疆乌鲁木齐打砸抢暴力事件”、“湖北石首群体性事件”、等案件发生后，市场对智能视频监控需求不断增加。这些应用主要协助安全部门提高公共环境的安全防护，防患于未然，此类应用主要包括：物体追踪、行人面部识别、非法滞留、人群聚集、打架、奔跑等异常事件检测、车辆识别等。另一方面是非安全类应用，这些应用主要面向零售和服务等行业，作为管理和服务的辅助工具，帮助提高服务水平和营业额。此类应用主要包括：人数统计、人群密度估计、车流量估计等。
随着图像视频分析技术性能的不断提升，视频监控技术在物联网相关应用中发挥巨大的作用。以物联网为基础的海量大数据对智能视频监控提出了巨大的挑战，与此同时也能有效推动智能视频监控系统的发展。在物联网的前提下，视频监控将分析更丰富的数据：来自监控相机的视频数据、来自移动设备的图像视频语音数据、来自互联网的多媒体数据，通过整合不同场景下的不同数据，可以分析出目标更复杂的行为、目标之间的联系以及群体目标之间的事件级演变，为人们提供一个更安全、更方便的生活环境。

随着视频监控数据来源和种类的不断增加，视频监控技术结合深度学习方法，深刻理解视频监控中的丰富内容，使监控越来越智能，不断为人们的日常生活提供便利。
3.3 生物特征识别
生物特征识别技术和产品在边检通关、居民证照、公安司法、金融证券、电子商务、社保福利、信息网络等公共安全领域和门禁、考勤、学校、医院、场馆、超市等民用领域都得到了广泛应用，形成了信息技术的新兴产业，每年市场规模超过100亿美元。生物特征识别的应用推广主要有两大驱动力：
一是世界各国政府和国际组织对生物识别技术高度重视，积极推动生物识别技术的大范围应用，截止2015年7月底，由印度政府主导的UID身份识别项目已注册了超过8.8亿印度公民的虹膜、人脸和指纹数据，是目前世界上最大的生物特征识别项目。国际民航组织嵌入生物特征的电子护照计划已经在90多个国家和地区实施。
二是生物特征成为互联网和移动互联网时代的可靠身份标识，互联网金融、智能手机、可穿戴设备的发展带动便携式生物特征识别技术和产业高速发展。从2013年开始，苹果和三星等开始在高端手机配置指纹传感器，智能手机厂商成为最大的生物特征识别产品供应商，几十亿用户开始体验生物特征识别技术。根据Frost&Sullivan的市场分析报告“Biometrics Go Mobile: A Market Overview”，智能手机生物识别市场规模从2013年的5260万美元将增长到2019年的3.96亿美元。随着可穿戴设备的快速发展，Goode Intelligence的 "Mobile and Wearable Biometric Authentication: Market Analysis and Forecasts 2014-2019"报告指出可穿戴设备包括智能眼镜、智能手表、智能手环、智能衣服等蕴含巨大的生物识别发展空间，例如基于心跳信号的智能手环身份认证开始得到推广应用。智能汽车通过生物识别为车主提供个性化的驾驶、导航、娱乐和信息服务，Ford和Intel联合研发汽车生物特征识别技术。智能化时代广泛部署的云计算平台提供廉价便捷的生物识别身份认证租赁服务（Biometric-as-a-Service），例如腾讯、百度、Face++等企业开始提供生物特征识别云服务。
3.4文字识别

文字识别技术把纸张文档和拍照文本图像变成电子文本，具有广泛的应用价值。文字识别应用在上世纪90年代中期达到一个高潮。当时模式识别方法和技术逐渐成熟，个人计算机和扫描仪迅速普及，为文字识别技术推广应用提供了良好条件。2000年前后跌入一个低潮，当时存在纸张文档会越来越少的担忧。事实上，这是一个错误的判断，虽然有些文档（如手写书信和表格）新增量在减少，但文档总量在继续增加，而且历史上的文档绝大部分没有电子化。另一方面，有些类型的文档（如公文、快递单、网络合成文档、拍照文档图像）在加快增长。最近五年，随着数码相机的普及使随时随地拍照识别成为可能，加上技术的进一步发展，文字识别技术迎来了一个新的应用高潮，不断产生新的应用模式和技术需求。
文字识别的传统应用包括印刷文档数字化、表格单据识别、邮政地址识别、名片识别、联机手写文字录入等。所有这些应用的需求量跟过去相比都在增加，技术也在进一步成熟。有些应用过去由于技术性能限制长期停滞不前，近年才取得明显进展，如手写票据识别。有些应用模式在变化，如名片识别从扫描成像转向手机拍照识别，联机手写识别从单字识别过渡到单词识别和句子识别。
新出现的应用可分为三类：一类是联机手写图文混合文档分析，这是由于手写轨迹采集设备进步使得大面积采集手写轨迹成为可能，如大屏幕手机、数码笔（如Anoto Pen）等。但是这样的文档分析的性能还需改进。第二类是历史文档的识别与检索，这在西方已开展较多，但国内还在初步研究阶段。第三类是智能手机和移动互联带来的拍照文档识别和网络文档图像识别，这对个人、电子商务、网络内容管理部分都有广泛用途。近来新出现的应用模式包括百度公司的涂书笔记、百度翻译（可拍照识别），网络图片文本提取工具Project Naptha，基于拍照识别的试题搜索等。
由于应用的增多，近年很多公司投入文字识别技术研发的力量也明显增加，比较知名的公司包括Abbyy, Parascript, A2iA，微软、Google、苹果、三星、富士通等。
由于文字识别技术较少作为独立产品销售，而多数是搭载在硬件产品（如智能手机、ATM机）、互联网业务（如电子商务和内容搜索）或综合信息处理系统中，该技术本身的商业价值和销售额很难估计。不过可以肯定的是，其应用范围很广而且在很多时候发挥关键作用（比如互联网图片中的文字必须经识别才能用于内容分析和检索），并且由于文字信息到处存在，人们经常跟文字打交道，可开发的潜在应用还很多。

3.5语音识别

20世纪初语音识别就已经应用在很多领域，其中包括：电信的自动声讯服务，医疗病历的自动语音输入，用于安全或广电领域的语音关键词检索和说话人识别，车载语音系统，以及普通话语音自动评测等。随着近几年语音识别系统性能的突破性提升，语音识别在互联网和智能设备中也开始了大规模应用。
目前语音识别技术的应用形态主要以语音云计算平台和嵌入式语音系统为主。语音云计算平台通常部署在服务器群组上，部分系统采用GPU进行计算加速，能够容纳较大的模型数据资源以及较为复杂的模型，从而能够达到较高的语音识别率。
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图14. 语音云平台
目前，典型的语音云计算平台有：苹果Siri系统、Google Voice系统、Nuance语音云、微软Cortana系统、IBM iTranS 系统、AT&T Speech Mashup 系统、科大讯飞语音云、百度语音云、云之声语音云、捷通华声灵云系统、紫冬语音云、OKVoice语音云等。此外，还有一些公司通过与这些云平台的合作或自行开发也推出了不同形态的语音云平台服务，语音云平台的应用遍及互联网、通信、智能终端、智能家电等众多领域，典型的应用产品包括：语音输入法、语音问答系统或语音助手、语音导航、语音搜索等。据《2014中国智能语音产业发展白皮书》分析，2013年，全球智能语音产业规模达到33.7亿美元。其中，中国智能语音产业规模达到16.9亿元，语音云平台的用户已经超过了1亿人。
作为语音识别技术的另一个应用形态—嵌入式语音识别系统近几年也获得了很大发展。目前，语音识别技术在嵌入式设备上的应用主要包括：离线工作环境下的智能终端、汽车电子系统、机器人，以及以数码电子为代表的随身学习或娱乐系统等。由于嵌入式设备计算能力和存储单元相对较小，相对于语音云平台系统，嵌入式语音识别的性能受到一定的限制，为了解决这一问题，很多产品采取了嵌入式和语音云平台混合设计的方案，可以在离线和在线环境中进行用户自主或系统自动切换。一些典型的语音输入法或汽车语音平台都是采用这一模式，如：讯飞语音输入法、Nuance Dragon Drive汽车语音平台、苹果CarPlay车载系统等。此外，Audience等公司还推出了语音自动唤醒芯片，能够在低功耗的情况下，通过语音指令自动唤醒智能设备，为嵌入式语音识别的应用注入了新的活力。
随着语音识别技术性能的提升，语音识别在传统教育和安全领域的应用也获得新的发展。在教育领域，新的语音识别技术使得语音评测技术能够实现更为细致的发音人发音错误检测、缺陷定位和问题分析，并更为准确的进行发音水平的自动评价。在安全领域，语音识别以及说话人识别正在国家安全领域发挥重要作用，系统能够兼容多个不同语言，同时针对我国少数民族语言也进行了很好的覆盖，在维护国家安全和稳定中，发挥了重要作用。此外，语音识别在娱乐领域也获得了很好的应用。微软、索尼等娱乐设备厂商就在其游戏产品XBOX中增加了语音控制功能，用户可以通过手势或语音对音乐、电影、电视节目或游戏进行导航。
随着互联网和语音识别性能的不断发展，语音识别技术结合了语言理解和大规模知识库的建设，使得互联网中设备越来越“聪明”和“智能”，交互越来越友好，语音识别的应用领域正呈现加速扩展之势，并不断地走入人们的日常生活。
第4章 国内研究特色与差距
下面从模式识别基础、计算机视觉、生物特征识别、文字识别和语音识别几个方面分析国内研究特色和与国际前沿的差距。

4.1模式识别基础

在稀疏表示和低秩分解方面，国内学者比较有特色的成果有：首次探讨稀疏表示分类器的机理问题，为基于L1范数的稀疏表示分类提供了理论依据；从理论上揭示了基于L1范数的稀疏表示对服从Laplacian分布的噪声是最优的，而对更为复杂的噪声显然不是最优的。为了进一步提升稀疏表示的稳健性，国内学者提出了正则化的稳健稀疏编码方法和基于半二次型的稳健稀疏表示方法，进一步发展了稀疏表示分类的理论与方法。受稳健主分量分析启发，国内学者首次提出了低秩表示方法并用于子空间分割。
在聚类分析方面，国内学者提出一个新的多中心点近邻传播聚类算法和带缺失数据的多视图聚类方法，取得了很好的聚类性能。在多分类器集成学习方面，国内学者给出了关于boosting泛化性能的最好理论解释，从理论上证明了边界的大小与方差共同决定了boosting算法的泛化性。在深度学习方面，国内的研究团队，如百度深度学习研究院、Linkface等在全球最具权威的人脸检测评测平台FDDB和LFW人脸识别数据库上，不断刷新人脸检测与识别性能。

国内研究与国际研究前沿的差距，用一句话概述为：在诸多方面，我们都不是“第一个吃螃蟹的人”。在模式识别的理论与方法方面，由国内学者首先提出的原创性理论与方法偏少。根本的原因在于：我们的学术研究常以“多出成果、快出成果”作为标准，国内的研究环境很难让人静下心来，多年持续不断地从事一个方向的循序渐进的深入探讨。回顾SVM和深度学习的成长道路，这些方法的开创者都有“面壁十年图破壁”执拗精神，都有多年坐冷板凳的痛苦经历。一味追求研究热点的跟随永远不会有真正的原创性成果。
4.2计算机视觉

在计算机视觉理论方面，尤其是三维视觉方面，国内与国外研究水平差距较小。国内比较有特色的研究工作有：在图像匹配方面，中科院自动化所的研究人员提出基于灰度序划分的特征描述方法[54]，之后由清华大学的研究团队进行扩展[55]，共提出了4种具体的特征描述子，它们在公开的图像匹配数据库上表现出了目前最好的特征匹配性能。在多视几何理论、相机标定、相机定位方面，中科院自动化所和上海交大基于二次型的标定、中科院自动化所的基于Cayley框架的鲁棒相机标定方法[72]、中科院自动化所基于括号代数框架下的不变量理论方法、北京大学的大视角相机标定等都是比较有特色的工作。在三维重建的应用方面，中科院自动化所针对中国古代建筑所提出的大场景相机标定和稠密三维点云重建方法，中科院深圳先进技术研究院在城市场景三维点云建模方面提出的SmatBox方法等都属于目前国际上具有代表性的研究成果。
在物体检测和物体识别方面，国内学者参加PASCAL VOC和ImageNet等权威视觉识别竞赛，取得了一些优异成绩，如中科院自动化所连续获得2010和2011年PASCAL VOC物体检测任务的冠军和物体识别任务的亚军，2014年ImageNet竞赛获无限制训练数据组第一名。也发表了一些有影响的论文，如中科院自动化所2014年在IEEE Trans. PAMI发表的关于特征编码统一表示的论文。
在视频分析方面，国内研究者在复杂的非重叠跨场景多摄像机多目标跟踪问题上，较早地进行相关研究工作，如中科院自动化所在多摄像机网络拓扑结构估计和跨摄像机目标跟踪决策等问题上提出了新颖解决方法；在行为识别方面，在基于轨迹分析的监控场景目标行为理解方面具有较深入的研究工作，如中科院自动化所提出的基于轨迹序列分析的句法系统用于分析监控场景中的复杂交互行为、基于聚类分析的统计运动模式学习方法等。

与国际研究前沿相比，国内开创性的新方向研究较少，以及在理论成果的产业转化方面仍有较大差距。比如在三维重建方面，近年来国际上以Acute3D、Pix4D为代表的三维重建公司相继推出了实用性的图像三维重建产品，但目前国内还没有类似的系统性产品出现。在物体检测识别和行为识别方面，当前普遍采用的Bag-of-Words框架、多种图像特征检测描述子和时空描述子、基于深度学习的识别方法都是国外首先提出来的。国内与国际的另一个差异是，很多国际顶尖学者特别善于从应用中提出新的学术问题，而国内学者相对保守，倾向于研究比较传统的问题，以满足考核指标（论文级别或数量、竞赛成绩）。计算机视觉领域的子方向中极少是由国内学者提出的。
4.3生物特征识别

我国的大学、研究所和企业对指纹、人脸、虹膜、笔迹、步态、静脉等多模态生物特征识别领域的前沿技术进行系统研究，构建了比较系统和完整的生物特征识别基础理论和技术方法体系，中国科学院自动化研究所在虹膜、人脸、指纹识别领域都取得了国际一流的研究成果，虹膜识别技术在煤矿、金融、公安等领域取得广泛应用，在FVC指纹竞赛取得优异成绩，出版了国际第一部人脸识别权威手册《Handbook of Face Recognition》和国际生物特征识别领域的第一部百科全书《Encyclopedia of Biometrics》；中国科学院计算技术研究所建立了大规模的CAS-PEAL人脸数据库，在国际人脸竞赛Face Verification Contest取得第一名；清华大学在多视角人脸检测、嫌疑犯人脸复原、latent指纹和掌纹识别、多模态生物识别等方面取得国际领先水平，在人脸验证算法竞赛FAT中获得第一名；香港理工大学和哈尔滨工业大学是国际上最早开展在线掌纹识别研究的科研团队，也是国际上掌纹识别领域论文成果最丰硕的单位；北京大学建立了国内第一个面向说话人识别的包含宽带和窄带语音的中文语音数据库，为中国人声纹识别奠定了数据基础。
虽然我国生物特征识别技术领域取得了较多成果，但是和国际生物识别领域最前沿的研究机构和技术公司相比存在一些问题：跟踪性质成果多，重大原创成果少；重识别精度，轻人机交互；重单元技术，轻整体方案；我国生物识别学者分布在各大高校和研究所，企业的研发力量比较薄弱，并且产学研的协同研发能力需要提高，造成我国科研成果单元化、碎片化，不能为国家和社会提供大规模、多模态生物识别的整体解决方案。
4.4文字识别

文字识别和文档图像分析的具体方法跟语言文种有较强的相关性，中文的文档分析方法与英文、阿拉伯文、国内少数民族文字文档的分析方法有较大不同。跟日本、韩国等采用风格相近的东方文字的国家相比，国内学者在中文手写字符识别和文本行识别方面的方法与性能处于领先，在自然场景文本检测和识别等方面的水平也处于国际前列。尤其是对中文手写文本识别的研究全面深入，对基于过切分和上下文融合的文本行识别方法的多个层面都提出了有效的方法。但是，过切分和上下文融合的基本框架是多年前国外学者提出来的。
总的来说，国内学者在文字识别领域研究成果的原创性仍然缺乏。虽然近几年随着应用需求重新喷发，研发投入和团队明显增加，当前研究的风气有过于看重应用和眼前利益的倾向，对短期内难以解决的难题（所谓硬骨头）、基础的理论问题（如文字识别认知机理及认知计算模型）、公益性的应用（如古籍文档数字化与检索、残疾人辅助等）少有人问津。
4.5语音识别

深度学习理论和方法已经在语音识别领域中得到成功应用并使得语音识别的性能有了质的提升。国内的学术界和工业界在语音识别方面紧跟国际最新发展动态，已经将深度学习方法成功应用到声学模型、语言模型以及语音特征的抽取；同时，基于深度学习的语音识别在工业界得到了广泛推广，尤其是针对带有方言口音和标准普通话的汉语语音识别，其性能在国际上处于领先地位；此外，多语言语音识别研究中取得的成果在国内外也得到了广泛关注。
虽然国内的专家学者在语音识别领域的研究和应用取得了很多可喜的成果，但近几年一系列主要突破性的技术方法依然诞生于国外，相对而言，国内具有突破性的原创成果较少。为了使国内语音识别技术能够更好的在复杂环境中得到应用，还需要在如下领域进一步加强研究：（1）远场环境的语音识别，目前国内较好的语音识别系统在安静环境下和加性噪声环境下具有较高的性能指标，但是在各种混响环境下的性能尚不理想，距离实际应用仍然存在着差距；（2）口语化的语音识别，目前国内大多数语音识别系统口语化的语音识别性能明显不如朗读式的语音识别性能，尤其是面对副语言和缺失信息情形下的语音识别；（3）稀有语种的语音识别，我国是一个多民族国家，覆盖了很多没有文字的语言，这方面的研究还非常的薄弱。通过对这些问题的进一步研究和方法改进，将使我国语音识别技术更好的应用到日常生活中。
第5章 未来挑战和发展趋势
下面从模式识别基础、计算机视觉、生物特征识别、文字识别和语音识别几个方面分析当前存在的技术挑战和未来发展趋势。
（1）模式识别基础
在特征表示和学习方法方面，主要挑战和发展趋势有：（1）如何面向大数据应用有效当前稀疏表示、低秩分解算法的速度。当前的特征表示和学习方法，特别是低秩分解相关算法，本质上是二阶稀疏刻画，即衡量矩阵奇异值的稀疏度，需要对矩阵进行奇异值分解，如何针对大规模数据矩阵，设计计算复杂度低的分解算法，是一个巨大的技术挑战；（2）如何实现特征表示和学习方法与深度学习方法的有效结合，进一步提升性能或降低计算消耗是将来值得探索的方向。我们知道，稀疏自动编码器已经被成功应用于深度学习模型中，如何将二阶稀疏即低秩先验嵌入到深度学习模型，进一步提升深度学习方法的鲁棒性是一个值得研究的问题。

聚类算法同样面临着大数据时代带来的挑战。与传统的以高精度为目标的机器学习聚类算法不同的是，大数据时代要求能够以简单的聚类算法处理源源不断的海量数据。此外，大数据的多样性，即不同数据源、非结构化等特点，要求数据聚类的过程中能够自动处理不同数据源、非结构化数据的相似性度量等问题。针对前面一个挑战，一个可行的方案是研究基于MapReduce的并行化聚类，而对第二个问题，则需要在处理多源数据的同时，对非结构化数据进行内存计算转化为结构化数据以及对结构化的高维数据进行有效特征选择。

数据的爆炸式增长给深度学习带来了前所未有的机遇。第一，无监督学习将在大数据中起重要作用：让机器自动地发现大数据的内在结构，而不是被告知每一个事物的名称。第二，拓宽深度学习模型去感知复杂的周边环境，如：机器与人、机器与环境和机器与机器的交互理解。第三，结合传统人工智能的高级知识推理，让深度学习模型在大数据中挖掘出更为复杂而真实的关系。
随着大数据时代的来临，数据的规模、来源途径、数据可靠性与传统多分类集成学习有着本质的不同，要求集成学习算法能够简单、及时处理源源不断的海量数据，适应数据分布的变化、以及有效容忍数据噪声。此外，数据类别数量显著增加、类别极度不平衡、各类别之间包含各种结构关系，都将对未来的研究带来诸多挑战。
（2）计算机视觉

近几年来，随着深度学习算法的引入，物体检测和识别的准确率得到了很大的提升，但在实际应用中还有很多亟待解决的现实问题。在实际环境中物体的摆放姿态和角度（物体不同的姿态和角度会导致提取出的特征大不相同，对物体分割的准确性产生很大的影响）、光照的强度大小（不同的光照强度会导致物体和背景的混淆，从而对分割结果造成影响）、待分割物体有无遮挡（被遮挡的物体缺失了部分图像信息，使得分割难度加大）、图像中的物体数目（物体数目的不确定性使得在进行物体识别时必须首先检测出物体的数量，加大了算法复杂度和检测识别难度）、物体的尺度变化和形状变化等问题都给物体检测和识别带来巨大的挑战，是未来值得深入研究的方向和问题。针对这些问题，在视觉特征提取和匹配、大数据条件下的大类别集物体分类器学习（监督学习和非监督学习的混合、弱监督学习、多任务学习、自适应演化等）、生物视觉启发的理论模型与方法等方面都值得深入研究。
三维视觉方面，现有的大多数三维重建算法只是利用了图像的几何和纹理等信息，并未使用更高层的语义信息（如重建对象的结构先验、场景的语义分割等），因此基于语义的三维重建研究是未来的发展趋势。另外，在处理城市级海量图像数据重建、航拍图像与地面图像融合也是将来的研究方向。同时值得关注的趋势是三维视觉应用越来越广泛和深入。随着工业4.0与中国制造2025的提出，新一代机器人将成为发展热点，三维视觉与机器人的结合也将会更紧密。三维视觉在物联网等方面也将展示它不可替代的用武之地，比如三维试衣、基于定位的信息服务与旅游自助、三维电影、三维打印等。但是目前来看，三维视觉的理论和系统未来在鲁棒性、稳定性、准确性等方面仍然存在诸多问题，在视觉特征较少、纹理信息缺乏、重复纹理等方面依然缺乏有效的算法。在实际应用中，单纯只依靠视觉传感器的可靠性是个很有挑战性的难题，结合其余的传感器信息不失为解决此问题的良策，或者依靠云端支撑的大数据也是一种思路。

视频分析与监控方面，随着平安城市、金盾工程的开展，在城市公共区域安装的监控摄像头越发普及。面对日益剧增的海量监控视频数据，智能视频分析技术将在公共安全领域发挥越来越重要的作用。但在实际使用中，现有目标跟踪与行为识别方法还受制于低图像分辨率，光照角度变化，目标间遮挡以及少量行为训练样本等因素的影响，目标跟踪鲁棒性和行为识别模型的泛化能力还有待提高。同时一些新的更贴近实用需求的研究问题，如行人属性识别，以及大规模人群分析等，也有待得到进一步进行深入研究和方法验证。各种智能分析技术的不断进步将推动该研究领域进一步朝着产业化应用方向前进。
（3）生物特征识别

随着人类社会和信息网络的深度融合，如何在人们自由活动的物理空间和网络空间实现便捷精准、安全可靠的生物特征识别，为维护社会稳定和提高社会效率提供一种高效能的身份认证方式，是驱动生物特征识别学科发展的现实需求。生物特征识别学科体系现有的理论和方法主要针对受控条件下身份认证问题，显然无法满足泛在网络环境下非受控场景中身份识别的应用需求。新一代生物特征识别的发展趋势是远距离、多模态、非干扰、高通量、大规模用户、轻便快捷型生物特征识别，生物特征识别系统对用户的位置、距离、姿态、表情上的要求更加宽松，用户可以在一个较为轻松的环境中不经意间完成身份认证。因此需要在生物特征识别的人机交互、信息获取、预处理、特征分析、模式匹配、大规模检索比对、多模态信息融合、安全防伪、应用模式等各个环节取得系统创新，研制界面友好、识别精确、安全可靠、实时比对的生物特征识别技术和系统，提高提高生物识别系统的智能化、自动化、信息化程度，拓展生物特征识别系统对环境和用户的自适应能力，提升生物特征识别系统用户体验度和满意度，完成生物识别从“人配合机器”到“机器主动适应人”的技术过渡，实现生物特征识别应用从可控环境到复杂环境的重大技术跨越。

（4）文字识别

文字识别技术面临非常广泛的应用需求，但是实际应用推进比较慢的原因在于已有技术和性能难以满足应用的需要。计算设备和通信网、大数据推动了文字识别技术的发展，但是在原理方法上需要不断创新才能真正使技术变得好用。最近几年的进展主要是利用了机器学习方法和采用大量样本数据训练得到的，而这种方法在学习的灵活性和自动程度、对模式的理解能力总是有局限的。
当前该领域面临的主要难点包括：自然场景/网络图像和视频文本检测和识别、自由手写文档识别、图文混合文档识别、多语言文档识别、历史文档（古籍）识别等。对自然场景和网络上的图像和视频，人很容易发现和识别其中的文本，目前的自动检测和识别性能跟人相比有较大差距。因此，技术上除了结合机器学习把现有方法实现得更细致，还需要从人的感知和认知机理得到启发设计新的处理方法。自由手写字符和文本识别中，现有的深度神经网络和RNN经过大量数据训练可以得到超过人的识别精度，但是人是从少数样本开始学习的，同时人对字符具有深入理解和拒识的能力。采用类人学习和认知方式、更加充分地利用上下文信息是未来的一个趋势。图文混合文档中如何准确区分文本和图形区域、理解版面结构将是一个研究重点。多语言文档（或语种未知文档）识别有大量应用需求，如何准确识别和区分语种是其中的主要问题。历史文档识别的一个主要问题是标记样本较少，尤其是中文字符类别数很多（超过3万），古籍中有很多异体字，几乎不可能对所有字符类别和异体字都标记大量样本。因此，采用交互式学习、在使用中学习的方式应成为古籍文档识别的一个重要思路。
（5）语音识别

尽管语音识别技术已经获得了大规模的产业应用，但语音识别技术要达到像人一样对语音内容的正确理解，还需要解决很多问题。首先，人们说话时心理和生理上变化会引起语音上的变化。如：发音含糊、吞音变音、语法结构不严谨、重复、插入、修正等口语化现象繁多，复杂的口音和多语种混杂现象给语音识别带来了巨大挑战。基于以上原因，自然口语表达问题已经成为近几年来语音识别领域的研究热点之一。此外，虽然现有的语音降噪模型对解决非平稳噪声问题，已经取得了很大进展，但实际应用时的噪声环境要更为复杂多变，也导致语音识别在复杂噪声环境里的性能依然受到很多限制。

对于语音信号而言，除了语音中包含的文字信息外，语气、语调等副语言信息和语境语义等深层次信息对语音识别也起到了非常重要的作用。例如，人耳可以利用语音的韵律信息等对缺失语音信号进行补偿和识别，因而能在噪声环境下也获得较好的识别准确率。而目前的自动语音识别技术还无法做到这一点。如何利用副语言现象或通过听觉模型提高语音识的准确率和完整性仍然值得探索和挖掘。

在语音识别方法上，尽管目前基于深度神经网络（DNN）的方法已经显著提升了目前的语音识别性能，并成为语音识别的主流方法。但当采用较大规模的神经元和层级时，DNN的训练复杂度还是迫切需要解决的问题。同时面对小资源语音，以及由于噪音、信道等问题引起的部分语音缺失情况下的语音识别时，现有的方法仍然无法取得令人满意的识别结果。近年来逐渐兴起的类人听觉信息处理研究试图借鉴人类听觉感知的通道无关性和听觉分离机制，模拟人类的抗噪机制和言语识别认知过程，来设计和实现类人的听觉感知模型以及相应的算法，并用来解决噪声、口音、听觉缺失、自适应等一系列问题。这些基于类人听觉信息处理的语音识别技术正受到越来越多研究人员的关注。

第6章 结束语

模式识别领域的研究内容包括模式识别基础（模式分类、聚类、机器学习）、计算机视觉、应用基础研究（生物特征识别、文字识别、语音识别等），有多方面、多层次、深入的基础理论方法和关键技术问题，同时在国家安全、国民经济和社会发展领域又有广泛的应用需求。过去半个多世纪以来，模式识别理论与方法体系得到了巨大的发展，很多关键技术得到了成功应用。近几年来，随着互联网、物联网、云计算、大数据、深度学习等技术和方法、平台的发展，模式识别也迎来一个新的快速发展时期，“大数据+深度学习”框架推动了模式识别方法快速发展、性能快速提升，带动了应用的实现和推广。快速发展的同时，我们也能看到，模式识别基础理论和关键技术仍然面临一系列挑战。尤其是与人的精准感知、自主学习、综合理解等能力相比，目前机器模式识别学习和学习能力仍存在很多不足。需要我们在基础理论和方法，包括模式识别的认知基础和受认知机理启发的计算模型与方法等方面，开展深入、长远的基础研究。在关键技术方面，要敢于挑战难题，面向实际应用，深入研究应用的各个层面，提出和实现系统性解决方案。
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