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第 1 章 引言 

人类在不断的探索中逐步前进，人们在不同的抽象层次上观察、

理解、表示现实世界问题，并进行分析、综合、推理，这正是人类在

解决问题时通常使用的方法。研究者们也在观察、分析、解决问题的

过程中发现人类大致会采取这几种方式：从部分到整体、从细节到抽

象，即先从各个方面、各个角度对同一问题进行不同侧面的观察，然

后再对它们进行综合。或者从整体到部分。即先从总体进行观察、分

析，然后再逐步深入地研究各个部分。再或者是将两种方式加以结合

使用。 

我们所熟知的粒计算就是一种看待客观世界和处理客观问题的

世界观和方法论,信息粒广泛存在于我们的现实生活中．是对现实的

一种抽象，信息粒化是人类处理和存储信息的一种反映。粒计算对人

类的问题求解非常重要．它通过把复杂问题抽象、划分从而转化为若

干较为简单的问题．有助于我们更好的分析和解决问题。 

粒计算是融合了粗糙集、商空间、云模型、三支决策等人工智能

领域里多种理论方法的一个大的集合。如今，粒计算已成为学术界非

常重视的研究领域，IEEE 计算智能学会于 2004 年成立了粒计算小

组(Task Force on GIC)，并从 2005 年开始召开国际粒计算学术年会

(IEEE International Conference on Granular Computing)，我国也从 2007 

年开始召开国内粒计算学术年会(CGrC)，除此之外，RSFDGrC、

RSCTC、RSKT、JRS 等国际会议都设置了专门的粒计算专题。粒计

算理论及其应用的研究在最近十多年得到了长足发展，特别是从 2007

年开始，我国每年的 CGrC-CRSSC-CWeb 联合会议召开更进一步促进

了粒计算理论及其应用的研究。 

1.1 粒计算的发展现状 

第一个粒计算的形式化框架是用集合论和区间的语言来表示的，

即所谓的区间分析(interval analysis)。由于数字计算的精度有限，区
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间分析可以有效地表达计算误差的传播和累加。作为一种有界且有限

的粒，区间在描述系统辨识、不确定控制、模式分类等方面的数值现

象很有吸引力[1]。 

1979 年，Zadeh 提出并讨论了模糊信息粒度，以元素属于给定

概念的隶属程度作为粒度，用来解决现实世界中信息的不连续性问

题，这是“粒”这一概念的首次提出；1982 年，美国 Stanford 大学

Hobbs 教授在第 9 届国际人工智能大会上提出了粒度理论；1985 年，

Hobbs 直接用“粒度”作为论文题目发表论文[2]，讨论了粒的分解和

合并，并提出了产生不同大小粒的方法和模型；1988 年，Lin 提出邻

域系统并研究了邻域系统与关系数据库之间的关系。1990 年，张钹、

张铃两位教授在多年从事时间规划和空间路径规划的基础上提出了

问题求解的商空间理论。商空间理论用商集表示不同的粒度层次，具

体讨论了投影、性质保持、合成以及商空间模型下的推理[3]；1992

年，Giunchiglia 和 Walsh 提出一种抽象理论[4]，他们认为对事物的抽

象过程是一个粒计算的合成过程；1995 年，李德毅探讨了不确定性

概念和知识的表示方式，提出了定性定量转换的不确定性认知模型—

—云模型，实现了定性概念与定量数值之间的双向转换；1996 年，

Lin 在加州大学伯克利分校访问时，向 Zadeh 提出关于“Granular 

Computing”的研究，Zadeh 称为“Granular mathematics"，Lin 改称为

“Granular Computing”，并缩写成 GrC。至此，粒计算一词真正诞生

了。随后，Lin 发表了一系列关于粒计算与邻域系统的论文[5]，论述

基于邻域系统的粒计算在粒结构、粒表示和粒应用等方面的问题，讨

论了粒计算中的模糊集和粗糙集方法； 1997-1998 年，Zadeh 在讨论

模糊信息粒化理论( theory of fuzzy information granulation)时提出了

词计算[6，7] (computing word, CW)。标志着模糊粒化理论的诞生；

后来，在 Lin 的研究基础上，Yao 结合邻域系统对粒计算进行了详细

的研究[8-10]，并将它应用于知识挖掘等领域；结合粗糙集理论，Yao
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探讨了粒计算方法在机器学习、数据分析、数据挖掘、规则提取、智

能数据处理和粒逻辑等方面的应用 [11-15] ； 1998-2001 年，

Skowron[16-20]以包含度概念来研究粒近似空间上的 Rough 下近似和

Rough 上近似。进入 21 世纪以后，在国内关于粒计算的研究如雨后

春笋般迅速发展起来, 随着粒计算研究的发展，国内外有很多学者加

入到了粒计算的研究领域，其研究大致可分成如下几种观点和方法

[21]：基于粗糙集研究粒计算、基于商空间研究粒计算、基于云模型

研究粒计算、基于模糊集（邻域拓扑）研究粒计算等。 

1.2 粒计算的主要研究方向 

 “粒计算”这一术语最初由 Lin 建议使用，然而关于什么是粒

计算，迄今为止没有统一、无争论的严格定义，也不存在统一的模型，

因为不同领域都以不同的形式体现了粒计算的基本思想，如区间分

析、分治法、聚类分析、词计算、粗糙集理论问题求解的商空间理论、

云模型、概念格等。从狭义上看，粒计算可以理解为在不同粒度层次

上以粒作为运算对象进行计算和推理。从广义上看，作为一种术语，

粒计算可以理解为在问题求解过程中使用粒的理论、方法论、技术和

工具的统称。在这个统一的框架内考虑已经存在的研究并抽取它们的

共性，可以建立发展一种更一般的问题求解理论。 

粒计算主要有四个方面的问题，它们分别是粒表示（数据粒化方

法）、粒度量（多粒度不确定性度量）、粒计算（多粒度和多尺度认知

计算）、粒决策（三支决策）。 

1. 粒表示：数据粒化方法 

人类在认识外界事物的过程时，总是从粗略、总体的判断进入细

致的分析，不断对外界事物进行信息加工和粒化。粒化是一种对知识

进行总结概括的方法，是构造问题求解空间的过程。信息粒化是人类

处理和存储信息的一种反映。信息粒化的过程就是在给定粒化准则下

将一类（个）对象划分为一系列不同的信息粒，其中每一个粒是由不
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可分辦关系、相似性或者泛函性聚集而成的对象的集合或抽象。不同

的粒化准则下可得到多个不同的粒度层，进而得到多粒度的网络结

构。 

2. 粒度量：多粒度不确定性度量 

从粒计算的观点来看，在人类认知过程中，人们对问题的分析及

获取的知识表示都具有粒度性，这既与认知主体的主观局限有关，也

与观测工具等很多客观因素影响有关。因此，粒计算理论模型中的知

识粒具有不确定性，它直接决定问题求解的效率和精度。粒计算方法

论的关键是知识空间的粒化问题，知识空间中知识粒的不确定性直接

决定了用粒计算方法解决复杂问题的效率和精确程度，因此，研究各

种粒计算模型中知识的不确定性得到很多研究者的共同关注。 

3. 粒计算：多粒度和多尺度认知计算 

这就是前面所说的狭义上的粒计算。粒计算一般要涉及粒、粒层

和所有粒层构成的层次结构，目前粒计算的研究分为两个方向：多粒

度认知计算（由属性个数变化形成的粒层变化）与多尺度认知计算（由

属性值个数变化形成的粒层变化），通常有以下几个方向：不同粒层

之间的映射、不同粒度之间的转换、性质保持性等。 

4. 粒决策：三支决策 

三支决策(Three-way decision)是由加拿大学者姚一豫教授提出的

一种朴素的“三分而治”和“化繁为简”的决策理论，其核心思想是

通过粒计算将论域(整体)分为三个子集或三个部分，并对不同子集或

部分采取不同的决策行为或分治策略，进而对相应的行为或策略进行

评价和反馈。由于三支决策符合人类思维和认知特点，且能较好地处

理实际决策过程中出现的不确定性问题，它一经提出便得到国内外学

者的广泛关注，并已成为一种重要的粒计算和知识发现研究方法。 

三支决策(Three-way Decision)是一种基于符合人类认知的决策

模式，它认为：人们在实际决策过程中，对于具有充分把握接受或拒
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绝的事物能够立即作出快速的判断；对于那些不能立即作出决策的事

物，人们往往会推迟对事件的判断，即：延迟决策 

1.3 本书的主要内容和安排 

本书共分四章，对粒计算与知识发现相关的各方面进行了较为系

统的分析和阐述，各章节的内容安排如下。 

第一章为引言。主要介绍了粒计算的研究背景、进展和研究现状，

概述了本书主要讨论的内容。 

第二章着重介绍粒计算与知识发现的基本理论发展情况。主要从

粒表示：数据粒化方法、粒度量：多粒度不确定性度量、粒计算：多

粒度和多尺度认知计算、粒决策：三支决策等四个方面进行了详细的

介绍。 

第三章主要介绍了粒计算与知识发现的应用现状，包括粒计算在

智能医疗、机器视觉、社交网络、无人驾驶等领域的应用情况，并介

绍了粒计算与情感分析、协同过滤、管理科学等研究领域的交叉融合

情况。 

第四章是结束语。对粒计算与知识发现理论与方法进行了总结，

同时对其未来发展进行了展望。 
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第 2 章 粒计算主要研究方向 

粒计算是人工智能领域中的一种新理念和新方法，它覆盖了所有

与粒度相关的理论、方法、技术和工具，主要用于对不确定、不精确

和不完整信息的处理,对大规模海量数据的挖掘以及对复杂问题的求

解。粒计算的本质特征是通过合适粒度的选择，来寻找问题的一种较

好的、近似的解决方案。本章将在现有的粒计算理论研究的基础上,

结合模糊集理论、粗糙集理论、商空间理论和云模型等，对粒计算的

四个主要研究方向进行归纳和总结，相关内容如表 1 所示。 

表 1 粒计算主要研究方向 

粒
计
算
主
要
研
究
方
向 

2.1 数据粒化方法 

基于二元关系的粒化 

基于商空间的粒化 

基于聚类的粒化 

2.2 多粒度不去定性度量 
粒计算不确定性度量方法 

面向数据的不确定性度量方法 

2.3 粒度计算方法 
多粒度认知计算 

多尺度认知计算 

2.4 粒计算三元论：三支决策 

基于不确定决策的三支决策 

基于多粒度分析的三支决策 

基于认知学习的三支决策 

基于机器学习的三支决策 

2.1 数据粒化方法 

数据粒化是基于粒计算进行数据分析的基础，是按照给定的策略

将复杂信息分解为更细小的信息粒的过程。根据不同的数据建模目标

与用户需求，可以采用多种形式的粒化方法。常见的粒化方法主要有

基于二元关系的粒化、基于商空间的粒化和基于聚类的粒化[22]。 



中国人工智能系列白皮书——粒计算与知识发现 2022 

7 

2.1.1 基于二元关系的粒化 

基于二元关系的信息粒化是指通过构建一种合理的二元关系对

数据集进行粒化，主要有基于等价关系的粒化、基于相容关系的粒化、

基于优势关系的粒化、基于邻域关系的粒化和基于模糊关系的粒化。 

1. 经典的基于二元关系的粒化 

基于等价关系进行粒化可以得到数据集的一个划分，每个等价类

视为一个信息粒。基于相容关系进行粒化得到数据集的一个覆盖，每

个相容类视为一个信息粒。基于优势关系进行粒化得到数据集的一个

覆盖，每个优势类视为一个信息粒。基于邻域关系进行信息粒化得到

数据集的一族邻域，每个邻域视为一个信息粒。 

2. 基于邻域关系的粒化 

经典的基于二元关系的粒化方法面临灵活性不足，粒化质量不高

等问题，因此基于邻域关系的粒化方法凭借其具有思想朴素、可拓展

性强的优点，已成为研究新的粒化方法的热点方向。近些年研究者基

于传统方法围绕引入其他信息、改进粒化方法架构、拓展二元关系等

思路进一步推动该类方法向前发展。 

为适应不同类型的数据与任务，研究人员在传统方法的基础上引

入外部知识指导粒化。为应对数据分布不均匀的问题，王国胤等人[23]

提出一个基于局部密度的最优粒化模型，通过引入密度信息快速、灵

活地挖掘信息粒。此外，邻域信息是分类学习中最重要的概念之一，

可用来区分具有不同决策能力的样本。传统的粗糙集理论从数字图中

发现知识相对困难，针对此问题王国胤等人[24]在广义粗糙集理论框

架中引入一种从数字图中衍生出的二元关系，提出的 K 步 R 相关集

使得利用广义粗糙集理论寻找简单有向图的强连接部分成为可能。传

统方法往往不利用类别标签，导致粒化质量欠佳，针对该问题刘盾等

人[25]提出一种有监督的粒化方法，利用标签信息指导粒化。 

除引入外部知识外，还可在模型中引入其他方法与策略指导粒



中国人工智能系列白皮书——粒计算与知识发现 2022 

8 

化。胡清华等人[26]提出利用邻域判别指数来描述邻域关系的区分信

息，用于反映特征子集的区分能力。为构建泛化性更强的信息粒，刘

盾等人[27]提出利用基于高斯核函数的 c-cut 相似性邻域关系进行粒

化，并结合水平粒度与垂直粒度提出多级邻域粒结构。Yao 等人[28]

针对基于划分的粒化策略不够灵活的问题，提出一种基于渐进式划分

的多级粒化结构，并利用块级相互关系以及块间相互关系指导信息粒

化。 

3. 基于模糊关系的粒化 

现实环境下人类的推理以及概念的构造往往是模糊的，因此将经

典的二元关系拓展到模糊的二元关系符合真实场景的要求。通过模糊

等价关系，信息粒化的结果将是数据集对应的一族模糊等价类，每个

模糊等价类即为一个模糊信息粒[29]；通过模糊相似关系，将获得一

族模糊相容类，每个模糊相容类就是其模糊信息粒[30]；更一般地，

任意一个模糊二元关系都可以将数据集粒化为一族模糊集，这些模糊

信息粒构成了基于模糊信息粒化的数据建模的基本单元。 

近些年基于模糊关系的粒化方法在传统方法中引入新思想、新理

论，针对具体问题进一步提出新的粒化方法。受超盒迭代方法的启发，

杨建华等人[31]提出利用超盒迭代粒化算法进行粒化，并在实验中证

明所提方法相较传统算法更具优势。杨习贝等人[32]提出一个基于

Dempster-Shafer 理论的粗糙粒度描述模型，这种鲁棒的粗糙描述模型

可以实现对极端实例的识别。为有效处理不确定数据，Cordovil 等人

[33]提出一种基于进化椭圆体模糊信息粒和合理粒度原则的数据流

参数化在线粒化方法，综合考虑了粒化过程的可解释性与通用性。 

通常情况下，不同属性值之间可能存在某种关系，如顺序关系、

相似性关系或其他隐藏在复杂信息系统中的更复杂的关系。在这种情

况下，一般意义上的二元关系可能是一种更普遍的二元关系，而非某

种具体的二元关系。基于此，苗夺谦等人[34]借助概念格在分析与处
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理二元关系方面的优势，从子关系的角度出发提出一个新的粗糙集模

型，对粗糙集和概念格的融合进行了新的尝试和探索，并从关系粒化

的角度为粗糙集的扩展提供了新的思路。 

总体来看，基于等价关系、相容关系以及优势关系的粒化方法日

趋完善，近年来该类方法的发展较为平缓，而基于邻域关系与模糊关

系的粒化方法借助其思想朴素、可拓展性强的优势在现实场景中展示

出较强的适应能力，已成为粒化方法的热点研究内容。 

2.1.2 基于商空间的粒化 

上世纪 90 年代，张钹院士和张铃提出商空间理论，针对人类智

能的特点，建立了人类的宏观分析能力和微观学习能力的数学模型和

一整套“粒度世界模型”理论。在一般的粒计算理论中，把同一粒层

的粒子看成一个集合，通常并不考虑粒子之间的结构关系，而在商空

间理论中，定义了一个向量空间中满足特定条件的子空间，且空间中

的粒子间具有结构关系。商空间理论的提出为粒化提供了新的数学模

型和工具。 

1. 基于商空间理论的关系粒化 

在日常生活中存在大量的复杂问题，如自动规划问题、最大流问

题以及最优路径问题等。这些问题均具有一个共同的特点，即可以将

问题分解为多个子问题，而子问题间互相约束、关系明确，形成复杂

的内部结构。基于商空间理论的关系粒化主要用于解决此类问题。张

钹院士和张铃教授[35,36]利用所提出的对问题分层求解的商空间理

论，系统地解决了不同层次求解空间的问题表达、复杂性分析、不同

层次空间之间信息、算子及推理机制等的相互转换关系等问题。张铃

等人[37]提出了基于商空间理论（QST）的复杂网络性能分析方法，

将动态网络分解为一系列静态网络，以解决动态网络中的最大流问

题。通过理论证明和实验结果证明了 QST 是解决复杂问题的有效工

具。赵姝等人 [38]提出了一种基于商空间理论的最大流方法
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（MF−QST），用于解决基于关系粒度商空间理论的最大流问题，减

小了商网络的规模并以较低的错误率减少了累计运行时间。1. 经典

的基于二元关系的粒化 

2. 基于商空间理论的聚类粒化 

近年来，商空间理论也越来越多地被应用于大规模场景中的 Web

服务推荐、社区检测等问题中。此类问题的子问题间没有明显的序关

系，仅具有连通关系。基于商空间理论的聚类粒化常被用于解决该类

问题。张以文等人[39]提出了基于 Spark 的商空间粒度分析覆盖算法

（CA-QGS），用于在大规模场景中进行精确的 Web 服务推荐，该算

法对聚类结果进行粒度分析，提高了推荐的准确率和效率。陈洁等人

[40]提出了一种用于社区检测的基于商空间理论（QST）的可变粒度

方法（VGHC）来构造层次结构，避免选取统一的聚类阈值进行层次

聚类，有效地捕获了社区的自适应层次结构。 

综上，随着数据规模的不断扩充，以及数据复杂度的不断上升，

商空间理论对复杂问题分层求解的优势受到了很多研究人员的关注，

被越来越多地用于解决大规模数据场景中的实际问题，如 Web 服务

推荐、社区检测。然而，针对不同结构的问题，如何利用商空间理论

进行求解还有待进一步深入研究，以形成一套更加完整的应用于不同

结构问题的技术和方法。 

2.1.3 基于聚类的粒化 

聚类是形成粒结构的最主要方法。聚类就是按照一定的要求和规

律对事物进行区分和分类的过程，在此过程中没有任何关于分类的先

验知识，仅依靠事物间的相似性作为类属划分的准则，属于无监督分

类的范畴。聚类操作实质上是在样本点间定义一种等价关系，属于同

一类的任意两个样本点被认为具有相似的性质，一个等价关系就定义

了样本点集合的一个划分。通过聚类，样本空间最终被划分成若干个

子集，也就得到了粒结构。 
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1. 三支聚类 

聚类分析作为数据挖掘技术一个重要的分支，可以发现数据集的

内部结构，对于成功挖掘数据中有价值的信息具有重要的作用。然而

传统的硬聚类算法只用一个集合来表示单个簇，对于完整表示出数据

集的内部结构具有很大的局限性。为了使聚类结果能够更好的描述出

数据集本身的结构特征，针对不同的应用背景，提出了多种软聚类方

法。三支聚类作为一种特殊的软聚类方法，融合了三支决策的思想。

在三支聚类中，一个簇由一对被称为核心域和边界域的集合来表示。

确定的元素被分配到核心域，不确定的元素被分配到边界域，以减少

决策风险。近年来，一些研究者致力于提出将双支聚类转换为三支聚

类的策略。陈玉洪等人[41]基于区间阴影集模型，提出了一种改进的

密度峰值聚类算法，引入区间阴影集模型，将经典算法的双支聚类结

果转化为三支聚类结果，以优化经典算法的噪声检测策略。一些研究

者致力于改进三支聚类方法。针对固定簇数和分区阈值的方法不能自

动为不同大小和密度的数据集选择最佳簇数和分区阈值的问题，于洪

等人[42]提出了可以自动选择阈值和聚类数的方法，并结合所提出的

阈值选择方法和聚类数选择方法，给出了一种自动三支聚类方法。一

些研究者致力于三支聚类在具体场景中的应用，如云计算、分布式计

算等。姜春茂等人[43]提出了一种用于提高云计算资源利用率的三支

决策聚类加权算法（TWCW），该方法基于云任务的多样性和资源的

动态性，利用三支 K 均值聚类将已识别的任务分配到核心区域，将

不确定的任务分配到边缘区域。伴随着大数据时代的到来，数据呈现

出大量、高速、多样、低价值密度的特点，给传统的数据处理技术带

来了巨大的挑战。近年来，对大规模数据进行三支聚类越来越被重视，

除不断优化改进方法本身外，研究者们更多地关注算法在大规模场景

下的应用问题。 

2. 粗糙聚类 
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聚类分析可使复杂结构数据标准化，发现数据项间的依赖关系，

从而去除或合并有密切依赖关系的数据项，也可为某些数据挖掘方法

(如关联规则、粗糙集方法)提供预处理功能。粗糙聚类是一种基于粗

糙集理论的聚类算法。近年来，一些研究者致力于解决粗糙 K 均值

的问题，改进粗糙 K 均值方法。Ubukata 等人[44]提出了一种基于粗

糙近似的 K 均值聚类，该算法在迭代过程中能够较好地检测出簇的

边界区域和正区域。针对现有的基于邻域粗糙集的属性约简算法计算

成本高、运行时间长等问题，夏书银等人[45]将粒球计算引入邻域粗

糙集，提出了一种基于 K 均值粒球邻域粗糙集（K-GBNRS）的快速

属性约简方法，该方法不仅运行速度快，而且生成了一个自适应半径，

与数据集很好地拟合。夏书银等人[46]提出了一种新的加速精确 K 均

值算法，称为“Ball K-means”，利用球来描述每个聚类，着重于减少

点与质心距离的计算，该方法可以准确地找到每个簇的邻居簇，从而

只计算一个点与邻居簇的质心之间的距离，而不是所有质心之间的距

离。也有一些研究者致力于解决粗糙聚类方法中涉及不确定性的问

题。苗夺谦等人[47]通过将阴影集和多粒度概念融入粗糙模糊聚类方

法，可同时处理数据中涉及的不确定性和模型参数产生的不确定性。 

3. 模糊聚类 

模糊聚类分析一般是指根据研究对象本身的属性来构造模糊矩

阵，并在此基础上根据一定的隶属度来确定聚类关系，即用模糊数学

的方法把样本之间的模糊关系定量的确定，从而客观且准确地进行聚

类。近年来，一些研究者致力于解决模糊聚类存在的问题。曹付元等

人[48]提出一种模糊 SV-K-modes 算法，它是聚类具有集值属性数据

的模糊 K-modes 算法的扩展版本，该算法定义了两个集值对象之间

的距离，给出了聚类原型的表示和启发式更新方法。聂飞平等人[49]

提出了带有判别嵌入的模糊 K 均值聚类算法，该方法可以同时进行

降维和模糊隶属度学习。钱宇华等人[50]在传统模糊 C 均值聚类算法
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的基础上，对类间的多样性信息进行建模，并采用统计依赖度量希尔

伯特-施密特独立性系数对其进行度量，进而提出一种多样性诱导的

模糊 C 均值聚类算法框架，在最小化类内分散度的同时，最大化类

间分离度。针对模糊聚类算法无法有效处理高维数据集的问题，岳晓

东[51]等人提出了一种新的基于局部保持的模糊C均值聚类方法及其

优化方法，该算法可以生成一个保持结构特性局域性的正交投影空

间，以此增强模糊 C 均值处理高维数据的能力。另外，一些研究者

致力于消除模糊聚类算法中模糊指数的影响。于剑等人[52,53]针对模

糊指数的参数严重影响 Gustafson 和 Kessel(GK)算法性能问题，一方

面提出了一种新的基于确定性退火方法的 GK 模糊聚类算法，以减少

参数的影响，另一方面利用雅可比矩阵分析揭示了 GK 算法的稳定不

动点与数据集之间的关系，进而为 GK 算法中模糊指标 m 的选取提

供了理论依据。 

4. 聚类集成 

聚类集成是为了提高聚类结果的准确性、稳定性和鲁棒性的一种

方法，通过集成多个基聚类结果可以产生一个较优的结果。在三支聚

类、粗糙聚类、模糊聚类等聚类粒化探索的基础上，引入聚类集成的

策略，能够进一步加快数据挖掘效率、提升粒化效果等。近年来，一

些研究者致力于解决聚类集成方法应对大规模数据执行效率低、不可

操作等问题。黄哲学等人[54]针对大数据聚类问题，提出了一种新的

基于随机样本分区的聚类集成（RSP-CE）算法，该算法在较少的训

练时间获得较好的聚类结果。一些研究者致力于将聚类集成与粒化方

法相结合。丁世飞等人[55]提出了一种双粒度加权集成聚类模型，将

聚类可靠性的评价转化为粗糙集中的不确定性测量问题，在更细粒度

的层次上，设计了样本局部相似度度量方法。白亮等人[56]提出了一

种基于局部假设的多模糊 K 均值聚类集成算法，该方法不仅继承了

模糊 K 均值的可扩展性，而且克服了无法找到任意形状簇的缺点。
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也有一些研究者从不同的层次、不同的角度来考虑聚类集成所存在的

问题，进而提出了一系列解决方法。白亮等人[57]开发了一个信息理

论框架，通过最小化聚类集成的两个不确定性，以获得在原始数据集

和基聚类集上具有较高一致性的最终聚类结果。针对现有的聚类集成

方法对所有样本一视同仁的问题，钱宇华等人[58]引入样本的稳定性

来量化其贡献，提出了基于样本稳定性的聚类集成算法，该算法将数

据集分为两类：簇核和簇晕，算法利用簇核中的样本发现一个清晰的

结构，并将簇晕中的样本逐渐分配到清晰的结构中。 

综上，针对当前日益复杂的数据带给聚类分析的挑战，研究人员

分别从数据层面对数据先进行粒化操作，然后设计一种能够处理粒化

后的数据的聚类方案。算法层面对聚类算法做出改进以及将集成学习

结合到聚类算法中。同时，研究者也结合实际任务，积极探索聚类粒

化方法在分布式计算等在大规模场景下应用。 

2.2 多粒度不确定性度量 

数据不确定性的有效描述在信息繁杂的实际应用中显得尤为重

要，不确定性度量作为数据不确定性描述的一种有效刻画手段，有助

于从不确定信息和数据中发现其蕴含的知识和规律，为智能数据处理

提供新的方法。常见的不确定性度量大多以概率论、信息熵和

Dempster-Shafer 证据理论三种基本数学方法为基础[59]，并且根据不

同的数据特点形成了不确定性度量的多样性。 

2.2.1 粒计算不确定性度量方法 

1. 基于概率论方法的不确定性度量 

研究不确定性的最主要的数学学科就是概率论（其他还有模糊数

学、混沌理论等）。1933 年前苏联科学家 Kolmogorov 提出了公理化

的概率论[60]。概率论的基本概念包括概率和条件概率、随机变量及

其分布、条件分布和条件数学期望、随机变量的收敛性、大数定理和

中心极限定理等。 
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概率论作为度量不确定性的一种工具和数学方法，已被应用于不

同的领域和多种场景。随着越来越多的应用电子化和网络化，数据的

复杂性和多样化逐渐增加，尤其是人机交互数据等更增加了数据和系

统中的不确定性，这种发展趋势使得粒计算必须应对挑战，进行大规

模数据分析和处理, 这将导致采用更适合的多粒度、多层次分析与处

理方法。以贝叶斯网络为代表的概率图模型，是不确定性知识表示和

推理的有效工具的方法，其他如条件随机场、马尔可夫随机场等, 也

利用概率来表示不确定性，并在图像处理等领域取得了较好的成果。 

2. 基于信息熵的不确定性度量 

随着通信技术的发展，Shannon 于 1984 年提出了信息熵的概念。 

将粒化后的结构看成论域的不同划分，并与模糊集、粗糙集等模型相

结合，人们先后提出了模糊熵、粗糙熵等概念。 

在信息论中，信息熵是用于度量信息量的一个概念。一个系统的

序越高，信息熵就会越低；反之，一个系统越是混沌，信息熵就越高。

为此，信息熵可看作系统有序化程度的一个度量。 

在基于知识的信息系统中，知识的信息熵随着区域划分的精细而

变高。信息粒的尺寸越小，整个系统中的数据越混乱，那么信息熵也

会越高。与信息论中条件熵、联合熵、互信息的概念类似，知识信息

系统中，知识视角下的条件熵[61]、联合熵[61]、互信息[62]等不确定

性度量依次被提出。信息熵描述了一个集合的不确定性程度，而模糊

熵[63]则描述了一个模糊集的模糊性程度。在粗糙集理论中，粗糙集

的粗糙度通常随着知识粒度的减小而单调递减，但是当仅属于一个集

合的正域、负域、边界域中的知识颗粒被细分时，粗糙集的粗糙度可

能不发生变化，为此，人们又提出了粗糙熵[64]的概念。 

3. 基于 Dempster-Shafer 证据理论的不确定性度量 

证据理论是一种广义的贝叶斯推理方法。证据理论基于人们对客

观世界的认识，根据人们掌握的证据和知识，对不确定性事件给出不
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确定性度量。 

贝叶斯推理方法利用贝叶斯条件概率公式进行数据分析，先验概

率是贝叶斯推理有效性的关键元素，但 Dempster-Shafer 证据理论无

须以先验概率为基础，就能很好地表示出不确定这一概念，同时具备

推理形式简单等优点。 

目前，证据理论在多分类器融合、不确定性推理、专家意见综合、

多准则决策、模式识别、综合诊断等领域中已获得了较好的应用。 

2.2.2 面向数据的不确定性度量方法 

1. 针对数据形式多样性的不确定性度量（模糊、混合、区间值

数据类型） 

Wang 等人[65]考虑到存在的模糊不确定性度量大多建立在单一

特定的关系上，从而使得不同类型的属性下的结构信息遭到破坏，提

出了面向泛化模糊关系的基于熵的不确定性度量；Zhang 等人[66]探

索了完全模糊信息系统中的信息结构，给出了基于数据压缩的完全模

糊信息系统的同态不变刻画，研究了完全模糊信息系统的粒度测度和

熵测度等不确定性度量；Li 等人[67]借助高斯核视角下的模糊信息结

构研究了全模糊信息系统的不确定性度量；Chen 等人[68]考虑到经典

粗糙集下的不确定性度量仅适用于离散信息系统，引入了邻域粗糙集

模型，提出了四种邻域粒下的不确定性度量，即：邻域准确率、信息

量、邻域熵、信息粒度，并证明了所提度量具有非负单调的特性；

Dai 等人[69]利用区间端点定义了区间值之间的相似度概念，在此基

础上提出了一种基于粗糙决策熵的不确定性度量方法。 

2. 基于多源数据的多粒度不确定性度量 

Sun 等人[70]利用模糊邻域多粒度上下近似构建了乐观和悲观的

模糊邻域多粒度粗糙集模型，从信息论视角开发了一些基于模糊邻域

熵的不确定性度量，并运用在由数值和符号值组成的异构数据集构建

的特征选择任务中；Feng 等人[71]基于变精度多粒度决策理论模糊粗
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糙集构建了双参数粗糙隶属度，并提出了多粒度决策系统的双参数不

确定性度量方法；Lin 等人[72]借助融合不确定、不精确信息的思想，

提出了三种不确定性度量，在多粒度逼近空间中融合知识粒度，并建

立了融合信息熵和融合粗糙熵之间的关系；Bao 等人[73]利用香农熵

研究了从广义多尺度信息表中选择最优尺度组合以保持知识的不确

定度量。 

3. 考虑数据分布的不确定性度量 

Wan 等人[74]构建了模糊多邻域粒以更好地适应数据的分布，并

提出了模糊多粒度不确定性度量对特征的多种关联性，即：相关性、

冗余性、交互性、和互补性加以描述，在此基础上，通过前向迭代选

择策略挖掘具有交互性和互补性的特征；Chen 等人[75]考虑到数据的

不平衡特性，通过采用邻域粗糙集上下边界区域所刻画的信息系统的

不确定性来定义特征的重要性，并对不平衡数据进行特征选择。Wang

等人[76]从不确定性的角度对多粒度决策问题进行建模，提出了一种

描述数据内在不确定性的新度量，并与分类器的预测不确定性相结

合，利用层次结构设计了一种有效的优化方法，以确保正确的多粒度

决策。Xu 等人[77]针对诊断任务中故障案例少、监控信息不足的问题，

提出一种改进的基于近似空间和置信度函数的不确定性度量，通过

few-shot 学习方法来完成变压器故障诊断。 

4. 基于不完备数据的不确定性度量 

不完备信息系统通常根据数据缺失值所在的位置，大致划分为特

征不完备信息系统和标签不完备信息系统，不完备数据的不确定性度

量也往往针对这两种不完备情形展开。在特征不完备方面，Dai 等人

[69]针对不完备区间值信息系统，定义了最大最小相似度以及α-弱相

似关系的概念，设计了粗糙近似模型并给出了准确率、粗糙度、近似

精度等度量方法来评估不完备区间值信息系统的不确定性；Qian 等

人[78]根据一致性度量将不完备决策表划分为三种类型，并提出了 4
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种新的不确定性度量来刻画不完备决策表中决策规则集的决策性能； 

Sun 等人[79]详细分析了不完备邻域决策系统的不确定性、噪声和冗

余性，通过整合 Lebesgue 和熵测度开发了一些基于邻域多粒度熵的

不确定性度量。在标签不完备方面，Sun 等人[80]考虑到多标签特征

选择方法往往表现出较差的鲁棒性和较低的预测精度这一问题，从代

数和信息论角度，针对多标签模糊邻域粗糙集提出了一些基于模糊邻

域熵的不确定性度量，设计了标签关系下模糊邻域互信息基于的最大

相关最小冗余模型以提升候选特征的学习性能；Dai 等人[81]针对存

在的属性约简方法并不适用于部分标记数据分析这一问题，借助粗糙

集理论中的不可分辨关系，构建了一种同时适用于有监督学习和无监

督学习的统一不确定性度量，基于此开发了两种基于粗糙集理论的半

监督属性约简算法；Liu 等人[82]也考虑到大多数属性约简方法只适

用于分析具有完整标签的学习任务，将两种分别针对有标签样本和无

标签样本的不确定性度量加以融合以评估各个属性的重要性程度，以

此设计的启发式属性约简算法获得了较好的学习性能。 

5. 面向大规模数据的不确定性度量 

Dutta[83]为了建模大数据环境下的数据不确定性，提出了基于

Dempster-Shafer 证据理论的证据冲突融合规则；Hamed 等人[84]提出

了一种采用 MapReduce 框架的计算粗糙近似的分布式方法，其能够

较好地适应大规模的现实数据，且拥有较高的计算效率。Chen 等人

[85]研究了基于优势邻域粗糙集的并行属性约简方法，并考虑了数值

型和名义型属性值之间的偏序，其可用于多准则决策支持任务。粒计

算必须面向大规模的数据问题, 将会更多的采用多粒度的分析与处

理方法。 

2.3 粒度计算方法 

粒计算( granular computing) 是当前计算智能研究领域中模拟人

类思维和解决复杂问题的新方法。它覆盖了所有有关粒度的理论、方
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法和技术, 是复杂问题求解、海量数据挖掘、模糊信息处理的有效工

具。 

2.3.1 多粒度认知计算 

多粒度认知计算发轫于集合论和不确定性理论。集合论是由

Cantor 于 19 世纪建立的，被认为是现代数学的基础理论[86]。1904

年，德国哲学家 Frege 提出了集合边界区域的含糊不确定性问题[87]。

1965 年，美国加州大学 Berkeley 分校的 L.A. Zadeh 院士用隶属度函

数来描述这个不确定性，提出了模糊集理论[88]。波兰科学院的 Z. 

Pawlak 院士另辟蹊径，用上近似和下近似这两个精确集合来刻画这

个不确定性，并于 1982 年提出了粗糙集理论，建立了知识粒度的概

念[89]。清华大学李德毅院士综合含糊不确定性与常见的随机不确定

性，建立了定性概念与定量描述之间的不确定性转换，于 1995 年提

出了云模型[90]。通过研究复杂问题的变粒度求解方法，清华大学张

钹院士于 1992 年提出了商空间理论[91]。这四个理论模型构成了多

粒度认知计算的基础理论。著名认知科学家，陈霖院士研究人类知觉

信息的基本表达问题，于 1982 年提出了“大范围首先” 的视知觉拓

扑结构和功能层次理论[92]。融合“大范围首先” 的认知机理和多

粒度计算机理，王国胤于 2017 年提出了数据驱动的多粒度认知计算

理论模型，阐释了其中的三方面九个科学问题[93]。多粒度认知计算

成为了一种新的知识与数据双向驱动的智能计算模型[94]。 

1. 多粒度空间中的不确定性变换 

面对复杂的、难以准确把握的问题，人们通常不是采用系统的、

精确的方法去追求问题的最佳解，而是通过逐步尝试的办法达到有限

而合理的目标。人类就是这样采用分层递阶、由粗到细、不断求精的

多粒度层次分析法来处理问题的。问题在不同层次上体现出不同的不

确定性，随着粒度层次的逐渐转化，不确定性逐渐降低。张清华等人

[95]讨论了分层递阶商空间的信息熵序列随知识粒度变化的规律。杨
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洁等[96]从知识距离的角度，分析了分层递阶的多粒度知识空间上的

几何特征。针对多粒度知识空间的构建问题，建立了具有强区分能力

和强扩展性的知识距离框架。结合人脑的多粒度认知机理，通过研究

层次商空间内部的层次性，揭示了层次商空间中任意两个商空间的知

识距离等于它们之间的粒度差异。通过知识距离刻画了不同层次商空

间结构之间粒度同构、分类同构和细分同构等几种关系。该框架表达

了层次商空间中粒度层次具有线性可加性的结构特征，从模糊等价关

系的角度实现了不确定性数据的内在层次结构的多粒度建模。为了定

量评价目标位置和方向关系这两种不确定性，徐丰等构建了基于知识

含量的近似精度和粗糙度[97。从属性引起的原子粒作为更复杂的粒

构建模块的角度，分别讨论了基于积极属性和消极属性的粒描述。从

积极属性和消极属性的角度对可定义粒进行简洁描述，提升了粒描述

的效率[98]。 

2. 多粒度联合求解问题 

（1）多粒度联合计算模型与问题求解机制：数据、信息和知识

在同一个多粒度空间中进行编码，可以并行地解决问题。例如，一个

公司每天都在不同粒度层上同时作决策。对于不同粒度层上独立或者

相互依赖的决策，需要构造多粒度空间联合计算和决策机制。针对图

像中人体结构识别问题，王文冠等[99]讨论了人体层次结构的三种推

理过程，即直接推理、由细到粗推理以及由粗到细推理，然后提出一

个组合式信息融合框架，以条件判断的方式组装来自三个推理过程的

信息，从而提升模型的识别精度。基于多粒度图自编码器

（Multi-granular Graph Auto-Encoder）的主动学习模型[100]，通过感

知拓扑和内容信息，最大限度地减少了标签的数量，模型对噪声具有

良好的鲁棒性。于晓梅等[101]提出了一个基于注意力机制的多粒度

双向长短期记忆模型。该模型将注意力机制与多粒度词分割机制相结

合，在多粒度层次上协同处理语义信息。模型在中文问答系统中得到
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应用。夏书银等 [102]基于粒球理论发展出了粒球支持向量机

（GBSVM）和粒球 kNN 分类器（GBkNN）。在大规模数据处理上，

模型具有明显的效率优势。刘群等[103]提出一种在线社交网络的多

粒度集体行为分析方法。该方法是一种多粒度联合的社交分析模型，

它描述了节点层面、邻居层面、社区层面和社会层面的集体行为。深

度学习模型的基础——多层感知机模型[104]是一个典型的多粒度联

合计算模型。数据的多粒度特征在该模型中被由细到粗地逐层处理，

最后得出分类结果。可以说，近年来出现的许多基于深度学习模型的

研究都可被纳入多粒度联合计算模型与问题求解机制的研究领域。 

（2）变粒度有效渐进式计算方法：通常，在高粒度层上花费较

小的时间代价能够形成“较粗”的解，而在低粒度层上形成“更精确”

的解则要花费较大的时间代价。因此，许多复杂问题可以首先在高粒

度层上求出“较粗”的解，再在低粒度层上求出较精确解，这一有效

的方法被称为变粒度渐进式计算。郑何亮等[105]提出了一个渐进式

注意力卷积神经网络（ Progressive-attention convolutional neural 

network, PA-CNN）模型，该模型可逐步定位图像中多个粒度上的识

别目标。PA-CNN 包含一个部件提议网络（Part proposal network, PPN）

和一个部件矫正网络（Part rectification network, PRN），它分两步对目

标进行定位。先由部件提议网络生成多个局部注意力图，再由部件矫

正网络从每个部件提议中学习目标部件的具体特征，并为 PPN 提供

更精确的零件位置。PPN 和 PRN 的这种配合使二者可以互相优化，

最终改善目标定位精度。在模型优化过程中，较细粒度的卷积网络参

数可以从较粗粒度的网络模型中继承，使模型可以以堆叠的方式学习

丰富的目标层次结构信息（例如，位于鸟类头部的眼睛和喙）。在细

粒度图像识别实验中，这种方式取得了更精确的识别结果。杨洁等

[106]构建了序贯三支决策粗糙模糊集模型，结合代价敏感理论，实

现了对模糊概念的渐进式计算决策，模型能够在约束条件下获得当前
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最优知识空间。为了缓解“维度灾难”问题，王化明等[107]提出了

一种基于互信息和谱粒化（ML-OSMI）的渐进式多标签流特征选择

算法。张清华等[108]提出动态信息的渐进式三支决策模型，通过属

性值的变化渐进地计算决策模型的阈值，最终实现对所有对象的分

类。王化明等[109]提出基于信息熵的渐进式流特征选择方法，该方

法用条件信息熵（CIE）来指导不确定性的度量。基于该方法，他们

提出了一个基于粗糙集理论中不确定性度量的在线流式特征选择框

架（OSFS）。 

（3）智能计算前置：在一些实际应用中，并不是所有数据在开

始时就全部可用，此时，需要根据低粒度层上仅有的部分数据做出初

步的局部决策，再根据更多的数据输入，在较高粒度层上形成改善的

全局决策。夏书银等[102]提出一种粒球计算机器学习方法，实现了

一个多粒度分类器。通过将粒化操作进行前置，使分类器模型的输入

不再是最细粒度的点，而是粒度大小可调的通用性特征。模型中使用

超球体作为“粒”来表示该通用特征。超球体仅仅需要两个量来表征，

即中心和半径。首先，将数据空间进行粗粒度层次上的划分，初始粒

球即被划分为两个较小的粒球。划分方法可以使用 k-means 方法，一

旦划分完成，新的粒球的中心可以通过数据点的均值进行计算；粒球

半径可以通过中心到粒球内部各点的距离的平均值进行计算。通过不

断的粒球分解，当终止条件达成时，数据的分类界面得以自然形成。

在高维数据处理中，粒球计算方法可以获得明显的效率提升。胡扬青

等[110]在网络传播理论的研究中指出，传统的从全局信息出发进行传

播力评估的方式有时不可行。他们首先根据局部结构信息对节点的传

播力进行量化，然后在更大范围内对节点的传播力进行评估。他们发

现，不需要全局信息，仅依赖局部结构信息就可以量化网络节点的传

播力。 
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2.3.2 多尺度认知计算 

现实中，人们对数据的需求往往具有多层次性和多级别性的特

点。比如，在对学生考核中，对于是否完成学业或授予学位的评价，

老师作为决策者需要对学生成绩给出“合格”与“不合格”的二级记

分制；对于评奖评优，老师又需要对学生成绩给出“优”、“良”、“中”、

“及格”、“不及格”的五级记分制或 100 记分制，老师对于从 100 分

制到五级记分制以及从五级记分制到二级记分制能够快速进行变换。

又比如，对于地图上我国的某一地方，根据行政区域的不同粒度层次

(如村、乡镇、县、地级市、省自治区等级别)，其所属地分别给予不

同的区域标记（地名），并且若干村对应于同一个乡镇，若干个乡镇

对应于同一个县等。因此，现实需求的多样化要求对数据的描述具有

多粒度和多尺度的特性，以便于进行简洁高效地表示与推理。众多经

典的粒计算模型是基于对对象的单尺度描述，无法多级别和多尺度地

获取数据中对象的丰富语义。基于此观察，吴伟志教授和梁怡教授

[111]提出了多尺度数据的粒计算模型，亦称为 Wu-Leung 模型。该模

型在同一属性下对对象进行多尺度地描述，并且在各尺度之间可以通

过变换函数，实现对于样本空间粒化的关系转换。该模型能够多层性

地描述数据，在知识表示和规则生成时能够在各层次上快速往返、灵

活展开，符合现实世界众多领域的数据特点，具有科学性、合理性和

易操作性的特点，在大规模复杂数据挖掘中有着独特的优势，逐渐成

为粒计算研究方向的前沿和热点。 

基于多尺度数据的粒计算模型，如何合理有效地描述数据、刻画

知识、生成规则，并进行简洁高效地决策是重要的研究课题。自 2011

年开始才有这方面的研究报道。Wu 和 Leung[111]在最早引入多尺度

数据的粒计算模型的同时，研究了多尺度类型数据的信息粒表示和目

标概念近似等问题。在现实中，由于客观原因或人为原因等，数据信

息往往无法完整获取，即数据中存在缺失描述，这样的数据称为不完
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备数据。针对不完备数据，Wu 等人[112]定义了新的变换函数，给出

了不完备数据的多尺度粒计算模型。另外，Wu 等人[113]还定义了保

序的粒度变换函数用于处理多尺度序信息系统的知识表示及其后续

的知识获取问题。在 Wu-Leung 模型中，对以多尺度信息系统形式呈

现的数据的一个基本假设是所有属性都是具有相同的尺度个数，这种

数据处理的主要思想是，根据决策目标对所有属性选择同一层面的尺

度或者粒度构成一个新的单尺度信息系统，然后在保持相同目标约束

的前提下进行属性约简（特征选择）、决策规则提取及相应的不确定

性分析。然而，实际问题中不同的属性可能具有不同的尺度个数。针

对这种情形，Li 和 Hu [114]提出了尺度组合的概念用于处理不同属性

具有不同尺度个数的多尺度信息系统（称为广义多尺度信息系统）的

知识表示与知识获取问题，数据建模的主要思想是，根据决策目标对

每一个属性选择一个合适的尺度或者粒度，它们构成的尺度集合称为

一个尺度组合，一个尺度组合对应于一个新的单尺度信息系统，然后

在保持相同目标约束的前提下进行属性约简（特征选择）、决策规则

提取及相应的不确定性分析。多粒度除来源于属性描述的多尺度之

外，可能还来源于决策标记的多尺度，为此，Huang 和 Li 等[115]提

出了属性描述和决策标记均为多尺度的数据模型。在形式概念分析

中，被描述的个体全体以及用于描述的特征属性分别构成了概念的外

延和内涵，而所有的概念连同它们之间的泛化和例化关系构成一个格

结构，称为概念格。概念描述具有天然的多层次性，一些学者[116-118]

结合多尺度粒计算的方法，提出了多尺度形式概念分析的数据模型，

并给出了概念的层次性描述。将多尺度粒计算模型引入到概念认知领

域是最近发展起来的一个新的研究课题，正引起该领域越来越多学者

的关注。此外，一些学者进一步将多尺度粒计算模型引入到序关系数

据、区间值数据、集值数据、模糊数据，以及覆盖型等数据中，并给

出了相应的粒度表示和概念刻画方法等。 
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最优尺度选择是多尺度数据知识获取的关键步骤之一，即根据决

策目标的具体要求，如何选择合适的尺度或尺度组合用于数据集的最

终决策、分类或排序。因此，最优尺度选择成为多尺度数据知识获取

研究的主要问题，迄今为止已经取得了一些重要进展。如 Wu 等[111]

分别在完备数据和不完备数据中，初次引入了保持决策规则和广义决

策规则不变的最优尺度选择的形式化定义和规则生成方法。现有的最

优尺度选择的研究大多是从一致性、不确定性的角度出发，而没有充

分考虑代价信息的影响。张清华等[119]从决策代价、尺度代价和属性

代价的角度建立了代价敏感的最优尺度组合选择模型，更符合代价认

知场景下的实际需求。受限于全局规则的计算复杂性，针对特定对象，

往往需要简洁的局部决策规则。She[120]和 Gu 等[121]分别研究了多

尺度数据的局部规则提取问题，来适应数据中样本规模的变化。在不

同尺度组合下的规则通常具有层次性。基于此认识，She 等[122]进一

步建立了多尺度数据的规则粒度树模型，并给出了保持广义决策的广

义约简的定义和方法。很多时候，由于属性和决策的不一致，决策规

则常常带有不确定性。不确定性度量是不确定性分析的重要内容，可

以为尺度组合提供有效的评价指标。Cheng 和 Zhnag 等[123]在利用序

贯三支决策理论进行尺度组合选择时，将数据集划分为三部分，即正

域、负域和边界域，并根据三部分区域的变化，来逐步选择合适的尺

度。三支决策理论与多尺度粒计算模型的交叉和融合性研究正成为粒

计算和不确定性分析领域备受关注的研究课题[124]。针对模糊型数

据中普遍存在的不确定性，Huang 等[125]利用模糊粗糙集的包含度等

度量，研究了模糊数据的最优多尺度选择问题。信息熵描述了随机变

量分布空间的离散程度，是不确定性度量的重要数学工具。Bao 和

Wu 等人[73]利用信息熵刻画了尺度组合的信息量，以及尺度组合对

于规则生成的不确定度，用于评价尺度组合的优劣性，来完成对最优

尺度组合的选择。这些工作又进一步拓展到覆盖型数据、符号型数据，
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以及不完备数据相关研究。针对一组证据的内部知识或多组证据不相

容所引起的不确定性，证据理论可以度量一组或者综合多组不确定性

的证据信息，来完成对事实的推理。Zheng 和 Wu 等[126]融合证据理

论的方法，给出了证据度量指标下的最优尺度组合的定义，并探讨了

其与保持决策规则的最优尺度组合的关系。在技术创新方面，李进金

教授团队[127]引入了多尺度数据中样本关系的矩阵表示，并利用矩

阵批量化的运算特点，实现尺度组合的加速运算。另外，基于系统最

优尺度和局部最优尺度的各种多尺度决策系统的属性约简、决策规则

提取、不确定性度量及相应的算法研究也取得了一些重要研究成果。 

伴随着理论研究的深入，多尺度粒计算模型亦被应用于许多现实

问题。例如，在投资风险、经济管理、城市规划、招标投标等领域普

遍存在着多准则专家决策问题。多准则体现了决策分析的多尺度性和

多粒度性。基于此共性特征，Zhan 等[128]给出了群决策问题的多尺

度模型的形式化表示模型和多准则决策方法。在智慧城市数据中，决

策关联规则是一种潜在的知识，对决策分析有着重要作用。空气质量

是智慧城市中一项基础的智慧民生问题。利用多尺度决策形式背景的

数据表示，Xie 等[116]研究了不同气象因素组合对空气质量状况的相

关影响，在合适尺度上提取决策关联规则，完成对空气质量的预测。

随着研究的进一步深入，我们相信多尺度粒计算模型会有更多的应用

发展。 

多尺度粒计算模型是粒计算领域当前的热点课题之一，虽然在数

据建模、理论分析以及应用领域发展取得了一定的进展，但现有的相

关研究刚刚起步，依然存在值得进一步研究的问题：多尺度数据的构

造和评价、多尺度数据的最优尺度的定义及运用、多尺度粒计算模型

的领域扩展等。 

2.4 粒计算三元论：三支决策 

三支决策(Three-way decision)是由加拿大学者姚一豫教授提出的
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一种朴素的“三分而治”和“化繁为简”的决策理论，其核心思想是

通过粒计算将论域(整体)分为三个子集或三个部分，并对不同子集或

部分采取不同的决策行为或分治策略，进而对相应的行为或策略进行

评价和反馈[129]。由于三支决策符合人类思维和认知特点，且能较

好地处理实际决策过程中出现的不确定性问题，它已逐渐成为粒计算

和知识发现领域的一种重要研究方法。 

2.4.1 三支决策历史发展轨迹 

纵观三支决策发展脉络，它经历了孵化期(1980-2006)、羽化期

(2007-2016)、成长期(2017-现在)三个阶段。对三支决策的思考最早可

追溯到上世纪 80 年代波兰数学家 Pawlak 提出的粗糙集理论。众所周

知，粗糙集理论是通过上下近似集对论域进行划分的，下近似集诱导

的规则表示确定性规则；上近似集诱导的规则表示可能性规则。在这

一时期，人们主要关注由下近似集诱导的确定性规则，而完全忽略由

上近似集补集诱导的另一种确定性规则，究其原因是由于前者包含了

有用(有趣)知识，对于决策者而言最有价值。三支决策的发展契机是

上世纪 90 年代姚一豫提出的决策粗糙集理论。决策粗糙集首次将决

策风险的概念引入到粗糙集理论中，通过贝叶斯风险最小决策准则将

论域划分为正域、负域和边界域三个区域。从正域里得到的正向确定

性规则表示接受某概念；从负域里得到的负向确定性规则表示拒绝某

概念；从边界域里得到的不确定规则用于延迟决策。这赋予了粗糙集

理论一种新的语义解释，并开启了狭义三支决策研究时代。随着对粒

计算和三支决策理论的不断深入研究，学者们纷纷意识到仅仅从粗糙

集这一狭义视角来探讨三支决策已显得过于狭隘，对三支决策内涵和

外延的理解应该更加广泛和深刻，粒计算的三元论也随之被提出。在

粒计算三元论中，哲学思想、研究方法和计算范式构成了三元论等边

三角形的三个顶点。进一步地，基于“一分为三”的哲学论、“三分

而治”的方法论和“三项式、三点式、三足式”的计算论也成为三支
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决策研究的基本出发点。系列广义三支决策研究如雨后春笋般在机器

学习、数据挖掘、模式识别、推荐系统、认知模型、形式概念分析、

数理逻辑、商空间等领域崛起并得到迅猛发展，对三支决策的狭义解

释也延伸为三要素、三部分、三分量、三层次、三阶段、三步骤、三

种类等广义认知。 

在认知科学时代，三支决策朴素的“分治”思想是一种全新的粒

计算研究视角和方法，它可以帮助人们通过粒化策略去思考、求解和

处理不确定性复杂问题。一般而言，三支决策研究核心理论的正式确

立是姚一豫提出的 TAO 模型(Trisecting- Acting-Outcome 模型，也称

“分治效”模型)[130]，“分”包含“分、合、序”三个要素，对应了

“一分为三”、“三合为一”、“序贯分析”三种方法；“治”包含“点、

线、面”三种策略，反映了“一维”、“二维”和“三维”三个维度；

“效”包含“简、优、快” 三个方面，体现了“简单易懂”、“优异

完善”和“快速高效”三类要求。其中，“分”是“治”的前提，“治”

是“分”的目的，而“效”是“分”和“治”的监督保障。可以看到，

TAO 模型给出了一个三支决策一般性理论研究框架，它主要分为三

个阶段。第一阶段中的“三分”是指把一个整体划分成三个互不相交

的区域；第二阶段中的“治略”是指在“三分”的基础上对不同的区

域制定出相应的策略或采取相应的行动，使得整体目标收益/效用最

大化或者成本/代价最小化；第三阶段“评价结果”是评估“三分”

和“治略”的效果，以便定量评价和改进三支决策。上述三个阶段相

互影响、相互制约：“三分”是“治略”的前提，“治略”是“三分”

的目的，而“评价结果”是“三分”和“治略”的监督保障。如何构

造一个整体的三分，如何设计策略去处理三分后的三个区域，如何评

价三分和策略的效果，是三支 TAO 模型的核心任务。 

2.4.2 基于不确定决策的三支决策理论与方法 

对于早期对不确定决策的三支决策研究主要聚焦于决策粗糙集
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理论中条件概率的确立和损失函数的设置两个方面。在条件概率确立

方面，主要是从信息论和线性分类的视角，通过信息熵变化、朴素贝

叶斯决策、Logistic 回归、决策树、支持向量机和马尔科夫链等获取

和更新条件概率；在损失函数设置方面，主要工作是刘盾和梁德翠等

学者将损失函数随机化、区间化和模糊化，一系列不确定三支决策模

型，诸如：随机决策粗糙集、区间决策粗糙集、三角模糊决策粗糙集、

直觉模糊决策粗糙集、犹豫模糊决策粗糙集、语言评价决策粗糙集等

扩展模型被相继提出。此外，姚静涛研究团队提出的博弈粗糙集主要

将代价损失函数的确定视为一个目标优化的博弈问题，并利用 Nash

均衡思想来求解相应阈值[131]。进一步地，如果根据决策者的不同

风险偏好，可以设计乐观决策、中性决策和悲观决策的多视角决策粗

糙集模型，并能够获取不同风险偏好下的决策规则。众多学者还研究

了基于多论域、多粒度和多代理的决策粗糙集模型。为了进一步提升

三支决策的理论深度，三支决策空间的概念被相继提出，它从数学上

将模糊集、随机集、粗糙集等统一到三支决策空间研究框架中。相对

于狭义三支决策主要聚焦粗糙集领域相关研究，广义三支决策更注重

对三支决策概念内涵和外延进行诠释。值得一提的是，对于不确定决

策三支决策，现有研究主要关注两个问题：一是序贯三支决策理论与

方法；二是行为三支决策理论与方法。 

序贯三支决策是运用“三分而治”思想求解复杂动态决策问题的

有效方法之一，其决策过程是动态的、多步骤的、多阶段的。序贯三

支决策包含多个决策步骤/阶段，在每一步骤/阶段中，如果当前的可

用信息足够充分，就做出接受或拒绝的决定；否则，就采取延迟决策，

通过增加更多可用信息进入到下一步骤/阶段。该过程持续进行，直

到达到某一既定目标。从粒计算的视角来看，如果用多个粒度去描述

某一问题，一个问题就会具备多个层次的表征。与细粒层上的决策相

比，粗粒层上的决策通常具有更低的学习成本。因此，当容错率较高
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时，可以在较高的粒层以较低的学习成本快速做出接受或拒绝的决

定，否则需要采取延迟决策，通过付出更高的学习成本，转移到一个

细粒层进行决策。与传统静态三支决策相比，序贯三支决策是多粒度

环境下进行问题求解的有效选择。 

行为三支决策主要包含效用三支决策、基于前景理论的三支决策

和基于后悔理论的三支决策。效用三支决策主要是依据 Von Neumann

和 Morgenstern 提出的期望效用函数理论(Expected Utility Theory, 

EUT)，该理论描述了理性人在风险条件下的决策行为，建立了不确

定条件下对理性人选择进行分析的框架。相较于传统三支决策理论，

效用三支决策主要使用期望效用替代损失函数，并以最大效用为决策

目标。期望效用函数理论的重要假设是决策者是理性人。然而，很多

心理行为学和实验经济学研究表明：决策者在实际决策过程中不会完

全理性，会受到人的复杂的心理机制的影响。为了改进传统决策理论

“理性人”假设，一系列行为决策理论和方法先后被提出，这里面最

具代表性的是前景理论和后悔理论。前景理论(Prospect theory)是

Kahneman 和 Tversky 于 1979 年通过大量社会学和心理学实验而提出

的一种行为决策理论，其基本假设为：人在决策时会在心里预设一个

参考点，对于高于参考点的收益型结果，人们往往表现出风险厌恶，

趋于选择确定性收益；对于低于参考点的损失型结果，人们又表现出

风险喜好，趋于选择风险性收益。对于基于前景理论的三支决策，需

要同时考虑效用值函数和权重函数对总体效用的影响。与前景理论类

似，后悔理论(Regret theory)着重探讨决策者在决策过程中常出现后悔

的心理状态，是由 Bell，Loomes 和 Sugden 在 1982 年同时提出的，

它能够很好地描述个体在风险决策环境下的后悔和喜悦情绪。在基于

后悔理论的三支决策模型中，需要考虑同时直接效用和间接效用，并

需要进一步考虑风险规避参数和后悔规避参数的影响。 

此外，对于不确定三支决策的研究，张清华、詹建明、郎广名、
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张超、周杰、刘培德等研究团队还从三支决策冲突分析、三支逻辑、

三支风险管理等领域进行了研究，这极大地丰富了三支决策的内涵和

外延。 

2.4.3 基于多粒度分析的三支决策理论与方法 

粒计算的核心思想是通过对所解决的问题进行多层次、多视角的

理解、概括、描述和操作，采用自顶向下、自底向上和自中向外三种

不同处理方式，利用多粒度计算方法将复杂问题分解为若干小问题，

在不同粒层和粒结构间寻找问题的近似解，从而达到简化问题的目

的。基于多粒度的三支决策方法就是通过在现实问题中对粒的抽象、

在数学分析中对粒的描述、在模型构建中对粒间和粒层转换关系的刻

画、在算法设计中对粒的合成与分解、在求解过程中对粒的使用，利

用三支决策的“三分治略”思想来解决粒计算问题。 

多粒度三支决策方法的一般模型构建了一个多层次的粒结构，自

上而下，粒度由粗到细。对于每个层次的每个区域，在其下一层次都

会生成三个子区域，并产生对应的三种子策略，直到根据实际问题搜

寻到最优的(合适的)粒层或粒度为止。人们在每个层次里选择要处理

的区域，并进行进一步划分，直到该区域的对象满足终止条件或者该

区域等于空集为止。 

当前基于多粒度分析的三支决策研究主要集中在对象集变化、属

性集变化和属性值变化三个方面。对象集变化是指在决策过程中，每

一个层次的区域在生成下一层次的三个子区域时决策对象的增添或

删减。属性集变化是指在决策过程中，每一个层次在对下一层次进行

子区域划分时所采用属性集合的变化。属性值变化是指在决策过程

中，每一层次中决策对象属性值的更新。(1). 在对象集变化方面，当

前研究主要是从增量学习或序贯三支决策视角出发，通过增大或减小

对象集使得粒度结构特征发生改变，进而完成三支决策规则的更新。

有学者将基于对象集变化的多粒度三支决策理论与具体决策问题进
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行结合，提出了情感分类方法、认知概念学习方法、多属性群决策模

型、多分类决策模型、邻域系统动态决策模型、不完全系统动态决策

模型等。(2).在属性集变化方面，主要工作集中于各粒度层次的属性

选择上，包括逐层增加或减少属性数量、依权重逐层增加属性数量、

逐层改变属性集合等，由此进行信息粒度转换、区域样本分类、粒度

构造、粒度约简、最优粒度选择、三支区域动态更新、决策快速更新、

混合动态数据融合等，以完成后续具体问题的决策分析。(3).在属性

值变化方面，研究主要考虑属性值的不确定性，属性值的动态更新会

导致决策的动态更新，由此一系列关于属性值动态更新的三支决策方

法被提出来，如：三支分类方法、三支概念格更新方法等。此外，多

粒度三支决策在医疗诊断、图像识别、评价问题、风险分析、目标识

别等多个领域中得到了广泛应用。 

基于多尺度分析的三支决策理论与方法是将三支决策思想引入

多尺度信息系统，通过分析在保持某种性质不变意义下不同尺度之间

决策区域的演化规律，刻画不同尺度之间知识的数学转换关系，考虑

决策风险与学习代价对尺度变化的影响，引入评价和多级反馈机制，

来实现合适决策粒层和最优决策尺度的自适应选择机制的一种理论

与方法。考虑到在实际问题中，多尺度决策表存在对象或属性连续更

新的情况，基于多尺度信息表的序贯三支决策模型常常被用以解决动

态多尺度决策中的最优尺度选择问题。具体而言，在对象数量不断增

加的情况下，利用在多尺度信息表中建立的序贯三支决策模型，提出

了多尺度决策表的最优尺度选择方法。该方法不需要分别考虑协调和

不协调的多尺度决策表，而是从三支决策(不确定决策)的角度来探讨

最优尺度的选择，使不确定决策越来越少，适用于在添加新对象的情

况下更新多尺度决策表的最优尺度。 

2.4.4 基于认知学习的三支决策理论与方法 

人类的认知规律主要体现在两个方面：一是通过认知将复杂事物
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简单化；二是人类处理信息的能力是有限的。认知学习可借助计算机

模拟人类的感知、注意力和学习等思维过程从而实现对思考、记忆等

人脑认知过程的模拟。随着大数据科学和人工智能的兴起，概念认知

学习理论(Concept-Cognitive Learning, CCL)逐渐成为了认知科学、脑

科学、计算机科学等领域的研究热点，从认知视角进行形式概念分析

在相关研究中被普遍采用。形式概念分析理论 (Formal Concept 

Analysis, FCA)由德国数学家 Wille 于 1982 年提出，为人们从形式背

景中获得认知概念提供了有效的数学基础。虽然形式概念刻画了内涵

和外延间的统一、彼此共有的特点，但是忽略了作为外延的对象子集

所共同不具有的属性以及共同不具有作为内涵的属性子集的对象。这

实则是一种 “共性”，在考虑 “共同具有” 特点时，对于属性集或

对象集仅进行二分操作。在近期研究中，结构化的三支概念分析和公

理化的三支概念学习也成为三支决策在认知学习中的两个研究方向。 

在三支概念分析方面，李金海、徐伟华、米据生、秦克云、折延

宏、杨海龙等研究团队作了大量的工作，主要研究内容为基础理论研

究、三支概念格的构造、针对决策形式背景进行规则提取、模糊环境

下的三支概念分析以及不完备背景下的三支概念获取。主要采用的结

构化方法包括基于同构理论的概念格构造方法、对象诱导和属性诱导

的直觉模糊三支概念格、不完全模糊形式环境下构造属性诱导的三支

概念格的方法和三支概念格的增量构建等方法。此外，还有学者研究

了三支概念簇、三支半概念和三支概念的稳定性等内容。智慧来等融

合现代范畴理论与三支概念分析，提出了用三支概念簇刻画具有家族

相似性的三支概念集合，并研究了三支概念簇的若干重要性质与运算

方法[132]。Mao 等将经典半概念理论与三支决策相结合，提出三支

半概念，并分析了三支概念、三支半概念和经典半概念之间的关系

[133]。Gaeta 等提出了一种基于时间的粒化和三支决策相结合方法，

以支持决策者理解和推理粒结构在时空事件的概念化[134]。 
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在三支概念学习方面，主要基于多粒度和信息融合视角展开研

究。一些三支概念学习的方法模型，如多粒度三支概念学习方法、多

源数据环境下三支概念学习的加权信息融合方法被相继提出。此外还

有学者研究了三支概念的增量学习方法，基于决策背景，从动态数据

中学习知识和概念；设计了基于渐进式模糊三支概念的增量学习机

制，用于动态环境下的目标分类，构建了一系列概念认知学习增量算

法来实现知识的动态学习。值得一提的是，姚一豫在最新的研究中提

出一种“符号-意义-价值”(Symbols-Meaning-Value)空间，从数据、

知识和智慧层面给出了一种数据科学的三级研究框架。 

2.4.5 基于机器学习的三支决策理论与方法 

早期基于机器学习的三支决策研究来源于粗糙集理论，特别关注

粗糙集在三个决策区域的属性约简和规则提取问题。随着机器学习相

关理论的快速发展，三支决策与机器学习的融合研究也变得越来越丰

富。具体而言，主要代表性的研究有基于分类/聚类/社团发现的三支

决策方法、基于推荐系统的三支决策方法、基于图像识别的三支决策

方法等。 

对于基于分类三支决策方法，Lingras 等首次借助贝叶斯决策过

程，提出一种多分类决策理论框架[135]。在该模型中，决策的状态

集由基本类别所组成，行动集则由类别集的非空子集组成。刘盾等提

出了一种两阶段的多分类方法：第一阶段把 m 个类别的分类问题转

换成 m 个两分类问题，第二阶段在第一阶段基础上选出最优分类类

别[136]；并进一步将 Logistic 分类器引入到决策粗糙集中，分别讨论

了基于 Logistic 回归的两分类和多分类三支决策模型[137]。周冰等考

虑不同类别下损失成本可能不同的情况，给出了多分类决策粗糙集的

一种新描述，并利用朴素贝叶斯思想来建立一种新的决策粗糙集分类

模型[138]。杨新等给出了一种矩阵更新策略来构建多分类序贯三支

决策模型，为解决多分类空间三支决策问题提供了一种有效途径
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[139]。对于基于聚类三支决策方法，于洪团队等对三支决策的聚类

分析模型和聚类数的自动学习算法作了许多探索性的研究[140]。王

平心等提出了一种基于数学形态学的三支聚类方法[141]。 

对于基于推荐系统的三支决策方法，闵帆团队早期作了一系列有

价值的工作，分别设计了基于随机森林和回归分析的三支推荐系统，

其目标是通过调整不同参数阈值来最小化决策成本[142]。刘盾团队

将机器学习和深度学习相关技术引入到三支决策中，分别探讨了基于

矩阵分析的动态三支决策方法、基于 CTR 的代价敏感序贯三支推荐

方法、基于循环神经网络的时空三支推荐方法等[143]。张燕平团队

提出一种基于公平性的三支用户声誉协同推荐算法和基于三支决策

和类别特征表示的情感分析模型[144]。 

对于基于图像识别的三支决策方法，李华雄等提出了一种基于序

贯三支决策的代价敏感人脸识别模型来解决错分类代价不平衡和图

像信息不充分等问题，并在深度神经网络模型中研究图像的特征粒度

提取和序贯识别问题，取得了很好的实验效果[145]。张里博等给出

了一种序贯三支增强卷积神经网络模型，用以提高分类精度和分类性

能[146]。Savchenko 将序贯三支决策的思想引入到卷积神经网络中，

通过在神经网络的不同粒层上提取图像的序贯特征，来实现图像的表

征和加速推理[147]。岳晓东等讨论了基于医学图像数据的三支分类

和聚类问题，取得了较好的实验和预测效果[148]。 

值得一提的是，在近几年的研究中基于多标签/多示例/多模态的

三支决策方法也逐渐成为基于机器学习的三支决策新动态和新方向，

将三支决策思想有机地融入到机器学习以及人工智能相关领域，以增

加相关研究技术的可解释性，已成为一个今后重要的研究方向。 

2.4.6 小结 

本小节主要从三支决策历史发展轨迹、基于不确定决策的三支决

策理论与方法、基于多粒度分析的三支决策理论与方法、基于认知学
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习的三支决策理论与方法，以及基于机器学习的三支决策理论与方法

五个方面作了简要介绍，相关研究有助于人们清晰地了解三支决策的

基本思想，以及相关理论、方法和应用。 

2.5 本章小结 

本章在第一章的基础上，分别详细介绍了粒计算的四个主要研究

方向，首先从粒表示的角度介绍了基于二元关系、商空间和聚类关系

等的数据粒化方法；然后在粒度量方面，分别总结了粒计算不确定性

度量方法和面向数据的不确定性度量方法；接着概述粒计算方法，从

多粒度空间描述、多粒度联合求解问题和人机认知机制融合问题三个

方面介绍多粒度认知计算，并将其衍生到多尺度认知计算中；最后分

析了粒决策方法，给出了基于不确定决策、多粒度分析、认知学习、

机器学习的三支决策方法概述。通过对粒计算理论与方法的归纳和总

结，为基于粒计算的知识发现和应用研究提供良好的理论基础。 
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第 3 章 粒计算与知识发现应用现状 

粒计算是一种将复杂的问题分解后再进行求解的一种思想。人们

首先在不同粒度、不同层次上将原始问题转化为一系列的子问题，然

后逐一进行知识发现，从数据集中抽取和精化新的模式，并求解这些

子问题，最终将整体问题加以解决。知识发现的范围涉及到很多方面，

如经济、工业、农业、军事、社会、商业、科学的数据或卫星观测到

的数据。知识发现的结果可以表示为法则、规则、科学规律、方程和

概念网等。目前一些研究学者把商空间、云模型、粗糙集理论、三支

决策等基础理论成功的应用到了智能医疗、机器视觉、社交网络、无

人驾驶、自然语言处理等诸多领域中，本章将对粒计算与知识发现应

用现状进行归纳总结，包含内容如表 2 所示。 

3.1 粒计算与智能医疗 

近年来，相关学者对粒计算理论进行了深入探讨与研究，粒计算

方法也被广泛应用于医学领域。以下主要从医学影像分析、病历分析、

多源数据融合、决策支持方面来分析粒计算模型的相关医学应用。 

3.1.1 粒计算在医学影像智能分析中的应用 

粒计算在医学影像智能分析中的应用主要包括影像检测、分割、

分类、配准等。 

在医学影像检测方面，Juszczyk 等[149]基于粒计算的概念对区域

特异性体素进行检测，实现了对腹部 CT 图像肝脏、脾脏和肾脏各器

官特异性体素的识别。T. Rajesh等[150]利用粗糙集理论从输入的MRI

脑图像中提取特征，用于后续对癌症肿瘤的检测判断。Mehena 等人

提出了一种基于模糊逻辑的软计算方法来检测噪声图像的边缘，该方

法将一幅图像看作一个模糊集，把像素作为模糊集的元素，在对噪声

医学图像的边缘检测上具有较好的性能[151]。El-Baz 等[152]提出基

于粗糙集理论对数据属性进行预处理，从决策表中删除冗余属性和冲
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突对象，为下一步乳腺癌肿瘤识别进行特征提取操作。 

表 2 粒计算与知识发现应用现状 

粒
计
算
与
知
识
发
现
应
用
现
状 

3.1 粒计算与智能医疗 

粒计算在医学影像智能分析中的应用 

粒计算在病例数据智能分析中的应用 

粒计算在医学多源数据融合中的应用 

粒计算在医学智能决策中的应用 

3.2 粒计算与机器视觉 

粒计算在机器视觉检测问题中的应用 

粒计算在机器视觉分割问题中的应用 

粒计算在机器视觉分类问题中的应用 

粒计算在机器视觉其他问题中的应用 

3.3 粒计算与社交网络 
多粒度网络表示学习 

基于多粒度的网络分析应用 

2.4 粒计算与无人驾驶 

基于粒计算的分布式人工智能 

融合粒计算模型的强化学习与环境感知 

基于认知学习的三支决策 

基于机器学习的三支决策 

基于模糊控制的无人驾驶与环境感知 

基于云模型的智能控制与环境感知 

基于粒计算的智能工业控制 

3.5 粒计算与情感分析 
三支决策情感分析模型 

知识图谱中的语义分析 

3.6 粒计算与其他应用 

粒计算与协同过滤 

粒计算与管理科学 

粒计算与工程领域 

在医学影像分割方面，Zheng 等[153]提出了一种基于二维深度学

习的方法来解决图像对比度差，边界模糊以及图像和实际存在差异的
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问题，即迭代分割过程中的不确定性。该方法基于阴影集理论描述了

胰腺 MRI 图像的不确定区域。通过在迭代训练中增加不确定区域的

权值来进一步修正结果。Abhirup 提出了一种在脑 MR 图像中同时分

割和校正的方法，该方法运用了粗糙集的概念和一种新型概率分布，

结合了期望最大化和隐马尔可夫随机场框架，以提供准确而稳健的分

割[154]。后来，Abhirup 通过在概率框架中结合粗糙集的特性[155]，

在组织类别的粗糙概率建模中引入适当的峰度，用于脑 MR 图像分

割。通过将脑 MR 图像表示为 St-t 分布和均匀分布的有限混合物，开

发了一种用于同时分割和脑 MR 图像偏倚场校正的新算法，称为

t-StoRM。Jia 等提出了一个多尺度协同判别网络（MSD-Net），解决

了前列腺 MR 图像分割的深度卷积神经网络(DCNN) 受到语义辨别

和空间上下文建模不足而产生的问题[156]。Xie 等提出了一种新的医

学图像分割方法，该方法利用粗糙集理论和局部多项式回归模型来解

决难以获得粗糙度测量的显著峰谷值的问题，从而降低图像噪声，获

得更好分割效果[157]。Wang 等[158]将粒计算理论用于医学图像分

割，根据图像所包含的不同特征构造不同的粒度，根据商空间粒度合

成原理对得到的商空间进行属性组合，完成图像分割。Mohapatra 等

[159]提出了一种基于阴影 C 均值聚类的血细胞显微图像白细胞分割

方法，在存在异常值的情况下，该算法能够快速、鲁棒地分割血迹显

微图像。Chen [160]等介绍了一种新的基于阴影 C 均值聚类的图像分

割方法，通过在隶属度值估计过程中引入局部空间信息，并将原始数

据映射到高维 Hilbert 空间中，提出了核空间阴影 C 均值聚类算法，

可以一直图像中的噪声，进行有效分割。Huang 等[161]将 FCM 聚类

算法与粗糙集理论相结合，提出了一种新的图像分割方法，并在脑

CT 图像和 MRI 图像的分割上得到了验证。Roselin 等提出了一种基

于粒计算的粗糙熵来对乳腺 X 光图像进行分割，并得到了有效评估

[162]。姚传文[163]等针对 MR 图像灰度不均匀、部分容积效应等缺
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陷，给出了一种粗糙集自适应粒度的脑肿瘤 MR 图像分割方法，利用

粗糙集模拟目标和背景区域的上下近似，通过优化目标和背景区域的

粗糙度，获得 MR 脑肿瘤图像分割的最佳阈值。吴方等[164]提出了

一种基于改进粗糙集概率模型的鲁棒医学图像分割算法，并在真实脑

部 MR 图像库的分割实验上验证了分割精度与鲁棒性。 

在医学影像分类方面，陈超凡等[165]从三支决策的角度分析图

像数据的分类问题，引入阴影集理论，对论域进行划分，确定论域中

的不确定域，从而进行三支决策，解决了传统两支决策难以处理决策

信息不精确或不完备情况的问题，降低深度学习处理图像分类问题时

的不确定性。胡学伟等[166]提出了一种基于邻域关系的模糊粗糙集

模型，基于该模型给出特征选择算法，并将其应用于乳腺 X 光图像，

可以有效选择特征，获得分类精度。Guo 等人[167]提出了一种基于粗

粒度和细粒度关系的多路径选择的分层分类方法，该方法考虑类的粒

度来降低计算复杂度，并在医学数据集上进行了验证。Michael 等[168]

提出了一种允许不确定对象在属性缩减和规则生成过程中更改类信

息的方法，称为可变精度粗糙集方法，具有不确定对象的灵活分类，

能够更好地减少噪声或不一致数据的属性，并提供更小的规则集。Lee

等[169]提出了一种基于模糊粗糙特征选择和多树遗传规划的高精度

内涵识别框架。通过特征选择和特征提取，减少了 fNIRS 测量到的大

量脑信号数据，提高了分类精度同时减少了分类特征的数量。 

在医学影像配准方面，Samuel 等[170]应用模糊集理论，以提供

由可变形图像配准（DIR）生成的复合治疗计划的精确剂量表示，由

于图像的显著特征较少导致了不确定性，因此通过对变形向量进行了

模糊处理，并推导出了模糊复合剂量来降低这一不确定性。Ma等[171]

提出了一种结合基于模糊集的空间关系来记录时间乳房 X 光检查对

的方法，感兴趣区域 （ROI） 中所有点对之间所有可能角度的直方

图被视为模糊集，而对 ROI 之间的空间关系的特征在于测量该模糊
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集接近四个空间关系的程度。基于空间关系，将时间乳房 X 光对的

ROI 关联视为图匹配问题，通过查找表示时间乳房 X 光检查的两个

图形之间的公共子图来实现时间乳房 X 光检查对的注册。 

3.1.2 粒计算在病例数据智能分析中的应用 

除了用于医学影像分析，粒计算方法也被用于学习病历文本中所

蕴含的丰富的临床经验知识，完成病历信息的特征选择，实现病人的

分类预测模型，达到辅助诊断决策的功能，能够在保证诊疗质量的同

时帮助医生快速准确地作出诊断决策。在这一领域，基于多粒度计算、

粗糙集、模糊集、阴影集、区间集、商空间等方法的研究应用已广泛

展开。 

钱文彬等[172]构建了面向不完备混合决策系统的三支决策模型

与规则获取方法并将其应用于医疗诊断实例中，扩充了三支决策模型

和知识发现的理论与应用研究；Tan 等[173]探讨双论域下多粒度粗糙

集的粒度选择算法和规则提取方法，用于疾病诊断问题；为了解决复

杂、高风险的多属性群决策问题，Wang 等[174]提出序贯三支多属性

群决策方法(Sequential Three-Way Multiple Attribute Group Decisions)，

该方法允许不同专家在不同属性集下对方案集进行评价，具有较强的

实用性和灵活性，可用于乳腺癌和心脏病的多学科诊疗；Sun 等[175]

建立双论域上的变精度多粒度模糊决策粗糙集(Variable Precision 

Multigranulation Fuzzy Decision-Theoretic Rough Set over Two 

Universes)，并利用双论域上的三支决策概念获取决策规则，进而将

该方法应用于医疗诊断问题。 

徐红升等[176]提出基于变精度粗糙集理论模型的诊断方法，来

建立临床诊断决策表，并针对高血压疾病，设立智能诊疗系统应用到

多家医疗机构，取得良好的效果；刘洋等[177]提出一种表达不等式

关系的补偿型决策表扩展模型，从理论上分析了模型的复杂度，并构

造出基于粗糙集的不等式医疗诊断规则挖掘算法，弥补了传统等式规
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则挖掘方法的不足；黄锦静等[178]建立了基于属性依赖改进的可分

辨矩阵属性约简的算法并对肺癌诊断场景进行应用，其方法可加快医

学诊断速度并提高医疗诊断的准确度；Yang 等[179]对台湾地区诊所

耳鼻喉的病历信息采用粗糙集的方式进行特征选择并以此来诱导医

疗诊断的决策规则，取得了不错的效果；Li 等[180]提出针对分布式

模糊条件决策信息系统的多粒度决策粗糙集方法，用于医疗诊断；

RIZWAN GUL 等[181]在粗糙双极软集合(MRBSs)的基础上，提出多

粒度粗糙双极软集合(MGMRBSs)的概念，建立 MGMRBSs 在乐观与

悲观下的两种框架比较衡量其相互联系，并设计可用于此框架下的决

策算法，使其能够成功应用在医疗诊断场景中，有效地解决现实中的

诊断问题。 

Yue 等[148]建立了一种新的阴影集创建方法用于构建不确定数

据分类的阴影邻域，并提出新的三向分类算法，可将将数据实例区分

为某些类别和不确定的情况，可在肝癌等肿瘤分类任务用于谨慎诊

断；Yang 等[182]通过结合三向决策和阴影集的思想，提出了两种从

Atanassov 直觉模糊集中构建阴影集的方法并将其运用至医疗决策

中，用于将病人按患病可能性进行分类，取得了较好的结果。 

马建敏等[183]将区间集思想引入决策形式背景，研究决策形式

背景上的区间集概念格及其属性约简方法。通过在决策形式背景上定

义可辨识区间集属性矩阵的方式，给出寻找决策形式背景上区间集约

简的方法并将之运用于医学病例中；Sanz 等[184]提出了一种将基于

模糊规则的分类系统与区间值模糊集相结合的新分类器用于确定病

人在未来 10 年内患心血管疾病的风险问题，结果有良好的分类率且

其可解释性强。 

张清华等[185]从粒计算的角度提出一种基于统计期望的多粒度

高效搜索模型，从不同粒度层次的商空间上分析统计概率期望的变化

规律，将其运用于疾病抽检问题中，以得到最佳的抽检分组方案，该
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方法搜索目标的效率会随问题空间的细分逐渐降低并趋于稳定，且在

不同概率模型上可减小不同概率模型问题求解复杂度；Chen 等[186]

提出了一个基于三向决策理论的自适应分层特征表示模型（AH3）用

于寻找决策边界，将模糊商数空间理论用于得到正负类区域的分层特

征表示，并选择边界区域的最佳层进行自适应分解，得到边界的最佳

自适应粒空间。其实验成功将模型用于多个医学数据集，证明其在医

学诊断中的应用价值。 

沈江等[187]针对多属性群决策中可解释性证据融合推理中的异

构数据融合与决策问题，提出了一种基于 D-S 证据理论的证据链融合

推理方法，并在心脏病诊断案例中验证了所提方法的有效性；Wang

等[188]针对离散模糊集和传统匹配度方法存在的信息丢失问题提出

了一种新的基于直觉梯形模糊数和包含度量的直觉模糊证据推理方

法，提高了证据表示和推理的准确性，并将其运用在中风诊断，效果

良好。 

3.1.3 粒计算在医学多源数据融合中的应用 

在多源数据融合方面。Yang 等[189]从主观和客观动态的角度探

讨了一种用于混合数据融合的序贯三支决策框架，利用四种 T-范数算

子和基于核的相似关系来整合不同类型的动态数据，研究了基于决策

阈值、属性重要性和代价约简的序贯三支决策的主客观模型，并在医

学数据上验证了所提出的模型能够达到较低的决策成本和可接受的

精度。 Kumar 等[190]从多粒度角度对信息进行融合，提出将乐观多

粒度粗糙集模型应用于医学数据分类，发现局部常见病。研究表明，

多粒粗糙集能产生比单粒粗糙集更好的分类结果度量。Liu 等人[191]

从多视角角度对决策信息进行融合，提出了一种新的基于不完全信息

系统的三支决策模型。通过定义一个新的关系来描述不完全信息的相

似度，并利用区间值来获取缺失函数，采用不完全信息和损失函数相

结合的混合信息表来构建三支决策模型，并在医学诊断中验证了模型
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的合理性和有效性。Wang 等人[192]提出了一种针对存在多种数据的

图像混合信息系统的基于高斯核的三支决策方法，并给出了在医疗诊

断中的应用。利用高斯核得到图像混合信息系统的模糊等级关系，基

于两个模糊集之间的包含测度，引入具有图像的混合信息系统的决策

理论粗糙集模型，并实施了三支决策方法。Song 等 [193]基于

Dempster-Shafer 证据理论框架提出了一种集模糊规则和核密度估计

为一体的模型，基于 Dempster 组合规则融合模糊规则和核密度估计

的结果，可以降低模糊评估中的不确定性，获得更好的精度，在医学

数据分类上的应用验证了其有效性。Xu[194]等从粒计算角度构建了

一种新的针对多源数据的信息融合方法。首先提出内部置信度和外部

置信度来估计多源信息系统中每个信息源的可靠性，然后建立信息源

选择原则，允许选择有价值和可靠的信息源。在此基础上，构造了一

种新的信息融合方法，将每个目标的原始信息转化为三角模糊信息

粒，并研究了该融合过程中的一些不确定性度量。Lin 等人[195]从模

糊粗糙集包含测度的角度提出了一种新的模糊多粒决策理论粗糙集

模型，通过利用高斯核计算对象之间的相似度，得到一个模糊等价关

系，然后利用 Hadamart 积性质的 T-p 范数算子对多个模糊等价关系

进行聚合，利用聚合关系对论域进行模糊划分，可从多源信息系统中

得到多个模糊粒，为实际应用中的多源数据分析提供了一种有效的方

法。姚丽莎等[196]针对多源医学图像融合过程中融合权值选择的不

确定性，在小波域内对高频分量采用基于 DS 证据理论的多特征融合

规则进行图像融合，通过综合多个特征优势，降低了融合过程中的不

确定性，较大程度地保留了图像信息。 

3.1.4 粒计算在医学智能决策中的应用 

在决策支持方面。Yao[197]提出将博弈论粗糙集模型扩展到分析

涉及医疗决策的不确定性，研究了基于 web 的医疗决策支持系统中

的决策，在缺乏充分证据或准确信息的情况下，可以进行延迟决策，



中国人工智能系列白皮书——粒计算与知识发现 2022 

45 

以提高医疗领域的整体决策质量。Sibasis 等[198]提出了一种基于直

觉模糊集的博弈粗糙集模型的癌细胞分化治疗机制，通过模糊相容关

系引入直觉模糊关系，利用一对直观模糊阈值来控制近似空间分类，

提供了根据不同需求设置不同容错级别的灵活性。Kaya 等[199]提出

一种基于粗糙集和极限学习机的混合医疗决策支持系统，用于肝炎的

诊断。在模型设计中，利用粗糙集方法从肝炎数据中去除冗余特征，

筛选出重要的特征用于确定肝炎的诊断，有助于提升模型的分类准确

率。Chu 等[200]提出了具有偏好度的多粒度序贯三支群体冲突决策模

型，在研究中，首先构建了一个 19 尺度多粒度冲突信息系统，并建

立了基于该系统的粒度计算模型。其次，在粒度计算模型的基础上，

构建了序贯群体冲突理论。最后将所提出的模型应用于国内临床背景

下对类风湿性关节炎的治疗中中西医治疗方案的优化，验证模型的有

效性和适用性，为后续临床治疗提供辅助决策。彭守平等[201]通过

引入模糊值和区间值理论，提出基于区间值的改进模糊 BWM 多标准

决策方法，并在贫困地区肺炎球菌性疾病临床诊疗方案定位中验证了

其作用。模型在综合考虑各因素不确定性以及医生评价主观性的基础

上减少了主观因素在最终权重获取过程中的影响，有助于医生评估出

更加精准的最终治疗方案。Li 等人[202]提出了针对图像混合信息系

统的三支决策方法，并应用于肾炎诊断中。针对图像混合系统提出基

于欧氏距离的混合距离和容错关系，通过不同类型参数响应决策者的

容忍关系水平和风险偏好，将决策规则以表格形式显示进行决策判

断。Singh 等[203]人提出基于博弈论粗糙集对肺炎进行诊断。研究采

用博弈论粗糙集来定义三支决策方案，如使用阈值对将胸部 X 射线

图像划分为三个不相交的类，通过对模型的准确性和覆盖率标准之间

的平衡来获得合适的阈值对，对肺炎诊断的不确定性进行了充分分

析，提高了决策准确率。Chen 等[204]基于三支决策理论提出了三支

决策支持方法并用于肝脏 CT 分类。 
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3.2 粒计算与机器视觉 

机器视觉通过使用光学系统、工业数字相机和图像处理工具，来

模拟人的视觉能力，并做出相应的决策，最终通过指挥某种特定的装

置执行这些决策。常见的分类、检测、分割等任务都属于机器视觉范

畴。机器视觉是人工智能正在快速发展的一个分支。其应用范围涵盖

了工业、农业、医药、军事、航天、气象、天文、公安、交通、安全、

科研等各个行业，具有广泛的应用前景。本节从不同应用任务出发，

介绍各个任务以及基于粒计算思想开展的部分研究。 

3.2.1 粒计算在机器视觉检测问题中的应用 

在现实场景中，检测是近年来应用更加广泛的任务。检测任务不

仅需判定图像/视频中否包含目标物体，还需标注各个目标物体的具

体位置。目前检测广泛应用于安防监控、人脸检测、人流量统计、危

险行为检测识别等场景。由于目标检测需要生成对每个物体的位置区

域预测，因此模型需要学习更加全面的局部和全局特征。这种特征被

广泛地通过多粒度建模的方式进行学习，并取得了较好的效果。 

文献[205]提出了一个从粗粒度到细粒度的多粒度目标检测方

法，并将其应用于检测缺陷的视觉系统。首先将原始图像裁剪成更小

的区域，并输入深度卷积神经网络以学习高表示的特征；随后粗分类

器模块过滤掉大部分的背景区域；最后，利用精细检测器模块对缺陷

图像中的缺陷进行定位和分类，并由粗分类器模块进行分类。文献

[206]提出了一种多粒度生成器，基于具有位置嵌入信息的视频视觉

特征，从不同粒度的角度执行时序动作候选区域位置生成。具体地，

以特征金字塔的形式生成片段候选框，而帧动作生成器对每个视频帧

进行更精细的动作评估。通过从粗粒度和细粒度的角度分析整个视

频，多粒度生成器可以生成具有高查全率和更精确的边界信息的候选

框。由于一个简单的分类网络生成的类激活序列只能关注局部，而不

是定位目标动作的整个间隔[207]。为了有效地定位弱监督下的动作
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实例，文献[208]提出了多粒度融合网络，采用级联扩展分类块来提

高类激活序列的质量，然后采用边界回归模块基于类激活序列直接预

测动作实例的时间边界。多扩展卷积模块使简单的分类网络具有多个

不同扩展率的卷积核，将初始种子的判别信息转移到周围的非判别区

域，从而扩展了分类网络的可见区域，可以生成高质量的类激活序列。 

近年来，一些学者将多粒度建模思想应用由于行人重识别任务

上。行人重识别任务是利用机器视觉技术判断图像或者视频序列中是

否存在特定行人的技术，给定一个监控行人图像，需检测跨设备下的

该行人图像。文献[209]提出了一种多粒度互学习网络，引入了多粒

度拼图模块，通过打破原始图像中的空间相关性，推动网络从多个视

觉粒度中学习局部判别特征；并提出了一种无参数的多尺度特征重构

模块，以促进全局特征和局部特征的表示学习。考虑到行人可能存在

服装变化，文献[210]基于图像的轮廓草图，利用人体的形状信息来

提取衣服变化的特征进行行人的重识别。作者提出在深度神经网络中

引入一种可学习的空间坐标变换，用于选择判别曲线模式和挖掘细粒

度的角度特征，然后通过改变空间坐标变换的采样范围来聚合粗粒度

和细粒度特征，形成一个多粒度深度学习框架。 

3.2.2 粒计算在机器视觉分割问题中的应用 

早期的计算机视觉任务只能发现边缘、纹理或渐变等元素，但它

们未按照人类感知的方式提供像素级别的图像理解。分割任务在检测

任务的基础上具体到每个像素的分类，更加精细化。理解更精细化的

内容，对电子商务、人机交互、图像编辑和虚拟现实等一些场景具有

较高的应用价值[211]。 

在图像分割任务中，针对现有算法在不确定性问题上的局限性，

文献[212]基于粒计算思想提出了一种粗糙不确定性的图像分割方

法。该算法在 K 均值算法的基础上结合邻域粗糙集模型，先对类别

边界区域的像素点进行粒化，运用邻域关系矩阵得到各类别对各粒化
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像素点的包含度，从而对边界区域类别模糊的像素点进行重新划分，

优化了图像分割的结果。文献[213]将视觉编码器转换为一个多模态

特征学习网络，并使用语言逐步重新细化多模态特征。此外，在网络

中嵌入了一种共注意机制，实现了多模态特征的并行更新，促进了跨

模态信息表示在语义空间中的一致性。他们还提出了一个边界增强模

块使网络更加关注细粒度结构。 

人体语义分割是一种精细的语义分割任务,其目的是在像素级尺

度上识别人类图像的组成部分 (如身体部位和衣服)。 文献[214]提出

了一种新的端到端的、自下而上的类级别人体语义分割和多人姿态估

计方法。它利用不同的人类粒度的结构信息，减轻了人体分割的难度。

具体地，它明确地将密集的人体语义与稀疏的人体关键点关联起来，

学习并逐步改进网络特征金字塔，以实现鲁棒性。 

医学影像分割是计算机视觉在医学影像处理中的一个重要应用

领域，其目标是从医学影像中分割出目标区域，为后续的疾病诊断和

治疗提供有效的帮助。文献[156]提出了一种多尺度协同鉴别网络并

进一步设计了级联金字塔卷积块和残差细化块，并将它们和通道注意

块合并，以利用腺体的多尺度空间上下文信息和语义一致性特征来分

割图像中的腺体。 

与二维图像相辅相比，三维数据提供了一个以更好地了解机器周

围的环境的机会。随着多种三维传感设备（如激光雷达、RGB-D 摄

像机）的普及，三维数据在自动驾驶、机器人、遥感、医疗等领域实

现了广泛的应用。在三维点云分割领域，文献[215]提出了一种基于

动态的多粒度点卷积运算的三维点云分割的端到端特征提取框架。首

先构造了一个修正的三维点卷积操作，随后提出了一种 U 型降采样-

上采样架构，可以在多粒度上同时利用全局和局部特征；最后，三维

点邻居中的高级局部边缘特征通过一个提取模块进行学习。与现有的

基于传统卷积神经网络的点云分割方法相比，该方法对数据分布和计
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算能力的敏感性较低。 

在实时分割领域，文献[216]提出了一种基于多粒度的实时分割

网络，通过将多尺度几何细节与高级语义之间的潜在相关性建模来进

行细粒度分割。在对学习到的特征进行聚合后，采用细粒度细化模块

显式地建模多层次特征与类别之间的关系，生成适合于融合的权重。 

3.2.3 粒计算在机器视觉分类问题中的应用 

视觉分类的目的是识别出图中物体的类别，在安防、交通、互联

网分析等领域有着广泛的应用。视觉分类任务本质上是需要学习到能

够对当前类别进行准确识别的判别性特征。近年来学者们从常规的分

类问题转而聚焦于在真实场景中广泛存在且更加具有挑战性的任务，

如各个类别之间差异更加细微的细粒度分类任务、可训练样本数量有

限的小样本分类任务、开放环境分类任务等。 

针对细粒度分类任务，由于直接学习不同类别间细微差异性特征

十分具有挑战性，许多学者利用粒计算的思想，设计了多粒度建模方

法由易到难地解决该问题。文献[217]提出了一个多粒度渐进式训练

框架来学习不同粒之间的互补信息，从更稳定的更细的粒度开始，然

后逐渐转移到更粗的粒度上，类似于“缩小”操作使得网络可以首先

关注一个小区域，然后缩小到这个局部区域周围的一个更大的补丁，

最终完成整个图像的建模。文献[218]认为细粒度分类的难点除了主

流类内-类间差异反转的观点之外，还由于神经网络随机初始化陷入

了较差的局部最优点或鞍点造成的。作者们利用粗粒度信息作为细粒

度分类的辅助学习任务，提出了一种基于渐进知识转移的多任务卷积

神经网络以解决上述问题。具体地，作者设计了一个多任务 CNN 结

构和一种渐进式知识转移算法，该算法通过调节不同任务的注意力将

训练阶段自适应地划分为“粗粒度预训练”-“多任务训练”-“细粒

度微调”三个阶段，不仅可以将粗粒度知识转移到细粒度任务，进一

步缓解特征空间中类内-类间差异问题和优化问题。 
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除对分类准确性的关注外，一些学者关注在准确率的基础上降低

模型分类的风险。例如，将道路上的卡车错分为轿车或天空均被认为

是错误，但实际上它们的错误程度不同，一辆自动驾驶汽车若犯了后

者的错误，可能会造成无可挽回的损失。由于类别的层次结构反映了

类别之间的相关性信息，文献[219]将层次结构转换为类别之间在结

构上的相似关系，即处于不同粗粒度分支下的子类更相似。通过度量

这种相关关系，层次结构信息被转换为一种软标签分布代替原始的独

热编码分布进行学习，使得模型进行判别的同时学习类别间的多粒度

关系，从而使得模型降低预测不相关类别的可能。不同于[219]，文

献[220]提出通过预测真实标签节点的父节点来减小预测风险，将分

类问题基于层次结构转换为了由粗到细的多步预测问题，每一步选择

概率最大的子节点或由于分类不确定性较大将当前节点作为最终预

测。由于这种多步决策和所构建目标不可微的性质，提出利用强化学

习对该目标进行求解，从而得到了预测风险较小的分类决策模型。 

在小样本学习问题中，由于缺少足够的样本进行建模，容易出现

过拟合问题。针对该问题，学者们探索利用类别之间形成的多粒度类

别层次结构引入辅助信息的方式加以解决。文献[221]利用类层次结

构作为先验知识来训练一个从粗粒度到细粒度的分类器。该模型利用

类层次信息，并探索细类和粗类之间的关系，利用粗粒度分类器减少

了精细类的搜索范围。 

现有方法大多关注类别确定环境下的建模问题，即测试过程可能

出现的样本类别和训练中的样本类别相同。但事实上训练数据难以穷

举测试过程可能遇到的全部类别，而在封闭环境假设下训练的模型对

未见的新类别将会给出一个错误的已知类预测。针对该问题，开放集

识别任务旨在保持对已知类别正确识别的基础上能够对未知类样本

进行准确检测。由于缺少对未知类别的信息，因此如何在判别性特征

学习的基础上获取对已知类的完备特征表示以增强模型对已知类的
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认知能力，是解决开放集识别任务的一个关键因素。文献[222]提出

从样本和类别两个层次上进行已知类的表示学习增强。在样本级别

上，通过引入对比学习方法学习样本多样性的特征表示；在类别级别

上，基于类别的层次结构设计了一种多粒度损失函数，利用粗粒度层

次分类约束模型学习类别相关性。 

3.2.4 粒计算在机器视觉其他问题中的应用 

除常见的分类、检测和分割任务外，机器视觉领域涌现了多种较

为新颖的任务，包括视觉社会关系发现、视觉超分辨率重建、视觉去

噪等。在这些任务中，多粒度建模以不同的方式在不同任务中同样得

到了应用。 

在图像中发现社会关系可以使机器更好地解释人类的行为。然

而，由于视觉内容与社会关系领域之间存在显著差距，自动识别图像

中的社会关系是一项具有挑战性的任务。文献[223]利用高级语义上

下文的贡献，设计了一种上下文知识图引导的识别方法，实现了粗到

精细的识别过程。在该方法中，首先在动作视频中的交互对象、场景

和身体动作定义语义上下文，并构建一个上下文知识图来自动定义粗

粒度组，随后学习了细粒度的分类器来实现精确的动作识别。这种从

粗到细的过程缩小了目标分类器中的动作类别，有利于提高识别性

能。 

图像超分辨率重建用于从低分辨率恢复重建高分辨率图像，已广

泛应用于医学、遥感、安防以及消费电子等应用，是一项重要但具有

挑战性的任务。文献[224]提出了一种数据分割滤波器方法来近似深

度图像的理想超分辨率滤波器，引入一个由粗到细的卷积网络来学习

不同大小的滤波器核。在粗粒度阶段，卷积网络学习较大的滤波器核，

获得粗糙的高分辨率深度图像。在细粒度阶段，以粗糙的高分辨率深

度图像作为输入，学习更小的滤波器核，获得更准确的结果。 

视觉去噪去模糊旨在通过改变干扰人类观看的像视觉素以提高
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质量。以单图像去模糊任务为例，由粗到细的建模策略已广泛应用于

网络的体系结构设计中。文献[225]提出了一个多输入多输出网络，

其中单个编码器采用多尺度的输入图像以减轻训练的难度。该网络的

单个解码器输出多个不同尺度的去模糊图像，使用单一网络模拟多级

联网络，并引入了非对称特征融合来有效地合并多尺度特征。 

3.3 粒计算与社交网络 

社交网络中所涉及的网络结构分析、社团发现、影响力分析等问

题，涉及到国家安全、经济发展和社会生活的各个方面，是计算机科

学研究中的一个重要主题。为了更加有效地进行网络分析，研究者引

入网络表示学习方法，将网络中的节点表示成向量形式，从而可以在

向量空间中进行计算和推理，提升后续网络分析任务的效果。本节首

先探讨如何将粒计算思想融入网络表示学习，然后介绍部分基于多粒

度的网络分析应用工作。 

3.3.1 多粒度网络表示学习 

1. 基于多粒度结构的网络表示学习 

网络表示学习的核心思想是在保留网络拓扑结构特征的基础上

找到一个映射函数，将网络中的节点转化为低维稠密的表示学习向

量，进而用于后续的网络分析任务（如节点聚类、多标签分类、链接

预测和网络可视化等），如图 3-1 所示。 

 

图 3-1 网络表示学习 
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随着自然语言处理领域嵌入方法的流行，部分学者致力于保留网

络拓扑结构，通过将网络中的节点看成单词且将网络中游走的节点序

列看成句子，利用随机游走模型挖掘网络中节点的局部结构特征。然

而，复杂网络的一系列研究证实，现实世界中的许多网络呈现出多粒

度结构，即大型社团包含中型社团，中型社团进一步包含小型社团，

从而将原网络简化为一系列粒度从细到粗的多粒度网络，如图 3-2 所

示。 

由于网络中结构相似的节点对应的向量表示应具有较高的相似

性，基于多粒度结构的网络表示学习方法将粒计算思想和表示学习融

合，捕捉多粒度结构下的网络节点特征信息将大大提升后续网络分析

任务的效率。 

 

图 3-2 网络多粒度结构示意图 

 

引入多粒度的层次社团结构特征，将粗粒度层的网络表示向量作

为上一次层细粒度的表示向量的初始值，从而实现粗粒度到细粒度的

网络表示向量的特征继承，有效地加快复杂网络网络分析任务的速

度。同时，在利用网络粒化技术将复杂网络转化为节点数量和边数量

越来越小的多粒度网络的过程中，保留网络节点的高阶结构特征可以



中国人工智能系列白皮书——粒计算与知识发现 2022 

54 

获得更高质量和信息更丰富的网络表示向量，如图 3-3 所示。 

 

图 3-3 多粒度网络表示学习基本框架 

 

多粒度的网络表示学习问题可以定义为：给定网络和初始化表示

矩阵，目标是通过保留层内结构和层次化社区结构以获得节点的向量

表示矩阵。研究者已经在该领域进行了大量研究，先后提出 HARP、

MILE、HSRL、GraphZoom、DIFFPOOL 等有影响力的模型。HARP

专注于通过使用从上一层学到的节点表示作为下一层次的初始化表

示提高节点表示的质量[226]。MILE 使用混合匹配技术反复将网络粗

化为规模较小的网络，以保留网络的主干结构，然后将现有的网络表

示学习方法应用到最粗层的网络上，通过图卷积神经网络将最粗层的

网络表示细化到原始网络[227]。HSRL 利用社区发现的方法合并节点

构建一系列规模逐渐减小的层次网络，使用已有的网络表示学习方法

学习每一层的节点表示，并将每一层的节点表示进行拼接融合，从而

保留节点的局部结构和全局结构信息[228]。GraphZoom 首先融合节

点的属性信息和网络的拓扑结构生成新的图，然后通过融合谱相似度

高的节点，将融合后的网络反复粗化成为一个更小的网络，并将最粗

的嵌入结果细化至越来越细的网络[229]。DIFFPOOL 将节点划分为

子图（超节点），根据子图对其进行粗化，然后通过从子图中的相应

节点生成超节点的特征，将整个图的信息简化为粗化图[230]。 

Chen 等[231]针对单粒度网络表示学习方法计算复杂且无法保留
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多粒度层次结构的问题，引入粒计算商空间理论的思想，提出一种基

于结构的多粒度网络嵌入框架 MG_NRL，通过保留局部结构与网络

的多粒度结构信息获得更高质量的多粒度网络表示，扩展了粒计算理

论的应用。该架构可灵活使用不同的粒化方法、求近似解的方法以及

细化方法来学习多粒度的网络表示。 

Duan 等利用复杂网络的社团结构呈层次性的特点，捕获网络的

层内结构和层间结构特征以获得更好的网络表示向量来提高后续的

网络分析任务的质量。研究提出一个统一的网络嵌入框架 HCNE，可

以在多粒度下对网络的层内结构和层次社区结构进行建模，并将它们

联合嵌入到统一的低维向量嵌入中。 

为了快速构建多粒度网络，Zou 等[232]提出一种属性网络表示学

习算法 MIRL，以捕获不同粒度间网络的关系，同时保留网络的结构

和属性信息。首先根据节点的相似关系对节点进行聚类，构建一系列

不同粒度的网络，然后学习最粗粒度网络的节点表示作为原始网络的

近似表示，最后在最粗粒度上训练图卷积神经网络以获得更精确的原

始网络表示。 

2. 多粒度属性网络表示学习 

基于多粒度结构的网络表示方法通过缩小网络规模，在保留多粒

度结构的同时快速学习质量更高的节点表示。但是在实际应用中仍然

面临着大规模属性网络特性带来的以下挑战：第一，如何在粒化网络

的过程中融合节点的属性信息，使大规模的属性网络能够更有效地表

示？第二，如何在节点表示学习过程中有效地保留网络拓扑结构和层

次属性信息，确保结果的有效性？ 

针对如何在属性网络上快速有效地进行表示学习这一挑战，Zhao

等[233]提出一种基于多粒度的属性网络表示学习方法 HANE，通过

属性和结构的融合连续粒化网络来压缩属性网络的规模。最粗层网络

保留了网络结构和属性的骨干信息，从而降低了网络表示的复杂性。 
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Li 等[234]提出一种多粒度复杂网络表示学习模型 MNRL，它同

时集成了拓扑结构和附加信息，并将这些融合的信息学习呈现在相同

粒度的语义空间中，通过由细到粗的方式来对复杂网络进行调节。该

方法不仅可以捕获到不可分解的多粒度信息，还可以保留拓扑结构和

节点属性的各种潜在相似性。 

 

3.3.2 基于多粒度的网络分析应用 

1. 基于多粒度的社团发现 

在处理大规模网络的社团划分问题中，通过粒化手段降低网络复

杂性，从而降低问题求解复杂度，Duan 等[235]提出一种自适应粒化

算法 Gr-ILP，使用改进的标签传播策略将相似的节点聚集到不重叠的

元社团中，每个元社团被粒化为一个超点，两个元社团之间的边被粒

化为超边，得到超网络。由于粒化过程使网络规模急剧下降，算法消

耗的时间较少，适用于大规模网络的社团发现。 

Gong 等[236]提出一种基于社团结构弱化的多粒度社团发现算法

MGCD。首先使用网络嵌入方法获得每个节点的低维向量表示，然后

使用一种社团结构弱化算法，通过降低节点属于原社团概率的方法加

大该节点属于其他未知社团的概率，从而在降低已发现社团结构的显

著性的同时，增加网络中隐藏的社团结构的显著性，可以发现网络中

更为隐藏的社团结构，最终构建出多粒度社团结构模型。 

Zhao 等[237]提出一种基于图形压缩的社团检测算法 CDEP。通

过定义顶点的密度和质量两个指数，以评估顶点作为社区种子的概

率。综合考虑这两个指标，在一个经过压缩的网络中，可以同时确定

社团的数量和每个社团中的初始种子。对种子节点进行膨胀获得压缩

社交网络的社团结构后，再将结果传播到原始的网络中。 

一个社团一般包括两个重要的区域，即核心和边界，这可以决定

其形状和组织，然而在实际的社交网络中，很难直接观察到这些区域。
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Bai 等[238]从视觉理解着手，定义节点的领先度和追随度，以评估节

点的代表性以及其他节点的追随关系。基于领先度和追随度，提出一

种检测算法 STCD，通过对简化之后的网络进行最小化切割来发现社

团，能更容易的观察到网络中的社团结构。 

在社团划分的研究中经常会出现重叠部分，即一个节点被多个社

团包含。现有算法对重叠部分处理时主要采用传统的二支决策方法，

但重叠部分的节点往往因为信息量不够才会出现在重叠部分，强制做

出决策，可能影响最终非重叠社团划分的结果。Chen 等[239]提出一

种基于局部组信息的三支决策社团划分算法 LGI-TWD，通过节点的

局部信息构建初始粒子。在初始粒化阶段，以一个节点为中心，找出

该中心点的邻居集合，将邻居集合中有可到达边的节点划分在一起从

而形成子社团。经过局部信息初始化后出现的子社团充分考虑了初始

粒子的结构信息，获得的子社团内部节点联系更为紧密。在层次粒化

社团划分算法的基础上，结合三支决策思想对重叠部分节点进行划

分，获得的非重叠社团的结构更为合理。 

为了更好地描述社团形成过程中重叠区域内节点之间的关联和

差异，Yu 等[240]通过使用区间集给出社团的三支表示，将社团检测

重新形式化为三支聚类问题。采用四种宏观类型和八种微观类型来描

述重叠区域的节点，通过将节点分类为三种类型的不同节点，提出一

种重叠社团检测算法 DOC-TWD，该方法对重叠区域的细化过程能够

对理解社团的形成和发展提供帮助。 

2. 基于商空间的最大流问题求解 

最大流问题的目的是求解一个有容量限制的网络中源点可传输

到汇点的最大流量，并确定其传输策略，使得网络充分发挥其运载能

力，资源的调度达到最优状态。针对持续增长的数据所造成的网络规

模指数式攀升的现象，Zhao 等[38]基于关系粒化的商空间理论，提出

一种求解最大流问题的方法 MF-QST。方法将社区描述为一个子结
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构，首先检测子结构，然后将满足关系粒度准则的子结构视为粗粒度

下的网络节点，构造出较原网络更粗的商网络。此时可以采用任意一

种最大流求解算法，在更短的时间内计算出商网络上的最大流，将其

作为原始网络上的近似最大流。通过简化网络结构，以较低的错误率

为代价，显著缩短了网络的求解时间。 

3. 基于粒度计算的混合粒度评分推荐 

在推荐系统的设计中，为了有效结合用户-项目可观察到的交互

信息和用户-项目未观察到的隐含关联信息，Qian 等[241]将可观察到

的评分、点击等交互信息看成显式信息；将未观察到的内在关联关系

看成隐式信息，通过深度学习方法，结合信息粒思想，提出一种基于

粒度计算的混合粒度评分推荐算法 HGAR。算法探索了用户偏好在不

同类型交互信息下的粒度表示与融合，在不同的信息粒度层次上学习

显式交互信息和挖掘隐式交互信息。 

4. 多粒度图小波神经网络 

基于谱域的图卷积神经网络在半监督节点分类任务中取得了令

人满意的性能。近年来，图小波神经网络对这一任务进行了重大改进。

然而图小波神经网络基于一个或两个跳的邻域结构通常是浅层的，这

使得它无法获得足够的全局信息。为应对这一挑战，Qian 等[242]提

出多粒度图小波神经网络 M-GWNN。该方法能有效地捕捉不同粒度

的节点特征和图拓扑结构，从而获得全局信息。 

5. 分层递阶的结构洞分析 

结构洞是在社会网络信息传播中占据重要位置的一类关键节点。

学者们研究了单一粒度网络下结构洞的挖掘方法及分析，然而很多网

络存在分层递阶的多粒度结构特性。崔平平等[243]提出一种分层递

阶网络的多粒度结构洞挖掘方法 HI-SH，在该方法中，首先对网络进

行多粒度社团划分，得到每一粒度下网络的社团；然后使用单一粒度

下结构洞挖掘算法，挖掘每一粒度下的 Top-k 结构洞。并对不同粒度
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下的结构洞进行分析。 

3.3.3 小结 

网络表示学习将网络中的节点转化为表示学习向量，从而使用机

器学习模型进行求解。考虑到现实世界中的许多网络呈现多粒度结

构，研究者对基于多粒度结构的网络表示学习方法进行探讨，将粒计

算思想和表示学习融合，捕捉多粒度结构下的网络节点特征信息，并

将其应用于社团发现、最大流、结构洞发现等问题，有效提升了后续

网络分析任务的性能。 

3.4 粒计算与无人驾驶 

3.4.1 基于粒计算的分布式人工智能 

分布式人工智能是一种解决复杂学习、规划和决策问题的方法，

通过将问题分发给自主处理的智能体来解决人工智能的推理、规划、

学习和感知问题。从个体的自治性和粒度角度可以将分布式人工智能

分为两种类型：分布式问题求解和多智能体系统。 

分布式问题求解的设计是自顶向上的，目标是建立大粒度的协作

群体，将待求解的问题被分解为多个子问题，并分配给系统中的个体，

各个体各自进行求解，所得到的部分解按照一定的方法综合起来得到

整体解。Su 等人[244]提出了一个自动驾驶汽车的协作任务计算方案，

相邻的自动驾驶汽车之间动态地分享闲置的计算能力。引导中心车辆

将大粒度计算任务拆分成小粒度计算任务，分配给周围的车辆，解决

计算能力有限带来的实时交通检测和驾驶决策的负担。Mohseni 等人

[245]为了执行复杂交通操控，提出了一种自主车辆的合作控制方法。

定义多个自主车辆系统的大粒度问题后，将其分解成一组分布式小粒

度的最优控制问题，将各个问题与不同的车辆个体相关联并进行求

解。 

与分布式问题求解不同，多智能体系统是自下而上设计的，首先

定义独立的小粒度自治智能体，然后学习如何完成实际任务。智能体
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之间的关系不是唯一的，可以有共同的目标，也可以有各自不同的目

标。高阳[246]指出多智能体系统可以分为合作型、半竞争型和竞争

型，因此智能体间之间既可能相互合作，也可能相互竞争、对抗，而

多智能体系统则需要协调这些自治智能体的行为。姚静涛[247]将粗

糙集模型融入到多智能体的决策理论中，当多套决策偏好和标准被不

同的智能体采用时，模型会寻求综合或共识决策，并得出一组由多个

智能体满足的粗糙决策规则。 

车辆的协调和管理是多智能体系统背景下解决的典型合作型问

题。Wu[248]等人利用模型将多个连接的自动驾驶车辆的组合表示为

一维的动态代理网络，其中每个智能体只使用其邻近的信息来局部控

制其运动，实现与所有其他智能体实现某种全局协调。后又提出了基

于共识的方法，以应对时变通信延迟中的拓扑多样性和异质性。Yu

等人[249]为了研究自动驾驶车辆如何在同一环境中相互作用，以实

现如跟车或超车等的高级决策。提出用动态协调图来模拟车辆交互过

程中不断变化的拓扑结构，分布式地协调一组车辆的驾驶动作。

Mostafizi 等人[250]讨论了在多智能体系统中，当所有的智能体都试

图最大化效用，智能体之间存在利益冲突时，怎样利用 Q-learning 算

法来达到各个智能体通过交通网络最短路径的平衡。 

现有的竞争型智能体研究通常针对离散状态或行动空间或专门

针对追逃型游戏。在[251]中，采用层次推理博弈论方法进行交互驱

动程序建模;Bahram 等人[252]使用广泛形式的游戏公式，在基于模型

的意图感知框架中预测车辆的运动;Liniger 等人[253]则在有限的行动

空间内，考虑两车竞赛博弈中的纳什均衡和斯坦克尔伯格均衡。 

3.4.2 融合粒计算模型的强化学习与环境感知 

在强化学习领域，粒计算的应用也十分广泛。使用粗糙集在强化

学习中的应用已经引起了广泛的关注。2010 年 Deepshikha Pandey[254]

就介绍了一种引入粗糙集理论的 Q- learning 方法。很快，这种方法就
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被广泛应用于许多领域。2012 年 Nandita Sengupta[255]等人将粗糙集

理论与传统强化学习 Q-learning 相结合，开发了一种新型的高效实时

入侵系统检测。通过应用切割操作将训练数据中的属性离散化，使用

实时数据获得了 98%成功率的分类精度。在金融领域，2016 年清华

大学团队在他们基于强化学习方法的智能交易算法中[256]成功运用

粗糙集对数据进行了表示。 

商空间也是粒计算模型的重要组成部分，商空间非常适合表示状

态之间的关系，尤其是连续状态中。在近几年的强化学习工作中，商

空间被运用于状态空间的构建。PE Mqirmi[257]对一组状态的关系的

表示使用商空间进行映射，将形式验证与深度强化学习方法相结合，

保证了智能体的安全。CL Lan[258]则引入商空间来描述连续状态系

统中的状态相似性并构建度量标准评估了不同强化学习方法的相似

性。 

事实上，分层强化学习可以被认为是一种多粒度的强化学习策

略，它旨在将复杂的强化学习问题分解成几个子问题并分布解决，它

是解决大规模强化学习问题的潜在途径。现在已有的一些分层学习大

致可以分为 4 大类，分别是基于选项(option)的强化学习、基于分层

抽象机(hierarchical of abstract machines)的分层强化学习、基于 MaxQ

值函数分解(MaxQ value function decomposition)的分层强化学习，以

及端到端的(end to end)分层强化学习。选项的概念最早由 Sutton[259]

于 1999 年提出，在最近的工作中，PL Bacon 等人[260]在此基础上提

出了一种新的架构能够学习选项的内部策略和中止条件，并且无需提

供任何额外的奖励或子目标。分层抽象机是是 Parr 和 Russell[261]提

出的方法，它需要人工设计状态机而具有其局限性并不广泛使用。

MaxQ 值函数分解是由 Dietterich[262]提出的另外一种分层强化学习

的方法。Bai[263]将其运用在智能规划领域中，提出了一种用于开发

在线规划框架的方法，该框架为大型随机域中规划自主智能体提供了
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分层的解决方法。在深度强化学习兴起后，端对端的分层强化学习方

法也应运而生，并在分层强化学习方法中逐渐成为主流。O Nachum

等人[264]提出了一种新的分层学习架构，其中低级控制器由高级控

制器自动学习和提出的目标进行监督，大大提高了样本使用效率。 

模糊集作为粒计算的重要组成部分，除了在传统控制领域运用广

泛，它也早在强化学习领域被广泛运用。SF Desouky 等人[265]将 

Q(λ) 学习与函数逼近（模糊推理系统）相结合的新技术,该系统可以

在没有监督或先验训练数据的情况下自主学习。HR Berenji[266]等人

介绍了一种学习改进基于规则的模糊逻辑控制器的新方法，可以通过

更新其对物理系统行为的预测并微调控制知识库来学习。D 

Vincze[267]在模糊规则库中引入差值并允许省略不太重要的冗余信

息，扩展了模糊集在强化学习中的使用。 

多智能体强化学习（Multi-agent RL 简称 MARL），是由 RL 和多

智能体系统结合而成的新领域，不同智能体之间的交互信息可以看成

是不同粒度的知识。在基于值函数的多智能体强化学习方法中，相对

主流的方法是 2016 年提出的 CommNet[268]和 RIAL[269]，基于两者

发展出的最新方法是 2017 年提出的 BiCNe，它在个体行为上使用了

DDPG 代替 DQN，群体链接中采用了双向循环网络取代单向网络。

基于策略的多智能体强化学习方法中，MADDPG[270]毫无疑问是经

典性的工作,它提出的使用集中式训练、分布式执行的机制为解决多

智能体问题提供了一种比较通用的思路。 

3.4.3 基于模糊控制的无人驾驶与环境感知 

模糊控制方法最早由 Zadeh 博士提出来的，模糊控制方法可以避

免不确定性和适应模糊性，所以特别适用于复杂的时变非线性系统

[271]。模糊控制是以模糊数学为基础，由模糊集合论、模糊语言以

及模糊逻辑[272]组成的计算机控制技术。它属于一种非线性的智能

控制，能够转化人的思维和模糊化[273]语言，实现对无法建立精确
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模型的被控对象的有效控制。 

传统的控制系统分析与设计是基于工作情况、工作过程以及工作

机理进行大量分析后建立精确的数学模型，而模糊控制并不是主要关

注被控对象的内部结构和数学模型建立，重点是分析对被控对象的操

作经验、策略以及大量的操作数据等，最后使用模糊条件语句表述模

糊规则，再根据这些规则确定主要变量、选择覆盖所有变量的模糊子

集和适当的隶属函数，从而确定控制器结构，设计模糊控制器[274]。 

粗糙集[254]理论具有很强的定性分析能力，能够有效表达不确

定的或不精确的知识。粗糙集合与模糊控制中的模糊集合虽然都是处

理不确定性问题的工具，但是方向不同。模糊集合注重研究属于同一

类的不同对象的隶属程度，而粗糙集合研究不同类中的对象组成的集

合之间的关系侧重于分类，两者结合形成模糊-粗糙控制。 

模糊控制系统与神经网络的结合发展也有广泛的应用。模糊控制

具有显示表达知识的特点，而神经网络[275]具有很强的逼近非线性

函数的能力，但是不善于显示表达知识，这样两者结合就能在智能控

制中发挥更大作用。FNAOC 的结构在神经网络中应用模糊逻辑和联

想记忆相结合，可以实现基于模糊规则的自组织控制[276]。 

模糊神经网络控制模型通过神经网络的学习功能和相应的神经

元来完成求和、求积和求隶属度等运算。在神经网络的模糊逻辑控制

系统设计中，由机器学习[277]技术通过样本训练，可构造和发展模

糊控制规则，可发现优化输入输出隶属函数，通过自组织和监督学习

方法相结合，可使系统具有较快的收敛速度。 

Nam 和 Gon 提出了一个基于模糊控制和深度转向神经网络的建

议系统[278]。会议神经网络（CNNS）是预测转向控制的前端阶段，

而后端阶段中的模糊逻辑则是推荐速度和适应新的转向控制的自然

推断。Berk 等人提出了一个基于模糊控制的自动驾驶汽车控制系统

及其在 Racer 游戏中的部署应用[279]。Dai 和 Lee 应用视觉识别和模
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糊控制可以识别和理解环境，并且驾驶能力接近人类驾驶员的水平,

提出了车辆转向控制的模糊滑动控制方法[280]。 

3.4.4 基于云模型的智能控制与环境感知 

Wu 等提出了一种基于云模型的全乘比例分析多目标优化

(MULTIMOORA)方法，用于对工程特征在质量功能展开 (quality 

function deployment)中的重要性进行排序，并在电动汽车制造领域进

行了比较分析[281]。Zhang 等开发了一种融合云模型、D-S 证据理论

和蒙特卡罗仿真技术的信息融合方法。CM 框架中的相关性度量用于

在输入因素的不同风险状态下构建基本概率分配。以武汉地铁系统隧

道挖掘为例，证明上述方法可以综合多源信息以获得更准确的安全风

险感知结果，以及识别不确定性下输入因素的全局敏感性[282]。分

数阶 PID 控制器广泛应用于自主水下航行器（autonomous underwater 

vehicle, AUV）的航向控制、潜水控制和路径跟踪系统。Wan 采用基

于云模型的量子遗传算法（ cloud-model-based quantum genetic 

algorithm, CQGA）来调整分数阶 PID 控制器的系数，由于云滴具有

随机性和稳定性倾向，云交叉算子和云变异算子可以有效克服搜索时

间过早、搜索速度慢的缺点。数值模拟表明，CQGA 比 GA 更有效

地找到分数阶 PID 控制器的最优系数[283]。Peng 等提出了基于

Z-number和正态云模型的多准则群决策方法并应用于空气污染评估。

Z-number 现实生活中信息可靠性的一种表示，他们使用正态云模型

分析 Z-number 的结构，并基于正态云模型提出了正态 Z-number 的概

念[284]。 

3.4.5 基于粒计算的智能工业控制 

对于大数据智能计算问题，王国胤等提出了多粒度认知计算模型

并介绍数据驱动的粒认知计算 DGCC 计算框架。他们将多粒度认知

计算应用于流程工业智能制造，结果表明，多粒度认知计算可以有效

解决大数据智能决策时面临的“数据-知识”融合问题[94]。过热度是
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铝电解生产过程中的一项重要参数，其测量难度较大且测量过程复

杂。刘运胜等对工业大数据的属性进行不同粒度层的约简，提出了一

种通过粒度寻优找出最优粒度层属性的方法[285]。 

Lin 等将不同传感器的信息视为证据，构建了基于证据理论的分

布式多传感器系统的故障诊断架构。该架构可以有效分析证据之间的

冲突并用一个旋转电机故障案例证明了架构的有效性[286]。Xu 等提

出了一种基于证据理论的工业报警系统，以处理被监控的过程变量的

认知和偶然不确定性。实验数据和工业案例表明，该设计比经典设计

方法具有更好的性能[287]。支持向量机(SVM)经常用于自动化机械故

障诊断，当用于多故障诊断和分类时，每个单独的支持向量机模型会

产生许多相互矛盾的结果。Hui 等提出了一种融合证据理论的

SVM-DS 模型来解决 SVM 产生的相互冲突的结果，在多轴承故障诊

断中取得了更加有效的结果[288]。Song 等提出了基于证据理论和直

觉模糊集的传感器动态可靠性评估方法，并在目标识别任务中验证了

其有效性[289]。 

Kabira 等提出了一种将专家引导和模糊集理论与时间故障树

（temporal fault trees，TFT）相结合的方法，并在船舶容错燃料分配

系统中进行了验证。该方法实现了在数据量有限或数据不精确情况下

对于复杂系统的动态分析，这使时间故障树能够在不确定性下进行定

量分析，进一步增加了其在可靠性分析的潜在效用[290]。 

严胡勇等人提出基于多维云模型和粗糙集的混合模型，对水质检

测数据进行多粒度建模和预测。粗糙集能够降低数据规模，提取定性

规则，云模型定量分析水体富营养化的平均值、均匀性和稳定性，相

较于其他方法，该模型在对云贵高原湖泊富营养化的预测中获得了更

准确的预测结果[112]。 
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3.5 粒计算与文本情感分析 

3.5.1 三支决策情感分析模型 

针对评论文本存在情感极性不确定的文本以及评论文本转换成

特征向量时存在维度较高、冗余特征、忽略不同类别中的特征差异性

等一系列问题，文献[291]提出基于三支决策和类别特征表示的情感

分析模型。该模型首先对评论文本进行预处理，去除停用词等无用信

息。然后使用四种不同的特征表示方法将文本转换成机器识别的特征

向量，并应用模糊商空间理论得到确定域上的多粒度特征表示，实现

去除冗余特征属性降低维度的效果；然后对每个粒度的特征表示进行

评估，分别学习到积极域和消极域上最优粒度的特征表示，最后利用

最优特征表示结合三支决策思想，将文本划分为三部分，利用最优特

征表示和原始特征在三个域上分别进行二分类情感分析，得到模型二

分类情感分析的效果。该方法能够有效去除不确定性评论，去除冗余

属性，提升模型的二分类情感分析效果。选取最优特征表示的参数分

析也展示了不同域上的最优特征表示存在类别差异性。 

3.5.2 知识图谱中的语义分析 

健康语义分析（Semantic Analysis）是指通过建立有效的模型和

系统，实现在各个语言单位（包括词汇、句子和篇章等）的自动语义

分析，从而实现理解整个文本表达的真实语义。在设计和构建十大慢

病一体化知识图谱可视化系统软件过程中，首先需要对医疗书籍、病

历等非结构化文本进行知识表示；其次，需要利用分词、命名实体识

别和关系抽取、属性抽取等自然语言处理技术进行信息抽取，实现结

构化处理；然后，将不同数据源的知识在同一框架下进行数据融合，

增强知识库内部的逻辑性和表达能力；最后，从已有知识中挖掘出隐

含信息，进行知识推理，从而帮助医生完成数据搜集、疾病诊断与治

疗，进一步控制医疗差错率。为了对病历等非结构化医疗文本进行精

准、全面的命名实体识别，使用一种多粒度特征融合和不确定去噪的
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命名实体识别方法进行实体抽取。该方法使用 Transformer 对语料文

本进行字粒度的多级局部特征提取，得到局部字粒度特征；使用 Jieba 

工具进行分词，并使用 Glove 预训练的词向量将得到的分词进行向量

嵌入，得到全局词粒度特征；对分词后得到的词集进行编码，得到文

本的词结构编码向量；将 Transformer 得到的局部字粒度特征、Glove 

得到的全局词粒度特征与词结构编码特征进行融合；将融合后得到的

文本特征送入 BiGRU-CRF 的序列标注模型中，最终得到识别的实体

结果，整体流程如图 3-4 所示。 

 

图 3-4 多粒度特征融合和不确定去噪的命名实体识别模型 

 

3.6 粒计算与其他应用 

3.6.1 粒计算与协同过滤 

协同过滤推荐算法由于数据稀疏性的限制，获得的信息不够充

分，因此推荐精度明显不足。通过综合分析用户的评分数据从而建立

一个用户声誉系统，并通过充分利用用户声誉数据来补充用户信息，

有助于提高推荐的准确性。文献[292]提出一种基于公平性的三支用

户声誉协同推荐算法。首先根据用户的评分数据可以得到用户评分的

公平性，基于三支决策的基本思想，将公平的评分数据定义为正域，
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不公平的评分数据定义为负域，将不可区分的评分数据定义为边界

域，使用边界域参数将边界域中的评分合理地分配到正域或负域，再

基于 Beta 分布，根据用户给予商品公平评分的概率期望值和分布进

行计算获得用户的声誉，然后将用户声誉系统与矩阵分解模型结合起

来。 

3.6.2 粒计算与管理科学 

决策分析是管理科学研究中的一门重要学科，近年来不少研究者

将三支决策引入管理决策中，以解决投资决策、政策制定和环境管理

等诸多问题。在投资决策方面，刘盾等人采用决策理论的粗糙集模型，

推导出一种基于利润的三支投资决策方法。其中阀值是通过贝叶斯决

策，以条件利润最大化为目的，由成本函数和收入函数计算得到。梁

德翠等人利用三角模糊数表示损失，提出了三支模糊决策理论粗糙集

(TFDTRS)模型，设计了用于确定该模型中损失值的算法，并将其应

用于 PPP 投资项目中。申峰等人构建了一个基于信息增益的序贯优

化三支模型来评估决策信用欺诈风险，并进一步使用无监督迁移学习

和三支决策理论来研究信用评分问题，证明其所提拒绝推理方法在信

用风险管理应用中的优越性。在政府决策方面，刘盾等人提出了一种

基于决策理论粗糙集模型的三支决策方法。该方法利用贝叶斯决策来

描述政府决策风险，并将损失函数用于阈值计算中。胡宝清团队提出

了犹豫模糊信息系统中的决策理论模糊粗糙集(DTFRS)模型，并讨论

了其在股票投资中的应用。孙秉珍等人在包含代理人和冲突情况两个

全域的框架下构建了冲突信息系统的概率粗糙集模型，基于此提出了

一个基于两全域的概率粗糙集的三支冲突分析方法。同时利用基于概

率粗糙集的三支决策原理，建立了一种确定可行的共识策略的方法，

并将其应用于我国甘肃省的发展规划决策中。刘盾等人考虑了不同损

失函数变化情形下的动态决策粗糙集模型，并在气候政策制定的实证

研究中验证了该模型的合理性和有效性。在环境管理方面，Goudey
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等人等利用三支决策规则为环境管理者的预防性决策提供更合理的

反馈。Giannakis 等人开发了一种基于包含度量的犹豫模糊语言多粒

度三支决策的方法来解决可持续城市固体废物管理方案的选择问题。

同时部分学者还将行为决策理论引入三支决策中，建立基于前景理论

与后悔理论的三支决策模型。 

3.6.3 粒计算与工程领域 

在工程领域，三支决策被广泛应用于产品检验、矿床选择和模型

选择等问题的研究中。梁德翠等人考虑到语言评估在三支决策中使用

的两类参数，构建了一种基于贝叶斯决策程序的三支决策方法，以此

将基于决策理论粗糙集的三支决策扩展到定性环境中。同时利用粒子

群优化法对语言学术语的尺度进行优化，并将该模型应用于新产品创

意的选择过程中。Lin 等人基于客户端电力业务数据，引入三支决策

理论确定预警决策阈值，提出了一种基于三支决策理论和长短时记忆

(LSTM)网络的 PSSQ 预警方法。 

3.7 本章小结 

粒计算作为目前智能信息处理的新思想，为大数据时代所面临的

庞大的数据量等问题提供了一个更好的解决方案。在不同的应用领域

中，研究者们根据各自应用领域的需求来划分不同的信息粒度，通过

渐进式求解的方法大大降低了大规模的复杂问题的求解难度。粒计算

理论与实际应用的结合让我们看到了粒计算与知识发现的应用前景

是十分乐观的。 
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第 4 章 结束语 

粒计算是人工智能领域中的一种新理念和新方法，它覆盖了所有

与粒度相关的理论、方法、技术和工具，主要用于对不确定、不精确

和不完整信息的处理，对大规模海量数据的挖掘以及对复杂问题的求

解。粒计算的本质特征是通过合适粒度的选择，来寻找问题的一种较

好的、近似的解决方案。模糊集（词计算）理论、粗糙集理论、商空

间理论和云模型是几种主要的粒计算基本理论。模糊集的结构化定

义、粗糙集理论中属性约简形成的知识粒度空间、商空间的拓扑结构

和云模型中概念的泛化与例化都体现出多粒度结构化描述问题的核

心思想，这种多粒度结构是－种分层递阶结构，它在问题空问的粒化

中起到关键的作用，它的复杂度和结构性将直接决定问题的求解效率

和求解精度。本书在现有的粒计算理论研究的基础上，结合模糊集理

论、粗糙集理论、商空间理论和云模型等理论，对粒的表示、粒的度

量、粒的计算和粒的决策等方面进行了介绍，并阐述了粒计算在智能

医疗、机器视觉、社交网络、无人驾驶等领域的深度结合和应用，对

粒计算与知识发现理论方法及其应用进行了归纳和总结。 

可以预见，粒计算与知识发现作为人工智能领域中一个颇有发展

前途的研究领域，以其模拟人脑认知的优势，在未来将与其他领域不

断进行更广泛、深度地融合，为推动人工智能产业的快速发展贡献力

量。 
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