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SUFHAMN: ANITEAETUREFRA S, #x4A¥. =W
AFAY . EARAF S LM T REAFNEEELSE—MERF, &
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BUESIPEREE TR EHEERD, RATERAN B = X5
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22 ETREEF IS FRIERIE
EVFZ ZRA A, RBEATES SR EE RN F AT,
7o BB 5 3] & — R R BT E IR, EEE A AT E VBB AT S X
BN TR RE 77 i, TSR BB & B9 LT A A iR A 3R 4E o A K
TREFIWEFEE 2 RAREFONEN . RARFHENAES
WA, X EHMAERAFRERT THINMZH, AAAREF
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2.2.1 BT R ELEERS ) W40 M R R 12 i 7 vk
R T AR Z B R F T ATEE RS AT
(Principal Component Analysis, PCA). # 5+ 1€ 4 # (Singular Value
Decomposition , SVD ) . 3F ft % [ 4 ## ( Non-negative Matrix
Factorization, NMF ) % [& £ 77 i, K-8 % X (K-means Clustering) .
K-# 0 & % (K-medoids clustering ). 2 %k % % (Hierarchical
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LR M BRI B AR, FE| Rt o MER
KETE, NG 0 A BUAFAEE & & B A d MR 1 215216 « d AL R 24 K
, RAT@ERER, &£F PCA 155 41 f BB (K 28 =0y 77 £ 18
AR TEEEHEMNZ HF AT H 77 ik Seurat v5P1, & F T 8 4}
B E R K 7 E peaReduce™, FLESF 44T 5 i TSCANDI,
Monocle3!, DL K & F T % 40 fg % & J T a1 2048 ( Single-cell
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BRI HATIE S RRME 7 R G T EAN 20 fe % AR
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HER A M R A ROR T i R S T A M R B Y SIMLREY,
SAME-clustering?®!!, *f scCAS #H4E # 1T R K89 scABC*Y, 48T
WEFIHEATT AL ES N ER, R E R HEEEEN
HIAEWTRE 77, MR R KM EA cisTopic® 2 Melissal®, cisTopic £
T et AR 2% 3] scCAS #IE IR ZE 82\, T Melissa JU| & 1 3¢ 4 &
I A% AT B2 40 il DNA T A AL 088 AT R R A3 A
2.2.2 BT IO BRSO 4 O 1 221 O vk

REFINTEMBRTERNEFI FENEHET HEBET
ZRRNESGURZEHNFIRBEBNELET, REFREFIERL

&

20



FEATE/RAN G KESH

BT AL R R R R A RATE R E T O B RE F X B
B 5 e Z B g7 vk, B R KR A T A M 4 (Neural Network, NND |
E %% #4 % (Autoencoder, AE) X & 4~ E %% # 2 (Variational Autoencoder,
VAE). % XM % (Generative Adversarial Network, GAN). 4
2 M % (Graph Neural Network, GNN), DL X% iR & % 2% (Deep Clustering,
DC) #77 i% .
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RERAAESEHEFENN BB HFTHEREL L, AR THMT
BFETENIAS L MR RAENHEUEX — )R, Cell-ID #A
WA — R YEN AR EERN ESREAREBEN S+
EHEBREENN, YEE M HRAANTICEFNE FEEE S,
R M 20 B R XA AR R R ALDSL AT, e TR A R WA ST E,
HEEER. M EEA, AEET M0 E AR OE AT 485 %2
B AR A E R FE A, F M, R A REE T AtacAnnoR,
B EE LSRR scCAS HIE A 5 40 o # AL 404E, A3 8 AT
VE 40 B B 4R B R AU AR AT, £ — 2 yE B H, AtacAnnoR E 28R A
MR KRR RN A BT SARCE R, B3 EFREANE S 4
% % 06 1 25 A B 3 B & ik 22 |9 B9 Kendall’s tau R4, P3| H & 47
TN EE AR RAEARE, FoREREY, AFEMEN %
YR TR RIAR A, fE R AL k-FITAT (WKNN) 45k 3 — 3 4 %
ERE KA,
242 ETHHRFEINHFREEITE

SR , 2T 40 A ] AR (0L B 40 B e UM AT 7 iR A AL v B AR
HEIERE, CIEELEAL ZFREEAMELHELR, T EE
B RBEFRAEWRES . BT, ETNEZINTREERK
WEBEHBRNEESEN, TRRTEEXR, e R R fux 3 2| 4
R R ERER, NTAEEE G4 RER,
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Har, B8 2 METH&EF 0244 R A HE M RE &
k. Plam, scmap FARATIEHIEBR A B S FREFEEER S L,
FERH K 4R 5 ik 52 I 40 Bt ok AL e vE PR, sePred MK & R E 2
R SRR R B v T A A B R I, SRR R X 4 B ) R SRR R E AL LA
-2k 40 HDY . Garnett A JF 2 20 g %% 5 20 4048 A0 TR R 40 e oK AL A
FEFICERRNEET XEAUEERN S KE, NTEBHEER
[0, SciBet # it E-test 6 BX A - K E WA FH, & T X A FH W -F
HARFEELFNHRRAE Z AR Fmpg kA HRITEF,
SciBet b3 AF AT v 48 B B R ] AR 3K 3 o A [B] 40 B ok AL R AL B LAR R
%%, VL#hE s ILECHy 48 fE K & . devCellPy 5| A\ T LayerObject 2% 5k
HEHAREEN, EEERFIRBEENERER, HFEZEREMF
K& B % —A XGBoost TMIBAL, X # ¥ LLE ) #0 £ E## E R
o3 b A H T AL AT 2R, AT R VE b E R 4 il 2k L6,

243 ETHREZINFRESIGE

REFEGNEFI FEELHARBENRREZE FBFT —
RHRA, Ex U EFIENRBEFETHEERE, FAEEN
EABEAEEQR MR TERIEFI FE, ETREF AN
FEEREARFERGFEARKS . REF I F k@D E ) FEF
SR T A I AR R R, S BN R R B R A 4R
SEWRE, AR EEGAETEL Z 024 HEIE,

HFER, 2NETEREFINEB AR IHEBEARREREZ E
T EA AR 3 o SuperCT & % — /AR TG e B 23R 2% o 52 4 fifg %% S 2
BENREFIHMERAHF R T &, cETAEEWEWEHEEA,
FEH —#HEAFTRTEEREAFRAATHEANAECG], ART
SuperCT 7 AR # T #Z W%, Cell BLAST # 43I\ T 5% #iE,
W R —DMETHEP By £ R ER, LT — 5 B L 24
Bl %% S 2H B8 20 B UM 2 B 77 RO % 7 AR A R S o s RO
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BOE, B 18 PLHEE 3] e Y A S S (8] B AR 4 A R\ E B Y AR A
BAT, KR EA S E 55 AR N RE=E T, EF,
Cell BLAST R8T 1k 2 == [8) ] 09 /5 Jo - A7 R AR s i B L K 2
scDeepSort | & — A& T 4 AX 44 & W] 48 4E 42 09 T3] 2 40 A 2K A vF
Brm®, A=Ay Ak: ATHERETANENE. FIHE
M5 R A B R 6 & ook - 40 B 2k AV TN 2 Romg St ok
B WITAE LA 800 A R BB F #EAT T 2k, scDeepSort B 4% 52
AL o2 L R AL TN, scBERT [l 42 —MNBUISER, % B ARE
= A #E 413 89 BERT ( Bidirectional Encoder Representation from
Transformers) # 2 #7254, scBERT X —# F Transformer &3
Yy P 25 RO AR AU R T B AR R RS W A K ERAR DIV
o F % R AR AT ISR, scBERT k43 7 % [H 7] 58 B 1F F i 22
R, R B BRI SR A0 P R R B G A AL R A Y A B R
AEBES EHAT R EME, LT RELERNHE AT,
TOSICA =2 —A# T Transformer W% L B E R A REFIER, &
o R A F D R R (A B SO W ) S AT R R R A
B S UM 2 e 4 A ok AL v BT,

EEARENREEFTE, WAL ETEREF N ZEH R
i H B 7%, 9, EpiAnno & 4 % scCAS ##ER B E —
WK E S ER T ik, £ — NET et 2 P it 2 A o A,
7 scCAS HIE o iE B LA 2 Al gEI%, RAINBOW # T3 b5 4B
R EBA GBS K, 7] UF K2 B A R B S R A 4
& & o B4 357 20 jf 25 AV, CASCADE NI 7 2 % 2 W & v £ Al £ 5
T 1 B % s Fn 2 T Masked Autoencoder ) =" 5 B, 75 3% £ fu A
ey scCAS #fE LB RE R T EA A&, TET L&
%, Cellcano = — MWW A L EFIHiE, CarEsFHEEL
W % BER AL, FFTM E AR 4038 oy 4 fa 2k 2L, 98 5 AT 46 &
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EHE-EHEANTN R T8 ErEf (AR R ARFTHIIEE,
TR X — 7 R P AT a8 T I e SR X R R IR A AT YIS, DA SRR
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W E 22K A O3 K An ks iy B, BT FE IR Ry A B fu [
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3.2 KEFARFIN A
3.2.1 Ml HREEN

#l.#s % 3] (Machine Learning, ML) & A TE G Z O A Z —,
i 1 R AR A N BHE o S AR K, AT AT B Ak R 1%
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W& K A 2 # 5T (Graphics Processing Unit, GPU) #7325 Al
Folkge R A, WE ¥ (Deep Learning, DL) 1E y L& ¥ J B — A&
BEN¥, BREFLZTNES YRS RRERNEF S 7%, DL #
AR A RMENLE, CH— I MRENERWETEK, XEE
T AN ME TG, CAITE RN A A, K5 RELERE, &£ &
— M AN (Embedding) Wit A\Fx~, LA THMEE. 5%
G EFIEAARN, DL #A LA F@mE G, HRD T HEFE
TRIKH, Fle(TERAEZ 2oy AREME ] Z o340
BRA, aFEK. XAMmEFER, AW, DL #AREFEE S
M TR, XERE RN EF I AE R EHRIE TR RS RS
BENESFMARREE T HFNER T AEEREHIE, o
ZWEEM (Blan, METHEREIME TZE N EEL HEBER
DL B BT TR e B R A, n B 3-2 P, A AR A4 M 4 (Convolutional
Neural Networks, CNN) F E Al TR REGFFE. F#HE % (Graph
Neural Networks, GNN) 42 E 448, 17 4n 40 fie - 40 i A8 B 1 A V8K
2 - F 4 AU, 3% )3 8 22 W 4% (Recurrent Neural Networks, RNN)
A1 Transformer W % U -7 75 2 98, Flnis 1% 7 5 S B F 5. X
WHRARATHENEFLEENEREN, FlanET CNN B
ResNet!'2{ U-Net'2IL & % F RNN # LSTMU3 sk GRUIM, &% | Arid,
RE S BN L R AR, EEAE A A T 68 B B R 107 Uk
MR R R R B LA e R
3.2.2 HAESAEER

E #4185 A4 # (Natural Language Processing, NLP) # A f# 1+ & 4L
REde AR . B Ak ik B ATE S XA, AW EFAA, NLP i h A
KA Z, FAZELIE BT EILE (Electronic Health Record,
EHR). [E% XmkAn £ 4 E ¥ XARLEH 24+ . Flan, BioBERT!
71 BlueBERTU'OI# A #5 2 % F BERTUVR M, %14 AHAE A4 & %
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AR T 4Tk 1T . BioBERT £ & % £ K iR 7| (Named Entity
Recognition, NER). % # 2 BUM 5] & & 4% £ 4 41 [E % NLP £ 4%
FREIT DEMGER T . BlueBERT N 3E 33 /£ & 4 & 5 CERF7 16 IR
R EHE LHATINEG, #t— P RMT HLB R A EF X
AESHFHRES . WA, ET GPTIE M BioGPT!SIE E T A &
FXARE ARG, BILES W AEY EFIERE T4,
BioGPT £ 4 & AH X <08 U A A0 ff 2 iy B o 7] £ &I W& . NLP
A B R A B T LAY B 4 AR A B K B A B BT XA B 3
BRI KgGE R, Ala K& FFAMENIBIT 77 Z Wl € 7 3 & 2 R,
3.2.3 BITEBATER
ETEGROMBEAGCHREFIEEEZNT HEFEENE D
WA An . EE T EERWREETNES®, BRWIEF] TE
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WA AR A AR Bl 4r, BERT-MKUME B 57 iR B 3 o 09 7 B AL
H—NEE, ARNFETXRUREELWNENFE R §&H LR
M, EEMARER(RETIBRNEE Em T, ERF0E L,
K-ADAPTERPE i R E i E R &R N T EFEE ML mIARF
TN AR A E F AR, 2 AW B AR A2 A BioBERT &4t L,
UMLSBERTPUA| | UMLS & # % s R AT oy m iR &R, &R K AE
AT HWEMAMETEFXATWEXGELE. T LR ATA I1E,
SR ARG A T i AR S g AR B O S 3] BB SOR
RTRBERIRT ERLEGEN, A THESHERREANE T THE.

4.4 HIREE
milEERAEESREEAENERM ELETER, XANHAELIN
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£ 2012 AR, SHEERATHEANET ARTEFWER
& T B X R IR AR E AR L& — R SRR Z A Rk R
B W%, B ERELZK (entity) BKEMA (concept), il KFEL
EIQSZ W EX KRR, ML TERWIGEF I Hix, mREERE
o NE SR E L E MY X o iR, B e RO AR E, S A
THGEAGERETAEN SRR, LEEFMARRESFHRET
MEEREEAEEA, LERREFIEATH AR, mREED
JRMATERER. GaEd. MRS, FXOURB A
REE TELFRANTIFN, FET R LR E BRI 7 E 4
HEAFT — &t &,

B Al AR B 0 B2 S 2 MR T BTGP, B sl R
EANTHEE Y R R b, B F R URA T & ZE 7 AT
¥ RERIRRARMBES, GAFERA. ER. e, FA. FFAE
NEEFMOELMEF AR EF MR EE Y ZE £ ZQH 5 iR4H
B, ailghe, sl A%, EXaREERRRERMBARTA
HES, ERITENERTREE e R, ExmlEiEE S
T 5 IR R S re EAREUAS T Ak T B B2 L, 451 o 500 24 4 AR 1R RO,
W 0 R B o B B R AL PT84

FXET AR EE SR FRGE T LR RE, BRE T
FEEABE-RERR. PEHIZ-FTRHELE, MERRE-EME,.
FE -0 % % [ AR B, £ % A F £ 2 H CMeKG( Chinese Medical
Knowledge Graph, http://cmekg.pcl.ac.cn/ ). BIOS % . CMeKG = #
TAMEE F XABIE, A A XARZBEAD L+ CEF R EE,
CMeKG ¥ #% % 7 MeSH., ICD. SNOMED 4 A1k ¢4 [E Fir & % 4%
BB AL Z RrBEERERT. LT AEFXCARELE. CMeKG
R 7 5 7 B W R IR O AL L A UE T S 30 KA LSRR R A,
100 & T BEA X R R BHE=ZTTH., “AEWE¥ERE¥FARKZL”BIOS
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H a4 2K AT i £ EF R EE, BIOS 28 TEa dilas
SN EFEE R AR Tk A E ¥R E W, ERIELI. B,
ALK, AR, BEEMFT2EER BN, FxET
RIL+Feh “— R EFES 257 UMLS, BIOS 4% JL4F o it
B2, REXET UMLS W, TREHT F a2 AT
HAEMEF RSN EERE, ER;IEHAT ATEGRIE KB
HER, REFIARAN, LEEEMEWEN LR, RAHMIED T B
FROREE N R, ¥R BEAUT A Ko A E %R
XN AENZ20E, ARHATAE, MErELE, 0 2HF
I o B R AR A JEET B T Z RV BT A e R — AN R E
%, DySAT #H B EE /14L& % 3 1 B B 2| 89 50 4 B & o P
EvolveGCN B B & & *F 6 Z| T iy il GCN #HATEE ¥ 3], A
RNN Z &t &t Z) GON 2 A gy 5 450, TGAT 42 A 15 AL 2 i ¥ 4o
REE R, S5 2|4 B et A B ME &, ¥ 3 T SR EAE B 2
B EER, BT asg Ak EE NG R HBY,
dyngraph2vec & fl & & 8 E A )3 B 5 3] sh S BN 77 %, P E
T AR EB, Y, EEH —LH 504 A e R E 7 2K 98 W B )5 40
RE W EIT, Shang F AP R ERFMGY AT &, FREHHD
HE e, WET —NMEENRFEEL, FEREGER L
BAFT R4 R,

45 KIBSHEBEEETXATRINA

HER, KIEEHAEXABEMEERTERIAE T LRI,
AXAEGR, GBRERFEFRET HHMAT R, EEFIE, &
EABB/RATAEZTEA WA B E AW N ER, KiEE
1A E % K B Transformer 2244, 3 4 A A E R E AT B EEBEH
Tk, F 3 XARWEE, BN EFERE, NTHER KR Z F
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IR R o 18 3 X AR B A 5 BB AT 0, 3B SR B T AL AL« GPT-4.
PalMPS!Ifn LLaMA % Efx Foy#E A, LR E AH ChatGLM., X% —
T.ENXTE, MKEKRSE, BT AREEEAERIEES H
L (XA K, &, XEREGERXARERE) TENRI A,
b, B ET R I &R T TR E T A A Med-PalMBé,
HE T E 7 ORI A5 B FH . BiomedGPTRLE — A& 4 £ W [E &
MBS R LHESEREMER, BIHINEBEALHEDEFH
BE, B ELENNEMEFES
N TEANEREERRE Tk, KIEEEAEETHAE L
BAngM T ERAERERS . BT RAET A& KEN ETXER,
VBT BAET RS, ERATEFEEURSFRXLEELE, MA
BEE A G F AT E M AW EREM L T XER, EREFAME ML
X NER. o, KEEERBAEERANZMAMES. e AHE
B RMARAE W EF XK, THFEREXELWAN SR,
AP R G P AT AR A R 48 3E R A ] B T SR B R BN AR 0HE AR X e iR
7 KA
Her, RIEEHAERTHAE LI, LEET XETH
T 77 A R R R, A SR e R AR SR A B PR 7 BB AT L
BLFF o BoR B A AP, Hereom — sy m i A, e, W
BETAERANATIICRAHEER. FTACEKES BAREHE,;
XHEFEFTAEBTNATESTAE, RHEHtieRE, KK,
CHAETEREEMNMEMETREE N LH RN FE
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T 53 ATEEEBH RNA G435

50 B=

RNA W RWBF XA KT B IE. 29 ETE&HEE
&, %A RNA 2t/% 8 % & fi. RNA T2 A8t T& & R8T
MERAHEmEENERE, RNAWHARTAKTILEE.

RNA ME%E %, ks, TRE, HrEset. FL270MH%
HEM A RNA /&, WEEARNITTREF, 52 RNAHFF. RNA
M A T A A B R T E g, £ ERIAE LT AT
mW: E—, RNA TRt E AR MAEEL MEEN T REHS, H
=, ZRANERAREAT B REMTNEE, B35 RNA &4
MAHFAN, E=, LHAAHH RNA UK ER/NTFEEREMK
2. REZR LT FHREL A, MHTNEE R =444, N
RNA = & &M 2 — 4% E A PR,

# E 2023 4 12 A, PDB #{4E &= o 4 #2 1 189000 /™ 4 41 A 4+
FHEMAR, &H RNA MR L &&E4 41 0.86%, X+, @#F
5 H 4T 5 41 RNA 44, PDB 4 4 37 % 4 19 RNA % # 35 & (F
)R HIEEF ZITH RNA %2, RNA SMHKEHKEE. X
K RNA = 2 H 0 W2 AR KT, RNA 24 3 & 10 1L 7 86 i
R RN RS EM T s R R BT Ko

Science # &: ¥ A Al FLAH ZH A RNA L4 T A4 A,

RNA =R AT £ 2 B LT HEMNFZRFIT 2 BENAY
B, W TAZ R BT, Rosetta F2 22 19 1 I 4 RNA #) 5 R A2 (it
T #rry B, 72 Rosetta 1E 22 T 2 T A2 KA An B AL 48 £ 77 5 89 RNA
EHREMTNEEHBHR S T HEXFERA M TS EHTE,
MBEFIMEAXTERRT ERIT o BEIT 5 T ER s, BT =%
BRHE WL RNA BT BB NER T EHNIT2HE, &
E—FAEE 57T RNA ZREH T E.
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AREFA XN ERERTRKEE YD TFF . &M B aenAa
ABEEMEFERKAED B AMERFRE—NE LR
AN, BB EEE T EWITE T LR A ENEWMA L THIE*
Tat, BERNEFRBENENERRMEAEL, W, FLxAE
KM Ry — F AT DUR S X A EATALHI AT . E15 R ¥ A0
BEENMFHANKELREENRG T RINEZTALMEDAN
REA, HAEFRREAARRET B Eahfo ok 7 £, ESHARH
RMEF, TR FLANAENERFTERRT HERE IIRE.
EHE. 2WE. IgA BRERRF, FAEE KT X LRRFHATT
FERNHHR £MERFHUATRZNE A SN AEWEAE, AT
HRERENE R

EER. SBEREEREEAGRATLTT OO ENAL T, £
KT 0946 1 T8 & A 15 B AR — T K3k aR, #5712
RNA = R &M BTN, RNA & —F B ZEZ T RE RN S e £ 4
KaTFo. RNA ERFANM AL EFZ TR, w7 0BGk a
B JE 7 E T % microRNAs, T % & &% F Z LA % IncRNAs, Xk
R AT RNA B9850 Rom st 7 e B s i B b b . Hh4h, % RNA
45 M B R R R RIS 40 B F K F E pre-mRNA 5 RNA-& & FiAH E 1
FIH AR, T 5 a9 B AT N R #t — B AR A A e B
RNA 38, X (F 75 RNA BIAE X5 5 5% — A

RNA EEYMENAE LM he, AT ES K F#EEDNA BE
Mg E RENAE AR, HIFEERL THE K. RNA Wi at
FHZE KE, ERANFARE, ARARKINT RNA 19— L5714
AE, AL DNA 2T 5 B % ik mRNA, #—F 8% k& afi,
M 7 —#% DNA 4 F 7 Bt R % 5 ik RNA, T aedt — S 8%, TEH
B & 8 A 4T # RNA 2 38 %% %5 RNA(non-coding RNA). 3 % 2
RNA g EdlEa e k. BT FTIBIFHTEE, BRI/
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it RNA Tt B —LE G LM EWF I, wRERM2. FE0
WiE ., EFEEIT. RARKETREWRELZ N R EATERRLA
RIMATEEZFEEMNS N T MR EF K F AP (Clay
Mathematics Institute, CMI), 7£ 2000 & & 7 7 7 A # ¥ % #4,

ifl NP 5 4 [&] & 1(non- deterministic polynomial complete problem) &
FTARBFRAZ —, TUHEZALTE NP T4 F (NP % 7 2 )8y —
T AU i . 3T A R & & RNA JF &, ik /% % (coronavirus, CoV)
B RNA %54 78 % A4 H % {8 %4 (pseudoknot), 418 25 i1 RNA 444
T A A2 NP 572 4 5 B, A X RNA B9 # % B4 % 4% Science 71
AR EEZRFIHE, 1986 5, Science EF| & T & /R ¥ k5 H
Dulbeccol® % T A 2k £ F H I 7 08 K18 50, MR XA RF A
3 T 20 22 A 2k & H 4 it X (Human Genome Project, HGP)# 52 7 ,
WEETEMERFETEENFFRNLE,

M 2019 4F J& T 46 1 2 3k 5 2 By 3T & iR % & (COVID-19) 4 A K
WRTEAKE, FADRFEET RNAKES,RNA £ h a4,
ZEMARE ., ZERR, RARGHHREE R T RE. SRFEEF
AREH I 245 RNA &, B4 A 80~120nm, #4737 M#EA
B, EBEYRACTH RNAFEFRAN. BRWEERIAED T ¥
BoRERAREE, £9, TEAETRE AT R E(severe acute
respiratory syndrome coronavirus, SARS-CoV). #F &% 4% &1 7R
)% # (Middle East respiratory syndrome coronavirus, MERS-CoV)¥ 7
AR ATEEHRAT, EATERFEFENTE . AGAZEEHE
RN, TR R, SREE S LB 100 2 M EE, BEiIFS &
BRMRENRAAEE, TARHESEKE KBEIHA SARS-CoV IE
AR E A LR, 2019 X ILH) SARS-CoV-2 3t/& T #i#E SARS

69



FEAIERAT G KA
T IR AR R AAE TR O B R E A

ALY LR e Rk, SRR e, SREEWREE A
JLF B4 BT H RNA R & F & K8 RNA #®E 57|, RNA 44 70l |9
FLRJET RNA RAMBLE, kBT % &% @ 25 4o &) 8 1R R 1
RS2 SR E A8 B R B BB B A B RNA £ R4 A K, I LA
" RE. B RNA B9 — R 244 86 F S I my 77 7 sk U E M 57 4, RNA — %%
M, ZREMEZTWREN, ALl ENE+4EE, FHimf
T T k5 B A R AT TN RNA 25 4 pk 4 o] sk b ek 3%

sk E i gE, BEHRK RNA B8, H7E RNA A& 4
BT EE, FOOE LT AL RNA B4 M., HEIE RSN RNA
EREMNE T ETERGR M. F—MHELAA X G4, Rt
Ix BOA R L F LI Tk, KR SRR i o7 AR B9 4 R B A
HY &, EREMEZHEME RNA KENE M EEHN K, FHAL
Ao, WATEFE., F_MELRET AW THEERTN T %,
LRI HY RNA = R 46 T B % & B 2T AR 4538 m9 T 77 o o
THETN 7 & BT R RZHE R = R TN 77 E K8 E A
RNA HEREEE, £ TWEOTN A &R T 8T EHN R, E
FATI A G5 A ARG B 45 o B (] AL, 0 0 R S R R 2 A TR 3
B AT A XA, FEX I A ik AT R A .

BT RNA 4 FRHEEREAARENITETX, BB EE RN
R 7R 2| RNA R PRI ER T E, EZERSE, F
E—MB&k, BEAS THWEAMZEARMKE G-, FEHEHER
HAMA L, BERTHA. #e B f Tz Fn, R4 45
HEAWGG, BRASTRAEMZEARIKE @6, E1FH RNA
ATHZREM T, REBEREAEDAEFNTE LA, 28 B AE,
B AW WA E BN B dEE. o, AN EEBERZ G TR
[EL AL, W[ LUK FATALE, Elet e #AELERH#ATT £ EHW, HFE—
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M TTHT RNA Z R & TN 8 5 %—& & 5 4F -~ Z (Monte Carlo,
MOC)FH AT W E %P,

21 W, MEeTEMEE., RE., 2E. 2. HARF
REE S5 AREFE IR 237K, AKENEERFR—A
RAMEE TR R, REEFHRLN S TEE, A ARMEM
R#ATE X, T RNA EHMF TR I REEFFERZWNEM,
YK, @A X RNA WA, A2 RAE RNA BA%, 5
BT ARNEFENRARXT. RNA Z 2@ E 441, RNA EifE
5 B\ DNA & ik & g JTry i 2 R 4 FAEF . RNA A4 T, 4F
A& RNA ZF AT E ZEWHREMTNZ LS5 FARFRARL,
ELEFEMNERESS. FrEmeuRETER FUNF &=
ExEBERA. TRAEENRNA EHEELES HARSE, €68/
%09 RNA 25 M 0 (3 AR EBA 2 NP 2 AR, WEAHR 7 A%
FREAMZ —HI NP Ea A R e HATH R T MANEE, & T %
ELRNA M a5 B, Sk £ 910 T W £ F 9/, T FE %4 RNA
EH, FIANEZFN. REFI. BREXR. REFZ 7 ESALE
ARV A, %6 RNAFEEMFE, FAHZIELKARATH
FATRFEEEN, E6FmAK-FE . WE k-T B 7 A F #2519 NP
Mery R AR, DA MM R R N AR ] AL, R B RNA 2544
FMFEESEREFFENYE TG, RREGREMEN, &
F RNA mAREE, HAT % TR RNA JF 5 5L Fo 30 ) AZ 8L 24 4 7 )
REZLMFEAE T

T Fl T DNA s S8R je %44, RNA &£ B2 H, RNA #5775
Tae A C. G. U NM#E. aTmAZFEEN, HAZNWA
J&F R/ AR K] - = AN ER A 34 . Watson-Crick(W) 3,
Hoogsteen(H)i4, LA K Sugar(S)i# . B2 34 £2% RNA #T & & g9 12 <
M, REEHMTUARERMIFENEHEEREE, FEEHR
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E#k/N, RNA &M,

RNA & A 35 454 S0 (8] Y T 47 A8 B AE AR AL | i or 45 A0
BT S FARIAT AL B DU — A S S5 AR S T AR B B R 2R
B, EEMETFEEEN G EME b KA R EH,
RNA  FTHEHGELZTERESEMMAENH M. HEH
RNA fTE&EMMNRERFEFTEZNER, EXREHHR/IG ) F
HRAASE D, HEMWREZMET e B dE S8Rt E1, AU,
CG £ Z RNA B2 77| % Wy Z I 44, RNA ZIREE M BT
A REH T RAMEE A S, TN RNA &0 A F 2R HE RNA 5
EFHHEAC B2 BT % R, R GU WAL E RNA # )7
Flb W% X, e GUHRIWENLALE TSI X REAE.
MAFEZHER & REA, RATUGRAENTERFEZ TR,
H—FRET EHGEESHWIEHZE, Mathews f7 Turner™ & # 8 B
5 A E S8R A B AT KR S

FLZRNAREFTEABREEMN, wdhmErE%eF HAR
4, BERRNA Q FHERSZWZREMET, BEWNFAEE RNA
M E A b, BEETFEH RNA o FRARMA, B, HiEE
FEHEEENDR, ERREGHFNIIR, ARFEA T EENE
XN, RiERdEE i RNA 41, B4 48 RNA 44
T 2 E BT RNA 2549 T 8 %6 o 2 5 A0 K 9 5. 1985 £, Pleij % &,
TN T JLFFEH RNA BB 4 4441, Kolk % 7 1998 4 F DUE 52
TBREZEMHFAENRT, AXeBEH RNA G4 TN H &L MUE R
SEANFRRLME ZTEAR TR EZL —, £ 2 T A A 47
B e AR B R 2 5, A4 RNA 47 & 44 TN E NP % & 2 5
VLB R R R A H BB R 5 24T & HATE F B E R %o

i 3f RNA 4 94T, A5 % T d A e s m = ik
WM =R EMEZWREN, FFAMNEERKBEOEREN RNA
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25 M TR X — I F R AILBH B NP 4 8 #R, A F 0L 8 % o4k
TR HEHEL, FAAKRTN RNA &4, RETNAEE. &
S R AR A BT RNA TN E =5 & 4,
AR E AR L B W8 BT RNA A9 TN £ £ 9 E
RS, B R £ E T TR R E A A
FEMElHEAE, BAREEENE

EWE RFATEEMF I 20 HA2 80 FRAMBEMA K —1F
B, ®EAFIRE R T A% Waterman 6] T £ 4115 B it E A
H A, 1981 %, Smith 5 Waterman # H 7 & & 8 F 7| b 4 89
Smith-Waterman % 7%, % % % % #f 7 Needleman-Wunsch & % 8 1~ 2 .
% [E # Pipas 1 McMahon % 5t 4% tH 4n 7 12 | i+ H ALE A TN RNA —
K EEH . 1994 £, Walter 1 Turner *f [7] 453 & 7£ RNA 37 & F 8 16 F
HITTHAR, AREEQERELEN, (52 RNA £+ LG43
HREEM—RLE, BERT T AR EZRB RNA 18 &40
BETEMNER, BELHE RNA LA E AL A NP %[5 &,
¥ T JE BR A R 891, Zuker &1 4T Mfold H ik, BAM
R B & 7| N\ AR AT B i /1 F #2L  Rivas 1 Bddy!'#2 ) 7 T RNA
ZREMTUN R Pknots Bk, FULTUNE R B-FEBLE A 2 FF
AL, EEMEELEY Om6), ZEELEH Ond), IF=EZE
EAE, ZHEFETRAGENRERTN AL RNA B R4
M, KEwatle &R EAn s B Z R E T ERN T ZH Lt H e
AR, EH RS RNA EHTNEEFREHE. &BEH RNA
MM AR %25 EEN, £ RNA S T AT+ #2325
A R . RTERESH T URAERE S BTV FE g(0.83)1F 4k
B2, QU EHE Mo N BREITE, FH—Hr 5 HdLRER
Tt &3], Nixon 303 mRNA BRELEM MUMT, REBEHREE
H mRNA ## 4577 % . leong ZFU4T 2003 442 H T & A M & & xf 29
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B, BRI MBI T 1Z K F A AU aE A 3 BT S % . Lyngsel!!
WAt T BB & 42 B35 O(n8 1) MY i A 4 & 4 3¢ B B AL A 8 S o,
EEVEMELLA, FE, Lyngse #1417 & AEERKE /A, i
BR 7 i A & 2K LR T NP AE R, %3t T 2 BBt Bl s £
Ruan 4 'fn Ren 4[4, %f RNA BEH#HAT TR, 258RET @4
LW B & REE MR LI HE %, Huang 1 ALSIXT RNA B 45 46 9 84
T R R AT T A 90, Han UM T &4 4 M RNA 245 H Xt
B

20 HAK, FEAF¥EANAFTERERRKFIHEEEN
REFNTHENGERFAEENFHRAE, FAKFEAMREN
R, FHOUEER AT SZE, ERRFUHTEINETERET
HETHARR. ERAFRERIRA TREENERF. WEDE
REFEMENEYERFEMERABNAR, £EMEREGWENITH
FEAEAFR . WRERAQN. EEREMTNERZESE FEH
HTEEWMN NN, FPEAFIEN. FRANASHMTEF
B SEAEENERITEABHATT EANRAWARL, EKERD
ERATRFHENRTNE 7 ERET EH AT —HEL K
R 4k, BRNFLF¥H R T RNA £ TN T, 455 2 RNA
R EATN . F B R F AT E AR PR M EROME E — A g A
ALK EEIE R 2 R AR A E AT H ok, X' WA A2 %7
(field programmable gate array, FPGA)# RNA — 2% £ ) #47 L], =
BT EERE, RASPIRERNAFTEWNE S, BET —#HEAR
HWREFRTFMEBLEN RNA —REH, ZEF RNA WERX Y
ERET, RKABARERFELZRXWEGTEFE X E &8 x/D
FHHAME FZEmW RNA Z R %M, 2B ERERER RNA =%
EMRETE ERE, ERAFXN TTEPRY 14 A KA RNA B
sEEM, R — MR E# M RNA FEE &R E—IE, FAMER
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EEHGEREERKEATAHRARMAEN RNA ZXAE 5, HF
A EEAEF RN, R A RNA HIEMEESRE T, BLe T/
BOAF Li T3 Wen FRUEUR T FH A9 R R . Yue FBIA] Dot Hf
W 45 4 & B B ik R BN/ RNA, #BE T NSRS RH,

2011 = [E Z ¥] {4 K ¥ 89 Ellaousov £ 1 7 @& £ W RNA — %
EMHRETNFE, ZHEWNEEZLEA On2), TNEHEHN
69.3%, 1BKE L 700 By H BB TN Z T E A, 2015 4, LR
RFFEEHREGEMAF. EBMFEMLAF. BT AFENH
AR EE R T — 3 r7 RNA # R4 % 3% T B Bridger, £ 50 &
B &K EERE 4% A2 E Genome Biology _t . Gupta 2202717 5k #i7
Rent-or-Buy |7 # B, 317 ZF 0 0y 3¢ 4 & 77 vk ALl B 20 LB vk 3k
5T E, RESA KX FEE ST EANA ¥ E T2 EEE Annual
Symposium on Foundations of Computer Science) 2 [ [T & 4 # F|
Journal of the ACM) I , T )L 5 3k iy A~ W] ST M ok, Ay 11 47 Sk LS 7
JU B — A FTH R R P, S R AL R AL A A
G BREMTIRFEEN RNA &4 TN E T 37 88 #ry &R0, #
£ RNA F7| B EZHFR)EFEENTE, FRERZER)E K, N
rmeNzEE—F%8&, #EPEREZEFERXX, NHH RNA £
o FERSE, ¥ LIE RNA A0 ALE o B R 2R, AR R E
F3] . MUE RS EE R 5, ®iT NP B @& K% 7 RNA
S5 T A LS %, EBA (A ARy AT M S R, I R — A EX
MY R EEfE RNA M EARE, MLRAZEMER T eaeHm, A
B E AR ET = RNA S MR M, T T A 4 4= iy T & 0% ] LUK
J B B RE1E A V5 A & (R 15 ZE X B9ATVE, RITAH X RNA RE 44
O L LS8 326, A8 X 58 18 S FT LA A 2 SOk BHAr P21 3 3 K 5 B Wong
FUSIRTo B B W RNA T & &M et %, Bt T AR THH
RNA 44 X 77 ik, £ E & AT ncRNAs (non-coding RNAs), # H
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L 350 > neRNA R F#AT T £H . 2012 F, Wong FPL it
T A E AW RNA At ik, HetE & 42 F & O(mn3),
Wt T RNA S Hxt Bk, H A aE AL (B 4, B[R B 44 Z 4 O(mnd).
ARG POTE Y T & 458 RNA SMIAMNEER B AR E %,
2013 4, # & /RA¥ W Reinharz & C8IF| F o AR B A Fo e B8 77 i 1% 3t
T A ARE %, o RNA ZREM WU, FHET REFHNRR.
PRI EPNEN AT T & B 45 RNA fr & A sk, £THS
BRmAMARERNEE, #H T &K% RNA &8N H %,
4 BATUA % B9 Andronescu 04 xt BLg ¢ 48 U7 4R JE B9 £ 4089 RNA 37
BEMHTHRE, BT FE RNA F 71548 E k62 5 BE 0 7 %,
¥ fim B K % B Babait* 4t x¢ B [ A4 5] B4R 2 T — ML L TR A (]
H, ZHE T LR AR AN P R Gt B DR, it B %
FufE £, 2015 £, Keane W% T 2 @ % /5 5 # HIV2-1 #7 RNA
I &AM, 3 HIV-1 AR A E W L #E. 2016 4 Kucharik ZM419F
21 84 TR RNA T &L T OvReE, HREWERE HEZ.
IS S A B AT R ok n 2k, 2017 %, Gomez-Schiavon 1%t
40 il RNA 4 F 9 #9 BayFish HLE #AT AR, MR T X 2400
HYFE

X & KRR HAT 0 HTE, 5 RNA AR LA D, 4o
B LR E E T A% microRNAs H 4 #) 5 o gk 1O #F %
Autophagy-related IncRNAs & 5 I R R E B E X E R V),
X R BT RNA 8981 7 7] LA B o 70 4R (R 52 g 90 2t o RNA
R R E R =B M, HEWEERTFE L RmER A E K R
iy, ZREMB LT BT L ZFE P LB, RNA B3 6
BARTHE=ZFEMREHE ) FTEHEFHEEER, RNA ZH4%
HWEZREET RNA o THREFIERE, RIMIAFTEHL —FREK
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RNA 8 = % 4 #41%,

H ol Hl T RNA Z R &M KRB0 A F LI 7 ik A FEHE %P,
R0, (B2 EF RNA ZREHRTBE, E5%3HE
M R £ RE, R ETEENEN, REHKH RNAWE =X
BERER, FTURM —BRESHN. TEHNRNA FERFEFHEN,
i, FEANREMEEFH T AR, EECHNENS TEN
BE e A, AR EALE AR TN RNA By = 2 452,

Rl E £ A2 T8 Z R EM TN T, & a Fey 464 T 7 %
C4HFREHE, BE1Z77 AU T RNA B =% %4,
HEHAREBMMMEGREMN T EEEANA T HXCHE G W
A, BN FIWFERAATIGE, RIHEXE G RNRAE, #L
FBrmEAB, EEETTRINAFN RNA g% ERT ) TEAER,
TRUFEHER AR EEKE, F TN E G 587 %I+ 1
&I T RNA, FELEFEA B AT 77 % R #HAT RNA ZHEH
TR

5.2 IR

WEF, FRARLIN RNA BF R EAMEEE LN EHF 8,
RNA ZHARGIRT iz EM. A, RNA = F &M TN KF R
A ERSNE, 5&GFEHTNAELHRARAEZET, RNA
CREMTNEARR —EEETEARENTNWHEXHAR, £F
HE=NEH. £—, 5ZOREHMEL, RNA 2 FEHEHELH
BEwmE, HILRNAZWHEEEL S, EHMTNHHEELR. F=, K
F-EERBENERNA S FTHEEHAZS, BRAEKEARER
A LLRA], XA RNAW=ZREMTTMNE R T EE. F=, RNAH
FEEAMEORMEEZAEAGL, 54 RNA SEGRWE G ERM
4-F 8 44T, 100nt(H F B , nucleotide) B RNA = % 4 # 7 5 200~
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300aa(amino acids, &85 B 4 T g 2 A5 7 AR &4 19200, X
JELLIEBH RNA ZZ A ey A, E2 5T RNA =R &4
MEE G RERTNEEE, BTl RNA =4 TN E LR L
R&ME,

RNA 7-F — 2 SR 2824, AT RNA 2T 8 X 2 X7 g
& BT, HAT A B ANEC X Y A R B e 2 4 o RNA W88 e
—HEAEFURY. G5 CERX, EFEFEmERY, 1G5 UH
fixf. RNA 4~ F F e 5 A 2 DNA Wi 0L, idF 4 X
U] P Bk 2 A% BT T A28 4 1 HE (bulge) 2k 3 B (loop), 48 B W82 jE [X 38 fn
[ AT e R K6, R FEEM B RNA F L@ —REMT R,
“REMBE—FHENR=ZFEN, RNA T RAERF =ZREH
A AERE. RNARRSEa R REZEEGE S, RNAWER LY
ZRNA 5EGRWAELERNR RN, RNA ZHTNETEEFS
AW (e R HY S AL R AL

BATARE—FHH RNA ZREH TN TERTMNEE £ 8
RNA =& &M, £WiTHEIHEIT RS RNA Z R EH TN E %,
BAW RNA ZREMTNELETEQFAEL: —K2ETHHRHN
RNA = REM TN %, 7 —KEETHER RNA =R &M TN K
Ho ETiIRey RNA ZREMTNE % EE G MANIP F %,
ModeRNA % % . RNABuilder 5 7 . 3dRNA % %% . ModeRNA # 7%
A1 RNABuilder 5 % 2 & T B JRZE N RNA = F &M TN H %, &
R T B R T R A R AR B X B AT AR, AR A AT
Eatht, REWELABENHEE.

ETHHEW RNA ZREMTNF = ZREEEG RN, &
WK RNA ZREMMEZZE, FREGRRMENE R, XFEF
EHEASH, EETRRFRPHESAZ D THANFFEHTHES
B 4% = KA, #AH % H FARNA 5% . FARFAR H% . SWA & .
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SWM H %%,

#E 2023 £ 12 A, PDB #¥E & + #18 #1L 189000 4 47 A 4
FHEMAR, 48 RNA ARG LEHHH 0.86%, HF, @F
5 H 4T 5 4 H RNA 44, PDB 4 4 37 % # #9 RNA % H 3 & (F
)R HIEE F RATH RNA % E, RNA £MHBEHKEE, X
K RNA = F &M 2 W AR KT, RNA &4 & L1 8E i
RFARANRASEMF s RE B F K. B 5-1 5 DNA, RNA 5& 5
Jix R L B

g it -
DNA /= RNA ——— Eaf
i

& 5-1 DNA. RNA 5EBARKRKHOEN

A-U B A& WW IRKXE A, G-C #ER WW KB, UK
G-U 5% 2 0y W/W I3 B2 2 2 RNA A7 4 5%, 2 BC 4 (canonical base pairs).
AMAR LI, BaiWEE B RNA 4 FF, mERERAS EHET 4
80%. & X 3F #F /5% A B % (noncanonical base pairs)fX & 20%, 12 & xf
THRS RNA=ZZEMTANEEEREE, FEFEREIRHHFET
M= RNA = 45 T Y & 2 A9 7 R

RNA =ZEMMNXBERANFE: —FHE, FAHZKER
A RARER M 5 — T E, A6 E BT 2 BRI A R ey I
FR A, HE RNA ZREHTMNE X XA TFETELETE
ARREEENEMERE. REARAMEWERE; T8N TS
RARE L2 m RNA S TNERNFIN, YMEETAHT —
Mo LV B ST N AT 4 B 4, 28 RASP. RNAKB potentia, 3dRNAscore 71
Rosetta 5F 37 7 %K. % T RNA %544 FUM 09 28 — 2 B 70 % B A 77
HEHAT. 4N, RNA ZFEM TN R BE KL CE S TR
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AAEHE.

HER, ARARETAENITERET — 27 RNA = EH W
M %, HF ModeRNAPY, 3dRNAPSI, FARFARPS, MANIP7I4,
T E R EELAT RNA WA 7o R A K%M, TF RNA =
R EM TN BRI AT T —ER# &, WA, Rosetta By H I A 3 —
& LI RNA = R EAEAE# TN €13E T ¥ 88 . Rosettal™ & — T F T
EWEI KD TFTEMAEEEREREA, FA—FHE) 2. REH
BEIIIEL, TIRET AEH %X RNA & B = F &M T.
HETHEG& %, #ix Rosetta B4 F Y BT ok, H &M
MY RFIH—FEE, wiEfgRZEr T # 5’ A
7 A | Rosetta 2 7] LUA 20 T RNA =R 244,

RNA =ZZMHNNEEZHERFTEEE. XFEHTE, GHE
W3, o TR T HN. & Rosetta IEEF, AWt HE T ERBEXT 77
R, —FE, BELMMETEERASRLELEN. 7—FH,
B — AP SR s B S R 2. AT RNA 5% & 8 4 i
Mims, ERHFEEZEEE DL, Flin, HILFHE Rosetta fE
FRHO, MR KEFTE—HE RNA o HXZENRT. o
RS 52 |8 AT BORAE, ABABA V] B S UG o o 22 A5 Ao 2
M A M B B R AR

KT REME KA S, Sripakdeevong %2132 Wy T — B X,
IR — N FREEE TR FAE A, A # N RNA 808 7 1
W%, HBEEFAMEEZ., Watkins &8 — 542, RNt
REA R UEREFBERRRITE AR, REEERE. AT #H—FKE
WItH AR, REEEREMERETEE, EXFRXHFATIH,
T EE S RHAT R —FAM AL,

2018 4, Liu % @4 B 4 8 RNA #T& &M LR, B1K
TEFE Z 4 E, gt T MIEE. FREf Uk, 2019 4, Meng
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(05141 3f RNA A9 M 1T 7 RAG-Web 77 7%, X RNA &8 7 &
HATINIR . 2020 4, Rivas U H % RNA A9 6115 T RNA B &
FH T, BT RmEFF NS HE, 2020 4, Menden %67
F R % S A RNA £ A8 R H R IA I LR AT, H R
R % &1 Science b, 2020 £, Liu %0813 RNA # & 4 # i 4 bk &
(basin hopping graph, BHG)5 B &4 #AT RN M7, "RHE T E T R
£ M B RNA TR %, Guo FIIR AR EHARMAEENSEE
Rz 8, LK RNA 5&gfimAR. 2020 F, LA AF Zheng 1
L3 AT T 5k k-#b 2| 5] BAn AR 55 k-F W& 5] LA B 2. 2021 48, Hf
18 48 A % # Townshend X A 18 AN E 4189 RNA &My i%1t 7 — A
JUAT R % 2] 77 ik R U RNA 25 #4830, 72 blind RNA U 77
HHEF T EFFRRR. 2021 5, Park 2% RNA /387 DNA #
BER G AngE R R M A LR, R T X RNA N2 e
B, 2021 4, Niu %PVRHEEF I mEE L AR RNA 5E 5
JRZ B W94 B % % . 2022 £, Rasmussen U4 Nature F %% 7 A
RNA MBS RFEERFNEX.2021 £ 11 A9 HEFEE X
For I B B 55 % R (3 X 4 : Omicron, 5 : B.1.1.529)# & TRk m &%
o, A RERE F= B9 RNA 414 81 % 38 15 B2 . 2022 4, Garcia-Beltran
&SI Cell E# H 7 £ T mRNA COVID-19 # % o # % 7| &
SARS-CoV-2 B 55 52 # & b 09 o A 5 0% 7 ik, 40 LA St AR AR N I 36
RET AR EE, 2022 F, Lt EVIRBTETER T KR F
f&E W RNA Z R EMMTNE X, WETFHEXN RNA W=REH
HATHEN A . 24 K1k, RNA 414 45 5 2 RNA 7K % 2 # RNA
MMM L FET S FERRBE A, FRNTRER L ot

Liu %2 A 7£ 2018 4. 2020 4F %f RNA # & % #4 8 BHG 5 5%
PEFATHERNENT, BHT ETY EEHME RNA FUNE %, 2020 4.
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2021 4 Liu FRREFIMEEFARFREGRZE. &H A
RNA Z [A|f A B X R, It — 5 mE T A RNA 0932 #, 2022
F 1~9 A, Liu FU8x T A RETFREFF KR T4 ZHN
A ZREMATNE %, MAEH S22 RNA U E %, £ T4

e AR attC &AM AFNF %, THRFEFN RNA 254 T
NP %4 FMIAME L. T ENITIERAS LTI EE, X
L0 R B A 2 R RATRA BB 7 IE

RNA %54 % 45 7 2 RNA 70K & 89 RNA 45 1 447 U 28 7 72
KL FERRMBNE, L, FLLTAAEUEHE L. HE
EEFEA, NP 5T 4 8 L E k78 et iy g #0082, ok g 4
FEREBERAEMEIARE TR NP BH, &5 FEZFEANRA k-
B E AT E & ? & RNA 5Ok 2 X8 B 4o {7 4% 4 O 5 /N 464
(5] R ? dn T 2 5 RNA 45 A T 20 00 380 vk o FoLM 4 - P Fo B RE P2 2 NP
e 15] 7R B A BTS00 A I B A A BB R

Artem Nemudryi % A ¥ CRISPR 4% 4% B4 B 4 /7 7| 4% & £ RNA
TEI 57 %2 RNA B 2% 6, & RNA FHA4T8% # 0 il b A 4
N, FEILT — M EL RNA A E# N A T RNA /&1 E 2 TR,
McCauley % A X HL B #5168 Fl T RNA B9 K441 &, & A £ RNA
B v B A IR AR PR IR T REEAIBY,2024 £ 2 A,
ERFRBREHBAFEARLTZ S, AFAREFIBEANEN L R EH
s By K F4E AL A, RNA S TN R 2 & 40 b 4703 m L
BB, VP % W T R R RO T RNA 77 RNA % 4% 5, 2024
# 3 F B (Science Advances) & & HJE X+, Tebbe & AT —F¢
HB RNA-F a & E R0 ik, £915 T8 R 0986497 a8
XA EREEEE XEEP, 2024 4 3 A, Elizabeth Pennis
& AFE (Science) & & H1L > A F RNA &5, ¥ LR &
FAHIR e E R, F R RNA S HLIE R 0 T A AR 9] A7),
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RNA %2 RNA HEE. RNA &M TN E Ef A T&E A
B EREt, A FHIERA RNA £F, LKA RNA JF 5 A 58 6 248 1R
AR IR T ITEE . %,

53 NBEFISREFS]

MBEFIWZ ORI g — 8k, XEHE g E L& E
HFABFERELE. ZHWNEBEF I FECELEL ARG T EAN
R, AMIETEREEE L BEE L, ERONEF I EEUX
o b 2 B R AT AL, R E % 3] (deep learning, DL)RY HF 1%
o] R AR R AR T M RE . RE A WL AN B LA E EE R
HWEWNGEEMER, BTNEFIN— o, HEME T ERET
A, R BE RE. A0 W AR R IR B % T 3R] DA RO AR R R A
Z W%,

5.3.1 BIRMEML

% AR 1 22 W % (convolutional neural network, CNN)Z —f# & T
R X B AL 0 BRI R AR 2 P 4, A TR B R AR A
AR 2 F G AL P R | — R D, R B R DX 3 B A R DL
WA, RERXBFERGESE—R, REABZEMLE.

ERHENENERAEMNETETEAMNE . &R ERLEEE,
HERMHEWNEEFHN, XZNER AR ZTEEMFLE. 54
TN EAL, ERNE WL Bt TS BT, e ERE, X4
BE BE TR B L4 9 B0 R R BRI, T RB AT A R D P 4 A AL o B AR K
8, BREM T R B RER BT U I Z R,
5.3.1.1 Bt

TER, FIRARETHINEFIMEEFIRET —RFERH
Z W% (CNN) R #t H ik, Bk £ 2T CNN By 3l 45 4 B HAF 1,
EENTAEFAEIAF T —E Wt E. b, Flashinternlmage #7 ViT
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EREAM B H I A A 2 — L H CNN MR A A3 T 7 &

CNN MrRif AT EER A XA WA EN ., RN %E. fiKkE
. A KR . 7 FlashInternlmage f2 ViT £+, RKE ¥ 7
FEREZXA AT AR, —HE, BELMAATERHAER LR, 7
— 7 E, AT A R AT . AT T CNN s H R
EFI#ATME, EndEdZRmaxdi, flw, 5&FFHN SRR
KR, MIRBHMLNTT & —E 2 CNN MR AT, R
A AT A A, AR 280 AT A 52 BAR B9 T e S B M BE AR

2024 F AT HEY — M KR E R % DCNv4, EFHBET
Ao M B iR R AL R R P R R o AEE N CNN 208 7 ]
BEHVERIE, HEBEEZTAEMERR ., DCNv4 £ —FF & 8 31 A F2 5 B
BIER, CEFAFZ TR ERNGN N, FENT AFHHE,
AT EA MG B F R . BT H — A DCNv3, DCNv4 {#
FA—NMEBAEE—Hbmwes MEE, X #EEEFTRXERERE
WME ., X B A F BN EMEEE RSO E S AR,
HA UL EH L ANNFIT R4, BEwnE 5-2 Fror,

G99 EEA 13— ewsEmr | 2 [ERFAIER
- / AE(E
S 3 _
e AR @&ﬁﬁﬂ / L ikE

(&E ] | "“f--Z; R " 2= 7
®| CBE2 ) [ T—r— | &\ | ]
> ‘WL“ \ T > =], T
Z| (28 ) L T“‘“R/ g 8m2 )| M
2| C8Ea ) [T S T R
< | = | T T T8 5 | | T TTfc
# S0 [T B el T

&PKTRR\ Is T — A
o HW HW

DCNv3 DCNv4

&l 5-2 DCNv4 #XIF DCNv3 IR o
B2 % FlashInternlmage & T M 4 89 DCNv4 MU & T IBATHRE,
AKETEHATESAEE., EHRTEENE, DCNv4 L ERT H
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{48 R 4 A A 0 % o B M A AR . ¥ 34 B 3] ConvNeXt Ao
VIT % 4 40, DCNvA % — $ 128 T Ak BAEHE, JLAb,
DCNv4 FE#EH SA A b &I, BT LA A
R 3 E I

BT DI 25 18] 0 B 35 b M 7 A SR B R U B 1 R A b
BHHAME, HT H—FREERA, REEAREREEE,
GRS ATALE, A BT H— HR AR, £
W25, it — R R A LA, BTk TR T A
B sAE, ST ARSI A E i A i A S ORI T 4,
Bk 53 BT

(ny,ny,n.) (N, 1y, )

(N, ny,nl)

A

!
(nyny,2) (ny,ny,me)

Kl 5-3 #F CoordGate 1HIR

EAM CoordGate 3k, #iE X AT C 4 Al#E L &R
ZMW% (CNN) 1% 2R, (MLP) #ATAE, #4/5x445F5 5%
B I ATk F A (Hadamard product), X F# K CNN £ 7 —
MEH . SR E = AR NENE 7%, ERIEA, CoordGate 7
U-Net % 07 5L F /845 72 B 2 M S5 £ 5 o BUR A% 50 77 vk BT IR
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R, AVTENAT R R T E R AT E Ry R R

BHFINT KBTS 2 A MR §AREH, #pzEHg
AWBERER, BELEPRERAEAN — R X TR
UniRepLKNet JU| & — 7 i A A %A% ConvNet 4. ©H¥ 3X3 £
A E|/NEFRAZ ConvNet #, BAIE E Y KARZ I, 80 = A X By
WMEERAE LR ERHAER N — R TR, KRR CNNH
MEb, e T — MM B E S 40+ (Dilated Reparam Block), % 3#1# A
3 M B /N B AR AR £ A B9 /N B ARAZ B R TR E3E A B K B AR
%E, CHBSHAERERZH AN K, HATEREN AN k
k& r, BEREWE 5-4 Frow.

A i PN
9>|<9 5;«5 5:15 3;(3 3&3 |
7%l BB [ I3 Bzl HE?;;;1
[ BN \ [ BN \ \ BN | \ BN | [ BN | ISR i
= siis L

B 5-4 WHRESHR

@*@AV—E]/\%’C{TF UniRepLKNet £ 5| \ T —f & T 5% i+ iy

A Fg - RN, PATHE 2 8] B X HATE B R AT R EM K
WmEE ., & EVI 2R r, &3 ImageNet-ZZK TN & B W
UniRepLKNet-S B & 1R & 0y /& # £, F A 12173 F b RepLKNet-31L
B3 £,

CNN 72 £ [ 4 2 B oy bl F b H 3538 % ., B % A RF ] CNN 447
EHEFE, PR SFERFEANRE EE TS, FERE
MR ALEl . b4, CNN 4% F T 2 40 i RNA 5 308 89 4, 3
B 1R Bl 40 f 2k A Aol A, 480 48 B R e o 7 2024 4 7 F #9{Scientific
Reports) & & By #7238 34 24 5 40 g RNA | 7 o & AR 8 ] 4%
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B T I /R IR BR O /N R T4 B R R SOV B B A B 4 L T AR B
R, BT REF ] EEEEG R oA &0, HgZAWA
wrat 2, ERWEMEH N A TEFE—F T A, TREE S I
RRBEMRR, LEZEEYERFWRERFR T

53.2 ZHBRMEML%

SHEBERMAN G Ed — EME WA RHET RS, BT ZEEM
HENETRRITHBRAM AR TR ZEEE, AUFTET =445
RMERE, —HERWHmE Y _EFR TR, 2FATERE, MES
i3 B E R S B R ELE T . — EERE W4 LUR AT H#
fRAZF AL, By AR = AR, RE% R AR = ] Ao
Bt 8] SR AE 12 R

WAL EF S R EFI FENRE, B E W %77 %I EW
JTRHBR ., —HERMER Y (1D CNN) — i k2 5 fu g 3 —
BT RBAE; —EAWE P 4% (2D CNN) & % F T B Ar b il
E#HET AR EGAE ST, #E8 2D CNN HEH AlexNet,
VGG-Net, GoogLeNet, LeNet-5 %F; 1 = 24 & A 42 P 28 (3D CNN)
W 7z Rz R T B 2 4T 8 RO AT AL B AT

WK, ZEBRE P& ZE AL 2T £ K0 T 44 T
T Plan, E& G BTN AT, — i om 2| o ey 7] e A
A B B JUA A I B ROR R RN F LT = TR A S
RS 2R EaFEN, ZER a9 E R A Tk B F 23 dE
B A TS TOUI o B B R R AT B A A T AR 48 Sk TN AR A e 22
5] BE % 89 AlphaFold &%, B G RMBEE THAELZIT LMNE
By R REAZ 7B A KB & 4 H . AlphaFold2 482 — T = 4%
R Z W& a FuEs Tk, ZHENAZ R F8&, Ba X
EEREM YR LY F iR AR REF ] H kit 523
o ZHE A W E R g A TN AT e AR AR T e ey
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SN EHE, St Hab e E L EAARIRE G SR E4 T ¢t —
TR EA RN, 2024 5 F 8 H, Google DeepMind & 7 7
#1— X AlphaFold3, Tl & . DNA. RNA. /MM F%5 8 LF
B A4 4 F 5 A Fu ke B 1B B, AlphaFold3 #3 TRIRAR, % ES
H AT EEER R EEE G .

£ RNA ZH F4ATE, — 4R wENEwGs 7 RA, £T
= R P28 3 RNA = 28 464 Ll # 4T 1F 45, BN RNA 3D CNN,
ZHEERENHN = ENERTEARN, TAANTRIFE, T2
EEBREASEEHTHMAIE, SDCNN W= EMH AT HEBAL
H-BHTEE, EBERRNEEfEERELE. X7 EREENMAL
B EFPZGEURENERFTIABRARY ., ENALEFH, 3D
CNN fE4% Bl B o AT i = [l N R (LA R B — My 4, B3R T 5514
WTHI R . EE G R &N AT, 3D CNN B R F 48U T # 4
HY Bt R o — i B s pE A 9 R AR AL it A 7 LA ik 5 R #
EMUFILAHEE, RBEARESATNSLANEGREMEER.
LAY T R AR RR SR BB LT, ST X & B AT & eI
.

Townshend #7 Eismann & 1} 7 — AN & T = 48 %5 FH 40 25 B 45 B9 45 14
A ARES, ZEALFEEAAREMERNHEAMAR SIFEH
MR EIR, EARBENEM. W, ARES A LU L
£ % RNA AT, 2% DUN A B Kb KA 9 F R G & A9 T,
ARES # & 2 —f# X T 3D CNN B4 4 Tl 2, B/R 7 3D CNN &
W0 TR F T B A REF B AN #F, 3D
CNN AWz R FABR A REY B, RANHARTEFE
MRS R, HEEE, 2ESFIURERER W BN E T M,
5.3.3 ZT ResNet F =4E5FIMH4 W 2%

7 E W 4% (ResNet) . 2 B A W 4%, ERFHEBREZANEH
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PEATHRAIG LS
BT, B &0 T ERRE A REIS NBER W, AT
LW R IR AT, K2 IR R R s B AR R IF R, 1% 1P AL T DA
W3O AT R Rk . AT, BT AL ik 3T b3k 77 i ARk,
Tih = HILRE A P4 R B3, ALY R AR 7] bt fan £ £ T &
IR . H I, &P A RE4 8 2 3 3 R B R #HAT AL,
ResNet By 2 4 7 Ak W 45 3R 2 38 7m 7 ok oy A 4 38 o A 2 90 K
5] 7. ResNet NH % M =5 3] #70, ResNet &A= # LH LRI A

Y =h(x)+F(x,W) (5.1)
%= F(y) (5.2)
h(x) =% (5.3)

AF, | ZRTAF IANBRERTT; x5 xn oAl R Ak
FORTREZERH; )%~ ReLU & Bk H 4. ReLU B AR % M,
AR E 5-5 From.

r=——====-- T _____________ 1 r-———=—==- i —/
: RelLLU I : :RReLU : X x=0 :
! i ¥ =0 | ] ! Fx) {ax x<0 !
: : Flx)= 0 x<0 1 : | :
: ! l ! | RS
L e e e e J lm e = 8
_______ B e |
: PRelLU : . X x=0
: P97 e 50 ReLUTI$ii Bkt
] 1
! | o 1 3 Y
_______ o ____1
Mo VTS 1 PRLUS 1 |
1 1 _[x. x=0 1 1 |
1 1 F(x) ax. x<0 1V : : ‘ ' . |
: : M ; . F(x) = min(max(0, x), 6) 1
[}
! ' B (5001 ! : : !
Lo __ [ J iy e - - J

& 5-5 ReLU BUBuHEERE

ResNet WH X ZE 1 Z1R E L W% 5 FAE A
XL =X +§F(xi,wi) (5.4)
i=l
ResNet Har/ 2N TEFXERG XK. BoHEE, EE. &
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. RAA % EFEGTAE, ARETRARE, Hit, &P
#1% | ResNet & % RNA = 4 # 37 4 bR Bt AT it An b Al o L%
M. REFIEHEBITEE£HE B/ RNA £ 77 @A 7
% RNA F B 15 MREZTFR) K, BB EEEME N 137
A, XR—ARXHTF. TRFELH 3 TARELL, HEEY
FREMRNAREFTRKN, Bib FHEMBKERAXHF, FH
FELETER LA, TEH RNA ZREMBFEEARAXKT, T8
F— Rl RN E, REEAITEN T, FARE LRI A TR
MEERIUTHEATRNEN, 2BIBRTENER,
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6.1 B

KT ESMEEFMEMFTRREAEZEAM, clIZ2ENN 2
AU A ARAE, R S A B SORE R B UG RN £
18 B RRT o A AT 26 W0 78 R % B B EA 0o L TN AR TR A M6 T
e R AR Rt RA e W R EE REER, B2 RN IAR
EWFmES AT RN —H . e, BEFHMEREY (W0
PSA I THIFIIE, CA-125 AT Em) 48T 282 kil
N RE AR S Y (WAL E ) TSRO HUE 3L,
18 % B2 HbAlc AT R T K 8 5 i 4. 34Dk 26 4
MARR, FULEEAENIET AR, REITA, WORMEA, FEE
EHAGTF AR, EMFESWA TG EHT R R A K. k%,
AR AR# TN EYRAREBARN, EWREDAN T )
ZANEVE, RERZEARRZMA S BARER UK A LA G fn K EHE
AMTHIE A, BEERIEXDWAGTIRE.

AT e R A s S R B 25 38 %, & H AL Fn g A7
FHEEHFREARIERANE . E¥FHE (BEEXA. £a
FUEE) BEREHTEH T NLE, AT RAELOBFES A B HF
BRAETAER, HGRA AW n S0 E EEN G ENHFHIE
AR B B R TR A B9AT S, B AR A AL ] R i
B, FHEEEMITENN T R REE—H A L4k
., wEEZEWREFF, MEENFEAN DR AR, 446 %
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AR DB AE 5 R R 0 A TR SR DR A AR K . AR Y E
MUBLE T A X L0 78 B 4018 8 R T RE D B RRAE, Rl BT R AT e &
MAMRE, 3%, FEAEFELET 2 ALERX, FARAEERX
=R RAE,

6.2.1 TR

IR A F kB E WA LT TR FWEEMLCE SR, R
PEEEFNRERE, BATIRK v DA TAELRE, H
CINARUZ2RHRSESERZEANERXR, FAHZEY K IEL
MELEABRXEERAWNES ., TEA Caret (Classification And
REgression Training) MR # 7 — N2 ETWNEF JTER, XFLHE
M), SERMTFFMEEE . Boruta?Z — N2 TR AL 2 AR o 45
BBk, ®BaZ “APRAE” (BIREALIT S0y A1) R
REMESHEEEZ ANEAEEGRES THNES . @ T
MRS FETRNEA G0 RESE S, Fril s HWREE ¥ T ik E|
AL H 2 KRR
6.2.2 HEX

3 R AFAE 77 i = 0 B B9 AFAE T B AT W 6 LR R
E6. IMEZET B RENERENREW TN E, HEHR
BN RN KRB B EHFETE. X% LHNEER T & aEHE
JZHE 7 & (Recursive Feature Elimination, RFE) % . 40, Guyon
FABERH T — M X FHENETHFEHER (SYM-RFE) 7%, %7
EMEF SVM 2 KRB R IFERAENEEN, JrE i3 )Tw 7 E 5 M
REEMHRMKNSME. Liff Ll e B 2N ABF £/ X
REAER BORAH 54 N EWITEW . Kursa F APMR H T X TR A&
MBS VIRAEE % 7% (RF-RFE), Z A% FI A RF p R EEET &
N E M R BEATAFAE L . Fortino F AR My — 3T M £ & B
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NI 1% B % GARBO, v 18 1 2 35 1% £ 1 15F WAL 3 o e A 1 A7) 6
%, ARMBMENT AL FLE,
6.2.3 KA

TN AL F 2 B RAE 1 Ff o R B kL AR |t o — 1k, BF
ENF R RBWE R B A ERIETE, XH5LRAEEXNF
R FEFHFEFHLX A, Blir, Feng % AUVK Al /N8 3y 4 Fn ik £
HT (LASSO) EEASAMT A%, frkd 14 MEFRERLATRER
B TR ik Rm (CAD) o lr, stmiE T — M ETx®4
WA R B B CAD Ry 2 Wi AL . Huang ¢ AP &AL, IE L
WA A L, EN B B E RN, "ET —MRAE Ly, £
(Hybrid L,,,, Regularization, HLR) 77 7%, X f 2477 THEEZ T
A HLR MW EZEETHE , X—FEAREN T EEHET
AR E IR, TR T 1% 58 5 B VA £ = /N AR AT P
WG E L, JHEEYS B £ 8 E A A RFAE . Diaz-Uriarte 5 APIX B AL
AMFEHATEREEM K, FITAT R A varSelRF, %7 % &
T 29 F 3R B R g NI E B T &, LSRR B A B AR 7

o R

6.3 MM L RE MRS
BAT B LR 7 E AR EINE T %K E B0 £EWAT S

T EANTHEAH IRE £ W R G ny Z A 1 L RCGEE [ 2 A By R B, X
FRT AN EERME UM T AFET TR, Ao T A H A w94
HEERA R . T L, BREEFEETREEN L FTHRET
®, MEELMETEBM Y FHEHR AR KLE D THER,
AT RANRREmA D TG FARF OB E#mE, HEF(TTHHEK
R TREAMAEAERG T %, HEL T FHEXEAN S TREH
MEER, BETEF0 0 THEIFERMESERRE, NTRA 6
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% R B - T 18] AR B AR R B A S A A 7S A B P 4 A AR S

Hal g — L& TWEHNRMELE T %, Flar Horvath & ANO
T A ACE FE &Ik W% 5 (Weighted Gene Co-expression
Network Analysis, WGCNA) 777k, 38 A7 & [ R A S AR L1
KRR LR AEEESR, X LR 5/ R A KBk, AR A]
HRmEIEAEE &, AT, 127 % H AR A XA A I L
R, EEMENNE T EREETHERS, METHTER
Z B FERE KRR, WA REFEWERXRAZBFENG . 5—F
W, 2 FHIEEMN% (Gene Regulatory Network, GRN) F] DLAR 45 b 2% #2
E—a#, GRN ¥EFH, BXETEAEM, THEATL, BLH)T
Bl A K AR A E B R ay L, LU 4 B Y X B R OB A 4 4
THEMEEHAAAR. £FGRN ¥, B T a#in i EAENET,
BEXREAMERNESHEE, FENEAEL I RE AT, #4
WAREZLWER 55 E, BB LLEE BRI, 47 LLZ AW
AR, ETEEENFRARENAEEDHE, F6 08
GRN GRAESEHFE T, B4 T & R FH 0 AR 2L 0 o o 0 J A AT &
Wl g . At Li S ATV P4 i B A AR N A9 R A
TN FERENER T, BRETHAREENE ORI RHENS
% (CNet-SVMD, ATARFERHFEFEPEMAEN, NEHEE
20 5 AR PR A Fu - KRR E AW AR B . Zhang S AUAHR H — Fb 7 A7
BETHEWEEL 7L, FEARRBER AENIEAN —NEFE
7, FNMRENA BN AEEFAE L E &, BV Shapley & & i
fi, FFE e REN (AIC) EEAXFEFHTT RITRIE, A
BT T pesE @ EE AR, Wang £ AR BT —METAE®
A5 T B A 1 P 4R R A A SR 15 B T T v Shang
FAMXH s MEFIRERSE AR EEERQN 7 %,
N GBI F AT IS R HATE T RNESREEL, AN
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o] S AT SHIAR R

6.4 BRIBAFHFRIEIRME

REFHUFMRAERFRIRARMST =R LHE, EE12 8
WEARRE. EMUBREFZME ERW, B —HFHEEELE
A EB T AR E IR, Flan, EFEEFEE & BRENMEEY
KA, B XA R A ol v & 1 ey oy e An 20 B R U 7 B & 8 A
FHRBAFNBE R AR, BHFHERE T RENER
BE RRMITENTEFE A Z AT RS, b, £
HFAREE A ERSAH THRE —HRA, MEMIEERD
AEAE . Flan, —AEFEBRIATEEAFEE LT N BT
B T B Bl AR R R AT RE Tk A R XA S A .
R AR RS B ILA IR T BRATX £ W= B ) S0 R

AT ERZLERFR, ARFNZBHERTRALAFETH
%, BIAF6HREMAFEE, WA EMERSE L THEME,
SUFHABAELAREZANL, FTER, BB ETENE RN EY
AU, ok B R sk an T 4 3 T R B i s R, DL X BB SR oo ] 2 v 4
MR BE. IRELMAPOER T RAENTRERED, ERET
B TN A E, AAEVEE T FIUREH BRI AN E

6.5 LHEFHMRAME

1235 A W B e BB 2R 40, 4 S I 50 B R PR AR A o AR
RENCHONAR T, NEAFH A LUFHAE—HEEH
M, BXA¥. BaRdy. RBELAFFSHENERN T %, U
RBARTENERGHW2ENE. XMEESH T ENNREREE %K
BEW T =B TR R, LRk EA AT B 2% 89 £ M3 A2 A0 5 i A
#le RAHTREHNUTILR:

SHNEMAZNE: BLELSTFRBNAFHIE, LA¥5
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REBRE-—NL2ENRRENFAA, BT E LT ERZEBAE
BERAWN L%, flao, BEERXREAPmEa kL, UAREER
Fiinf B KRR, XL ERN TEMEL R RN ENFEREX
ER

PR 5 15 W AR TN % 2E 5 R T DU SRR AR B R AR
gy E, XUREYHEETRELE —HFHEF LELNE,
Mok, ZEF o BELEES L BERKE, %8RS Km TN A i
H, HTHEETAMETRSHE B REENE,

BREFFERNE: 2AFAMAB TR ERKRRNE B L
B, ARt RAEPKERE. IHEANANERRET —INE
HEFHWEARER, FBTHERIaRE £ EFHEFRFNLHF
{ER R

thdm, 2024 4 Jiang & ASI#AT T — TS A L A ¥ 400, BT &
INTER R AR T, FETNEZHREMET RS ER, 77
FRILT —MNEFE T3 ETELREREEFNE S LEFNT, £114
AMEELEEEEHATTREARE, BT ZERELNTRE L ELU
Bigiy Lo, R AN, SHEHFARMENR, YEEZTHFE
F LA AKTI EERE, UEEEFH HER2 g £ LA, X
KA HER2 6T R E T B AN 4. Mo, FRTEAH T 5T
EAERFEILRAEITREE, BT ELIER . 2 HHEMAREHEK
B, AN EZHTT 0E, YEMABKEEETH R T FHE
o WA, ZWMXBAR KA, FHEFHETURTEFERERN
ToUm) o A L1622

6.6 ZRFEIEE S RIE
GCENERFIEEEFHIBY, LHFHEEELGE —PMRE
BT R T M H HF AN E R, FtRENTT UKL FE A 474,
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FaRA. RBAFL N EBHRBEIE. L AFHEESTUETK
LAEEEZFWAETER, W ARFONSET. BT BUERME
SHWNA. ZHFHEEGFREETELA: AR, PRoMER
&, W 6-1 Fron. WRE — BRI RESIENEER0R, T ek
et E e A e X AR A K B R ey RN, HIE DL
EEBNE#RTESRGBRE e FRAEFHY, FRAILE
KABANBE T RERTH, BFLENTEFRNUBATES S
AR BRI R R AT & = fr R /48 .

Early Integration

» Analysis —» Results

Middle Integration
Input

Features Features

Integration

. —_— l / Model

[ Omics Layer 1 _— - - = - = = = = — — =

Onmies Layer 2
I Omics Layer Late Integration
» Analysis \
Results
l » Analysis /

B 6-1 BiRLE FPRLE GRS SRR H A

—» Analysis —» Results

Samples

6.6.1 BiREL&

BB R dE E BB AT Bt T 6% A TR R IR AE ¥
BAE. EX M RGP, Fi5IE (40 DNA F7|. RNA Rk # R E
B EEHE) SEFATEA LN DN Z R A Xfh 7 EREE
WREGE-NZENEESR, XFE MR ITAAFHEAHN
H—NBEERFATON . FENH: (1) BIESHK: FELKENR
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R REEN T EZ—, CH AR BN EFHFELE R BRE —
MEEF., Ao, —MHFEANEEREZHE. ol FErREtw
WREF LA R — MR . XN T EETERZRINE
FIAFEHATRE AN, Ikt RE, (2) ZHESHEE: dTH
BEWEBHRERTCEAENTRER, B, 2ESWEBE T ZE
FHEERERBR T EMEGUSNGRTUAGER. ELEFRBET, B
FEREAEBE A (40 PCA 3 t-SNE) A B FMHAXHE, URDF
MREENEE. A, TEREFNREEH A —NF04E
B XMTERBTRYEGEMEFEETFNEIELRER, ARER
BEEREWNBEEZTEEMDN,

R BBk AW S T ERE4 AR Z H A A £ 1 4 5 58 +
WER, NTERE-—N2ENENFNA. (D 2HME: e ETL
EAN TR EEEIE, HR T AEIFEANLENE, FHFAEE
ANEERBIARS SN E N EONEENEE REN X2 HW
BENARERIFEMIRE A2 TEETHE LR KE,

(2) B mE: EHEAEN TN R ATESTURD EHoE L
MG N RE. ERAONM T ENAFHETRLFREEZGTNE
KBIRME, HAMEL AR T ARRER Z A NHETIIER.
Q) REHBEEeW—E: ELEEG, TERENKEESN
MR —E, ANTiiRE T BB BN E A —B ., X T
FEEA A ORI ERLERINERRNEALEEE,

SRR ZH: Liu & AP mRNA. miRNA # & & i+ & #i304E
BEERE M X, FFFEHF 24 (Factor Analysis, FA) xf H# 4T
BB, NERARBRENEREBRZREEN N EA, B LHF
HAE LR A 5l R 2 RAT KW E E o T RAE, W0 x40 K36 77 B9 R
A E AT RA AN, KILT K44 F (2w HOX £ H Z ik 7 RUNX3
HRXET) EREREMETRANG F R FEEEZEA.
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6.6.2 PRI

TReZAREAENTENBRES RGN FAAFHIKE. £
fhoREE T, BEFRET AP L AT EARERT, AL
WG B B AR BAFAE S8 # A 8 B R, FE \AR LB o [A) 2 AT Bk
Bo R HEAVE MR EHAE AN EMEE, FERRT &E
R RAEME ML . T ENE (1) RIAEEE: FEESE TR
& E LT EZ—, E R AEA A F IR TR R AR AT E
Bo Plan, TUREFARAREFHRZENM. ZaRALEFH
EERFERE. UWEARBAKEF R WRERILSH, B E—
NESRFEE, ATRESEN T, (20 ETHEAWRA: EXH &
P, BAFHERL,ANETER (W FHEN. BARMAE) LHE,
REA AN ELRF I EWAE, AeBlx M EEL s — M ER
PHATREN SN I TRAAH T ANENREFCERTNENE
B, FHRBED>TEASERZENETTH. ) FreFd: ReF
R ARARIN B S NE Sk, FlmmBAR KX 55
(Canonical Correlation Analysis, CCA) B ff #ix /N — 3 % (Partial Least
Squares, PLS), R [F oA £ fr R A WA F 448, XA 77 h A B4R F|
TREZESZFWRAMEKE, DERTNER N EHER S B,

. (1) RFE: PReTEN - AR T U EHLE
e E, LHAREERTES ERERENRNES L ERER,
ETEARTWNGITEB A EF I Hik, (2) Kk BELELS
ANBAE T BIRAE, DL R A T R e e R R

IR Z 5] : Wang % A PY4E 89 MOGONET 77 & B R A 7 o k&
Hog . Wi MOGONET 7 ik, FUMA [ o fit 8 T 2 5 R 5| % 42
B ATIC . SRR AL = I K B mRNA R 3A %48 . DNA F
A WHAEA microRNA KX KRB mE R Lo REHRIE, i
7] BB B9 A T #E 2 . MOGONET 1% ] i & A B 2 (Graph Convolutional
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Network, GCN) A E L H¥HE, EHEEF, /AT EREILIRAL
HABET RINERRENARIESLT. BiL L ZEEMR, MOGONET
REds R0 E| 2 B E H B 6 S RHE, RIE RFAH XK B R ED
FET. ZUESRENFERRE, F£HALRHMNEE (FlmeF
FHE M) RRBMEWERRTR, TR FRBET TR ENS THE
et B AR R A BRI A F RS, BE/E, MOGONET 4f Af & 41 %
BENAIETNER, MEEE¥ LI KE, ARy RIERRAF
B Z BIAT A A R M. &, XA A\ 2 A0 B AE K R B
2 (View Correlation Discovery Network, VCDN) 77 i *# #4T s £ #Y
Z o RTN, ATAEEELZE 2 RTME R,
6.6.3 JERIE

ERERIEEHEI TN RENEEGRENFAAFNER, &
XA, SMHEFRBWERAY . BXHEF. EaAFRA
B F T ML HATRADAN, GEHEEN G E T4 R
EYITED, AEBRXEERITEESMBARKIETF. GRERH
RERTEAMBEFEAR TV T ESERMTAE, ML ERT
EERESHAHRENANTE. TENE: (D) ERFESL: Fre®
REGEMAFANMENER RRRLEWN AW F WA, Flam, 7L
ML AT A E R KRB E G RESIE, FA 047 7 LOR A B 89k
AR, RAERLRT T EWRERG., LENB TN, ¥
HERLCEARERAWERRFITNE K. (2) WERE: ENE
R B R P, QoL o AT Y S5 R AR F R A FE PSS AR AL, A B TR 4 W 4
HEAMEENE. AF, XEWNEXTELAETER R RHEE
&, WBETBEAFEZHEWNEREYIESHRFINF . (3) EA & K.
A B ik 77 ik BOR AN B 4L o HOHE 0 A e T AR AL B o R B e B
HATR K. XA LB ERFIEALIN, wENFRNELR, #E
ZAEARF T, DAAR & T R e f B s
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i (D) Tl FRAATFEMAFHEFARESHLS
Ve AT ik, RIET BEAENE L AR, (2) REKES:
EReRET BENREE, ERES TN RENEESER, U
MEFARFELETEANES RS RIET EHAFHENRELES
R, RAREMLET BMHHEANELNE. (3) FoMT: FEE
EaNMREMBESER, RENL MAELEITERARTNR, &
HEF 2T Y A R R AR

EREF: —MHRXAGBEREN S HAFREESG T LR
MOFNet (Multi-Omics data Fusion Network) 129, X % 4 % f & %
o, RETE A mRNA &k, DNA ¥ &4, microRNA Kk % £ %
ARRAFHE, R E. KREANRRFE. BRE =M AORER
EHBIE AT 2 B 58 . MOFNet EE B A ¥ HRME¥ 3 7% SGO

(Similarity Graph pOoling with structure learning) 5 % H ¥ HEE 4
#)77 % VCDN P AME S 4 & . MOFNet X £ % 25%Hy 45 4E # 4T Tl
M, E] AR LR OR B E 4 B T R Ry e, IR E LA B
%K.

TEH 4 ¥ 3] T, MOFNet (£ 8 7 SGO 77 % . SGO 77 %
E—MHETRHEMANTIAFEERFEE, T2 HEN.
M A E S F 3] =34 . SGO Fr kK B AR & W 451 4 4H % 4
FHEFI N EMER, FEM L, SGO & T — Atk #tpy E itk
2%, ASEIUAFAEZE E o0 R 48, WA T 2 Bt 77 i T eeH Bt
AFRERR—ZEWNE A, FE, SGO #iLF| A\ £ B XM &4F
AL R BT ARG, B g TR T HF s X R . A,
SGO # 5| N\ 7 B 449 % 3] 77 & GSL (Graph Structure Learning) . 1% 7/
HEEAPHENLT R 5 EMT R WE, HILE R 5 R ET R
H, fRRT IS B AR E R S A0 Y E] R

TS EFHEELSTTE, MOFNet HE T —NEAFLIKE,
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FH A% VCDN DL &AM, ZEHFLIKE G T RAFHK
Evg A0 5 TN 48 BAG R, Rk T B4 AT A48 % 1 . VCDN # 3T
RRENEZE TR RAFHBEREZ W EME R, ARESK
B A F AT TN, XA 7 X, MOFNet fE4% FE N\ 247
HELEEFRERNELAMER, NI RE 2 REFHEH#ET EHE,

B—FE R T 5 gk A8 7 & IRANK 4 %04, iRANK £ 3% 8 3T
FRATELAENE R E PRE, KX LA EEXRH PR E
HATRE A, RAGFE T R PR B, X — A2 IE 2 5 Rk & 03 A 5 A,
iRANK EEmia Ny 2 A BTSN L Z0THE, by
H B iPR E. iRANK £t H EN 2 ZM%EB PRE, AEH S EMNE
H) PR AFAEEHATREA, B2 280 iPR1H. & /5 UL iPR B 1F 4 4 1E
BE W% TN SmEREHN,

6.7 AR HI S A

HER, o BELPNT L HFHERINNEMTIWEAHA T IR
KRR, HEARFHRR. 2002 4, Veer % AF A T Mammaprint
A&, BELLAH 70 MEFEKRAEN, ¥ ER FEHEIIRE E& X
o A E e AR R e 7 4, 38 H 34 = X e ER FHME B2 ¥ 8k A
AT F R, AW, T ER HMHSLEE &%, MammaPrint
AZKHITFE &R, BRI B ETUE 6 AiE 7 KO M T 7 & m
FIR. 2004 5, Paik % AP & T Oncotype DX 5l &, #IA 21
REEENRI DN AR BEWE XN HAT=F 0%, RA
BT T8 B RO KU e B3 R . EndoPredict A& 11 A~ H
MERLIFEIIRE B F ENEX NS WHBETERLTHEL R R
281, PAMSO0 i# i1 & = 10 50 4~ FH B mRNA &AW 64 2 IR
BHEETFABEX AR WIBITHTELAZ LR,
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6.8 Rgh
A ATEREEARN AW #HY, REAFHELS T LWL

VR AT A BB L MR LEEERELD W AGIT P,
BT REAFHEPRAEMRNAMTEID ATEHEES R
P E A A B F T AR R R R TR A RB R A £ T W
B k. RSN, AAERFEARURAE S T HEA, T8
GERFIIRANERFHE XA BENTEY, THENERC(1E
RRFEFHERANG. RELHAFHQNMBET —EHEE, EEH
BHF T ERNGELOMABRME. H T Erx 86/, $A¥HRE
HEATREANLS TR, BRTENELNENNF, XFESL
TR SE T AR R R AL /7, TR & T Rm TN B, 4k
ExREAEEER. BT LHAFHEBNHE 2N, ARLART UKE
F AT RN AT AR, NTESRF L. BUE &R
TR B, mETZINEEEZFHER,
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F7E EHFBS ARENLGREMRE

7.1 NMIBRIES XKIRBEEERRIES KRR

NEK, ARIBZAE (NLP) SiEBETEEHE, LEEZE
T Transformer R A48 B #8155 A42 A, % BERT A1 GPT-3 %, & &
A I R SCAREHE R ATIIR, e R IRIEE TN E 47
AFAXR, NTTELZMIETESFRALE. CNHERI T IET =
AT ERAFMREFIEE, LETEREFIFERNA, Wk
WiEE A (MLM) f1g EFTER (ARM), 5 A g% AH
BIREEHE LF, ARIEETWREREN XK, A A E
fRAn A RAEE R T RAREA

E 218 5 A A B %0 £ Transformer 244, vl T giEE 4L
AFATHE, R EBERFIHRE. BEHENTINAEFE
EEARBO A, MBS HE — PR T EANEL RS
LRI,

A, BEEHEAWNANRTEREEAE. AF0EN (The
central dogma of molecular biology!"®) H %, &ATIAN £ 4 L&+
AEMAFHIEEEX, K DNA % FZ RNA, BREE&REE, MEH
EREEA I EREET, SEMMEGRTHLER, NTELEG
BREXEERA. TUREaREE TN ENES. MEEYERLFf
TEENFHERE, ARART K ERIET T RHNEETHEAREA
KR TEERFN g Aiin. &g fiE s %A (Protein Language
Models, PLMs) NIz 4, §EBLF ] KEE G FFIEHE, FHiR
FERPWEREA R R, NEE G R EETN . 68 T A%
TEESFREE.

EEFFY S 20 M AERA K, HFFEME RN £ 6
HEEZW., MAUAER N EM token, WRHWE A FHIRHRER
NEEBREEFHET. EERZEWHEELER, A& T BEH
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ZHAEMNE (wE 7-D,

e R
‘ G‘"*.//ZQ//G”:”‘ amino acid 4w “letter” s ¢
i . i - =
/5/2”’\‘ o N, protein @==) “sentence i s ©® & 0
} 2 \ - —
J \ - " .
C \)& x\\’ PRI ¢===) “paragraph

& 7-1 B EERNARNALERRLLERES

AT, EafEE XA M, BAEST PR LRAHY
EE, MESZKAARRESNFE. MEARTFI FHEAERER
RET, BRAEADEER B HE domain T LN A RAEE, EHE
RUEEHE X WREM, ThEAEEAEENEE. F&Z AW
WELERETI P A EENAERART K EEHRH 8k B
KA E G FFF TR EXER LR B A EE T = EA &,

R, ZEERKETREAETFIELE, LEAEEH. HEFLE

AER. Hit, EAREEEHCTUES L REEE, ZEAHKE
BefaemEFmiR, UakdeemEfy gk,

RERY, NERAETAEREZafEERANERL, BET
VIEERBRAETE TR 2 FAME KRB, LFERNTGES
FREEARAER TN R, BLLE S ERETNENEHBA
WS R F BRI T R, XA B A AR OB £ LA AT
il

72 EAREBESXKEENINERESZEIRK

7.2.1 BIERRIEFIEEIE
HAEEARETEENTINARERM S Z L7758, EAR

TP B AL LR B K. 4, UniProt® 3048 & a4 B4 &

BRFIGER, URFENEGXKEFEE LR, M ColabFoldDB!
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FEERAHUT N EERANEE, X THEEAFENE
BT P8 AE . EET X REFHATINA AR, BF 2 FHH#
TRE, R RS ER R HATI AR 098 X, RiLF J W
FREIIM S B R T, TR I A AR #E AT .

Y EATAT B REF o DA E s LB PR R O A\ By T SR
I=u, R EaEs MINERT LS REREZ 8 R ENEE, '
BH B EIE 3R & B Ry A B 0F A 4048, 45t & PPI(protein-protein
interaction) 4% #&, | 2r STRING 5 48 J& & 5t Y 5 7 #8 3F 14000 /™47 7 |
6 T2 7tt&EeE. 200 ZIZANHEEERNER. X LHIE LA F
GRMET mFEEHHIE LT X [E STRING ¥ ELF L B & HEr
f&, thinE A& R im0 e T Ry e B AR R, IR A RO DUARAE,
WA TEEEETRRER, IHEERX LM IR NE X H
MUBRREE, IERENFEANFAREELE, ANLEEFERF L
AT IR 3 3] 9 B A

PRI 46 7 DI BB 2 4, e A AR CFF A& 464 408D
FRHATTNGF AN, XETELFERERETAERFIWIEST K
BA, AP AEREETRENIT 2 mULER,

7.2.2 NEER

Hu# TN FEemA s AP EANZEZERER K, — %
EFENGREAFIIHATIMNBEARET ), LRETEAETR
BReE&aFHRERE. # —AEFELERBEEZLHNEE
JFE, BRI & kR E e i 8RR FE . F X TR R 3 = X
W ZEARES—Hw, SERTETUESEA:

BAEEEA (MLM) HAF: XIUESH W KN FZ| 5 4 AL
AL B AT o X B ARIT B B R ARG [MASK] 46 7R » 3 T 4 5 ESM2[°),
proTrans®Lankh % By 4R 77 ik — 2k, £ E T W £ T XEM,

JXEEEA (GLM) HAr: XIBUES W I F 5|+ 8 5 4
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FRIG, B EESEE (H[sMASK]# ) fi 75| R BB KEE (F
[eMASK]#718). GLM E 7% /& T Bl 5 42 235 ey £ 1@ £ T X, "%
DA H o A R N HY . S AL EY R A& proGenPHy T1E .

Protein Understanding Tasks Protein Generation Tasks
3D Structure Prediction De-novo Protein Sequence Design
Projection Module ‘ 3csl A (ID: 13.9%
(Residue- OR = . y ‘\‘! a 3csl 1 13.9%)
Segence-level) o { uﬂ £ ;i % TMscore=0.81
B, B o\ =) e N -,
N . \1 '}?\’J&% L s NN 7 // A
1 ﬁ b7 § A= o = / / A
- % e B o ,{ ) il
Pooling | xTrimoPGLM Contact Map Prediction G E VI[E] AT, 19 %\
Fold Prediction /] : 3 ¢
AT GEV Fitness Prediction xTrimePGLM ] J il
Optimal PH Prediction ATIgVASKI[SIGE V
xTrimoPGLM A , A
Partial Protein Sequence Design
3 Ts Te [E] Antibody CDR Re-design
- e (368.04.B.0106)
) 0000® R
' ”y >y L ':->
‘ ‘ L)
" [E]
1 T2 (X3 T4 [S] T5 Zg | -
Prefix Suffix xTrimoPGLM
Context  [MASK] [gMASK] [sMASK] T |G [sMASKIVISIE T

& 7-2 7E xTrimoPGLM FE& T HEBERIES TIERES, BIHEDIESAEE
(MLM) FIJ™GEEEAE (GLM)

WeE N E AT fwiE T8 XE M mask language model UL X AR
mT AR EEAEX, ANTIRFTEaWBEEMLMESFEE
K R AHE %

EINGEX 7 E, G E AR R xTrimoPGLM, % 2| RE ¥
S BRBWE R, TGN &2 A8 B H 9B

MIETNG: F/F MLM B A7, FETEAL 4000 1244710 &
WE /MR, EANB B R R

&% XAG—87 %, B MLM f1 GLM E A7 DUAF = H

(20% MLM, 80% GLM) &, XAMB6E 415 6000 12447
0, AT R EER RS E KGN
BHXHENFI IR, ARMEEGTATEINFERNEE, #
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T B R & . ik xTrimoPGLM A% & g 45 72 fr ] 3% 3t o B
AELZHRB AEFARENETFINEGEERBHE UL
AL FRE K, XEHH RS TR GWEF THE S — A
o, wT B, ZEFTUEE, BRiAlE, mEEERMEE R L
# xTrimoPGLM # A E 2 HAME R A, AR L2 EAKERFEHN
FoRFrilsiEsE HA,

Pre-tfrained Models

Parameter Embedding

s Layers Datasets Dim Machine Learning Tech
‘i BioMap ) Mixture Obj
Uniref+
XTrimoPGLM-100B  ~100B 72 Colabfold 10240 Masked Language
“op Modeling + Causal
0 Language modeling
Meta
UR50/S Masked Language
ESM-15B 150B0 48 2018_03 5120 Modeling
Meta
UR50/D Masked Language
ESM2(38) " S 2021_04 2560 Modeling
Meta
UR50/D Masked Language
ESM2(650M) 65% 33 2021 04 1280 Modeling
Meta
UR50/D Masked Language
ESM2(150M) 1 gommn 30 2021 04 640 Modeling
66(hea Uniref50 Masked Language
QUISAAEM, ST d=1) 2021 04 1280 Modeling
- Masked Language
RIQIBERT, 4%%'1““ / / / Modeling
Prot-T5-XL-Ur50 / / / Masked Language
(38) & Modeling
ProGen. 1.28 36 280M 1028 b ol gl

Modeling

B 7-3 HEREARIESEENARSERT

7.2.3 BBERIESHEALH Scaling Law

LT A TS R BB E, Scaling Law (R E F &) FE#H
N R AR R E AT DAk S & R A R T AR I, 72 BKHE R E LA R A AR
EEERT, MAER S BAEEN KT HIENEE % HET
MR AR . 5% THE, 7 xtrimoPGLM B4 &, YK ATHEER
HIALE A IM T BT R A+ 2] 100B By A2 LB TSI EF IR 91
* % B2 power-law By - . XA EH T A ALK T AR
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P, BANHKENFIRLEEIN LAWES,
20
10

~
5~w o

3

w2
wn
2 — Im A o
— — 10m Sos:
7] —— 50m T~
& —— 150m SR
500m ~ o
2.5 b <~
100b
25 4 3 2 1 0 1

i0” 10" 10 10° 10 10 10
Compute (PF-days)

=~ L =263xC""%

One PF-day = 8.64 x 10'?(FLOPs)

B 7-4 xTrimoPGLM 43R R R EEE (scaling law)

T 5 — 77 8, T E IR #IE ok e ) 4 5 W iE B A A B T
M RE A7 B9 BT, ¥ LLE B HF 100B %4k 89 xTrimoGPLM #£ AL ) x¢
THA token B PPL RHW AWMU REHAL & TS HAEE /Ny
ESM2(15B)f7 proGen2 (6.4B), it AU EIEEH T & G185 A 4 4,
A& scaling law, H HERIEAWAE T MATRAWEE, L&
MNATUAEFEMEGRENENL, EAANENSHRFTUREE
n % A B X W RAE B .

Test Set (< 0.5 Seq.ID)

—xTrimoPGLM
— - ESM2 (15B)

10.81

200 400 600 800 1000
Trained Tokens (Billion)

MLM PPL
(Bidirectional Self-attention)

Test Set (< 0.5 Seq.ID)

— xTrimoPGLM
= =ProGen2-xlarge (6.4B)

50 250 450 600
Trained Tokens (Billion)

(Unidirectional Self-attention)

B 7-5 Xt xTrimoPGLM 5 A TYIZHEEAE PPL _EFIRIL, xTrimoPGLM
AT RIREIAIRE T KK PPL
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MK A2 T 10000 & B 77, FHRIEXH & a8 5% %
T &G F AT 0.5. MLM PPL F[ Iy YL B & % DA
AEBRWTCE A LEEFT A HEM. A random AEXRE, FMIEW
AEABML A 20 f, FrTULHALEILT PPL &4 20,
7.2.4 EFREN AR
7.24.1 T HEAHMEE — R Benchmark {55

HERIE AN EEEAERABRELFERIAEGR
BN, ZRNEGNAEANGEA SR EEEGRERBNE
B, TETSH T HARTAWEGE AWM TS, BE&EaSE
W, Eashee i, &aAL eI, UEEEaFRBEET,
E R, FAHTNSESEE 2R R, RAAEX LN
FIES LWee .

A Protein Structure
Contact Map

Fold Classification
Secondary Structure
Protein Function
Antibiotic Resistance
Fluorescence

Fitness

Localization Strategy
Protein Interaction Probi
Enzyme catalytic efficiency rooing
Metal ion Binding LoRA
Peptide-HLA/MHC Affinitiy Models
TCR-pMHC Affinity  $¢ ESM2-15B
Protein Developability «T100B
Sgltzgﬁfg %  ESM2-150M

Temperature Stability
Optimal Temperature

Optimal PH
Clone CLF
Material Production
60 70 80 90 100
Performance

& 7-6 xTrimoPGLM fE— R ¥ & AR HE N ERZERE T EFHRN,
T ESM2-15B, FIBHIAEESREE RKRFA.

WKAEBRNEMAERNE TG EONA, NERMEERR, &
[ 7 A AE R 525 Probing U E F 77 3., B | A AE R Fe i ] 45 9
AT (finetuning) WIE R 7, B THEAESZHAELLE A, HH
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M7 R T LoRAPIW i, BT, AR ANKE G FRF
FITN GER, EAMERRIMFANTR2RERANRREF,
U BA 4 o AR fu b ] 3 R AR, T LR AR B Y R R R R
MR It .
7.2.4.2 HEEE SRR 4 Bh A5 R T
EEAEHTNES —EREG R FOARED LWHAZK, & T84
RE T EE, BrLAS BATE DUFI R AL B 448 B AT R BT, J5
SR LW TAE# ] LR B B iy 7 2. £ ESM A xTrimoPGLM
MR E R ULES, YRNFAFTETEaREEEEANKE, 7 U
F% MSA (FERFFIMF) Bk . BlAAERIAAENE ST
Fle =z 5T EERFIFEMRBEL, EAFhaaT HEFI,
B B xtrimoPGLM X il 7 X #E Yy K Bg (] 7-7), i 248 E 5
REEGREGMHEH TN EEIART AF2 W +E. B, &
A — Y MSA KW E B F PSRN R T Eam, FABRIUAE
HXRREUR LW EE, T2 BRI EH TG 7, L2470
B E AW EATN, AT AF2 #E 2| A4 0N R .
T NP

(" Single SR
States J | > Repr | 4\\
(Transition & !{Ei-'.'.i 3
U VR
Outer Evoformer S;;“;EIR —> st &
Concatenate odute sy
v Pair 3R
Repr G
I I Transition —
LxLxd Recycle 3 Times
RQVELSVSD... Recycling Module
Input Sequence /
LxLx2D

Bl 7-7 A5Bh xTrimoPGLM JIKEE, #5BhE H B 4544 BRI R 3R T+ B pA R AR ROR

73 NTEBREBESHEEUR ATFITEARKRITHESE
7.3.1 ZESHEHEB RIS

HEKNH T REETEERFINEGRIUIGEZHEE, A
AMBEE LRFIRLANREZENLREREHRIEL, ERITw
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Fni8 3D B A RE R E G ERE, FHibLwR S &a e
KRETTNGo TEM A F @ F 2w BTN ESL 3D &Ml F
AlphaFold2 & & & MM E G &M BB/ ARRREMESHE R,

MEMBSW A ERIATIN S, TUERCE THFREEN
(K. #A), MeEkfs, ZHREPLES (FHE) FELFTHEHN
FAE, LR EX ST EFEZ B WS N RBKEL, EX M ELE T
DAEREMH T/E, ®FF GearNet', Masifl'l, PIsToNI'0I% %, X
YA STk — 77 & 7] LR B E i By S5 R AR, AT A& B 4
WERTERESER, F— 7@, Wb R a7 E x5
B AE, EINEA B FHH £ B, 40 proteinMPNNIMT, 1x {8 4% — 40 77
FIRTHESFTTUE M ATENGEE MR D —LENE R
MFHMER, REFRERMLEFINAER, ERiITEmREGEMTH,
2r LM-DESIGN!'?, DyMean!'3], ESM3[1%,

RERa s mEmAE, RINTTUERY E—8RE, £&Zak
JF B A5 B A AR DA A A AL 3R By 240 fe Y B ] SR AE 2 [8] AT B e
FI o UBANEENEF W EARMERNE U - ERRE X
IR A BCAETY S By 20 R R U B9 T Sk P R, BT DAL B A R SR 4R
PR EF B WA R HERAN AT EOWNAERFIRME. XOET
Bl A AHE 3 xTrimo £ 7% BRI A& BEME W (W TED,

102 complete 108 RNA 10 RNA  10° protein  10° protein 101 108 108 103
genomes sequences  structures sequences structure Interactions Cells molecular Spa}jal
perturbations 10

& 7-8 ARAREREEMRKEE, REBEME. NEEKHEEHR DNA,
RNA, HHRKEE, #MEAREESEERAELIERN, UREERKNRE
FEHEEE T AN FEHEEER .
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7.3.2 XEIERAR

BEAFOREEEAERE R ANER, ERAR S HKE
WA AR, ML RENREHE T ANKLRE, T LENHER
BEFNFEEGEE AL ER?

B, REBENEOEE, WwEENFURKEEAG TN
FHEMN, KB RANF —EEE, TURATERE LGSR
K, —FEEHAGIE Al RFIRELF TR LA T HNEENE,
MR AL AT R XM AR E B R —RE N, AT A&
PN, T E, ISR EEEHEES T EWFEA,
# )\ PDB My A E R B AN EME R R ZE G LM — KA,
I MBEAEFH I BRATREE In T EW AR, #HMik Al RS RAEE Ap
TENEGREM) AHE, LEARABAIREE MR,

HR, BARBMEEDHNENEE, L8 B0 EREE,
hinE G BHNE, &a-& a8 E kK IEEZEE UE i E A
WEWMEFWFRNEREG L0 EaZ 8 (i Ribosome
Display %), R IHFER EHWEIRFEA, BB ILIRFEFESH
RERMNEHE, AEERRMENFITRTEZNERFEL.

7.3.3 BEHAE Al BA R R ER

EEREITE—AZ B[, &% RA0NFEZHLNEN
eE, BIFIIAEN (kKA. EEREYE (WEREKE. £2X.
FERUE) L TENEXR, ETESHEA#TEO RN ERAK
TEAEY —MEaRITHFE,

AR A AR B S 77 R T AT DU R BRIt R, e 1
B, F—MERXEE T AR 2 E S T REKELF,
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£ 8E ALBREEREE

8.1 EFEEAITHLIA

EFAE 2 EMERAEFEERLONE, ERARZREE
B 5 £ ¥ DNA 5 RNA 4 T Z H WA EE fl, @4 % £ T DNA K-F
FRRLE . BRI RS, A KR R S A e
IR A = P AT o B A A 3 3T 6 TR 9 48 o R 20t i 7 3K DL EE R B
KRB EMN, XREE RGOS0, £ %809 e0 5 HEEEH
ot BEEM, MREBHER, XIHEE—RIKH. AL
;i

BEEFRAFAREAEENANF R X EHFEET AT
EYMHEER . BHRZ R FNEK, ZERENEMEATAET
b, FESEABE N, Pl KT AREEATE (PLA) MATR
e/, MEEF., £ENRNFE, EUTURE . EWEER
DPRATAREGEAELZ —, BUHRBENTSE, BOEFHRLM
KRG ANKRBERBEESTEND W, 75, BREREB~WE REK
FEEITMET A E AR A SRR Rtz S, B RKRE
EXRERT. ©RI1E. REAERLTLTLEEEZNNA.

2 PR < Ak ] % S DL R 48 A UE B 4 B P AR 4 B AR S R
., #FEFTEZHEZHET (TE) Y, BFHETFELELELFEF
H AT DA # B 4 R R A BRSO . 24 DNA 5
EME ARG EW RN A G NI B, Z/NMERJE FagE R
BAL, ERASHEE T ERE TG E . HEE TR AT
MXBEKR AT, RERY R T ESR R FEEMZ/ME, #T
6% TF M9 % &, 7 LLft & DNA 7 R MBI R, H A TF 7 LL% 4 3|
T3 DNA #9118 42 70 ¢F (CRE) 5 4 B F o A & & F o 7 16 71
AT RF i e RNA REGB-EERAEGY. FEM. R ETFME
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GRN. GRN WF %A BT 7 A S D ERA T AW EL, fir
ABIAE . GRN T LUASZRHKE (JF ¥ LA HFHIE) MU
FRETH k. PHARLSAFRANEIRRT N AL T E T EN AL
B, RHTTERFEAEE ., R RIERE R LR AT AR R B
B E AR W GRN,

8.2 EFHMIALEREE

HEXHET (TP EX#EWETES, EXEAHFHTLEAHM
& (TFBS) (A 7 iy DNA J7 7| 5k 7% %l 40 fe vy 35 i &, R Rk
fE TFBS *f TEMBEF A E RS AENGEXEE, £JF
(motif) ZEHAFEL HIAWFHER, £ FTHTHE MK,
MM ANEGRN T EEREER, B ot et EFigiy foE
frapt A FEERE XN, RAEFRAFEFIHEATEALARETF
EHFEFBENR R B —, EXENLTFE, EEFXT L
b s2 40 77 vk R YR A 4 TFBS #9 DNA 77,

# X H F4 65 W DNA F7, 3% DNA # ik mRNA.
R T &AL B DU TR i E AR 7 R E, &4 PBM,
SELEX. ChIP-F1 CLIP-seq & K. HItE AT, EEEE T AL T
DNA 77| &I fu ks & TFBS &7 it & 77 k. XEAEYE R F T
RIS W ERZ—, ERAEFAIE A S5k, EFRAEE
FEQPAE TR RS METALERFIRAL ETHITHER
T BRAFRE, FAl 23 TIRAFIE kM —H (=% &1
AW RNA 6. REFIFEFEATERAS, 24%F3IE
AUEMETHNEKR LA RANNAEF Z 5 &, DeepBind o
DeepFinder = & # F A 5 A& B9 & F iR A H % . Alipanahi % AP
Bk BEREF N mEIHFABNAZ| DeepBind B FF X . 1% /%
HHANFBEFINE G i 5 DNA 3 RNA FHIWEAERMY, AfFN
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JH % AR e ok AT R AR 3] A0 5L ] 4 AE 4 6 TRUAZ 32 . Deepbind AR 4
FH RERE SRR, B LIFNTZ motif 4 (14 642 %
Mg = 0%, ARAEET (GPU) AT ES NG EREEE,
K # T & F . DeepBind Wik & 2 4645 B Sk EAL R S Hfn & 2%
R EF S £ %77 X b8 #E P #£13 DeepBind ¥ 4w 5 A . DeepBind
4R F A4 HE &£ 4E % F A1, 48 ENCODE ## Roadmap Epigenomics.

Lee % APIiZ 9 DeepFinder £ f| B H 5 45 AL B A0 R AFAE
EFIMEMERMEEFRAER, EXA —fMERHEN =&
DNA EFHl77 &k, xMrEEaRmAHeE: F—, xA—4HE
FRITE, ATABAFITEFMITMELEEEMLE. £ =,
RE G HEBHNELLE LSRN, ATEREHEWNEFS,
DeepFinder T HEERHF = NHEEZNTH: (1) HZEEN P> VAN E=E
EF&. Q WHHFWEFANIANATET N2 TFE, UM
MEEHEFREENEGLR, FRARKA LN ENT AR EHH
EANETHATEIHMNE|, BBIEF SREH LS X 76 A
FE, AR HATHEERBREHENLEF . (3) FIWE LA
T M AE % 89 45 A & . DeepLIFT & M2 TLHIMITE 5 5% E 3t
AT H B, B 2L Py A% TFBS € U TTBR 5 A, M T IR 2 2 5 U4 W,
TF MoDIScol™ & 3T £ | 4 Bo %6 W AZ 09 B B 15 4 % R I & 7 984T
REMBE, ¥RETX—Mk. 4, #£71 %% DNN ¥ 2|gh— L&
= R BT T A 2 R AR AR AT AR R — N BT AR A R

TF-DNA # Z 1A A~X 3% & TF #2 DNA Z Bl HEE S, £
BEANEATR (KEMEEIER) fMEH TF &M &Mz EnR (&
HAAE B D) 2 [ B9 AE B AE o K AT 17 W 4 (LSTMD F2 W 1] LSTM
(BLSTMSs) ¥ DA 038 3k 7 7 M5 5 89 K B An /8 B R #i £ . LSTM
A1 BLSTMs 4 %3 4-# )l TF-DNA A E B F, B EEHEF 5|7 L
BAAEEKPERERRBENTFIGEST. REWE W EERXN
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DNA 7 7| T X 8 12 v o 2 A SRR R 7 B IR T — R
R, EHILHARG R FAER, 7 URRNTK AT 54,
SeillH ik, B n RNt EHAF MW 2 &, wERE %
BIURE, ERMNeES ] EirmmER, EZHRAAH 5 LM
A ¥ Fe TR, XL T RS DNA i B # — %
HAR #UIE o Enformer #2 8 22 389 55, ] AT 200kb 7 51 # B9 40 T4
ReEFE, WHLAETMNK T EEEF AT, W, EARER
B 5 LGy LA A SRR R, A1 DL A 57 0 f v
EFEELE, AW, TLERANTENMXREEEAT RN, X TA
HTUHETERE R REXLEBUFER T A TEE RN E
BAAL, AEXNFLMAEEHEM, EE]5 T 00 Fra R RN
AT EMNE R FNERLT —FEE T /RN
FHAESHE, BYVENEEERARFTEE L EE.

8.3 HEBEMEMENA TLEEE

EHET S (GRN) B EFHRAHIES£UR, —ERANE
B F A K R S AR R VR B A A R0
8 Sk I B — TR kM B E 4o R B E AR (B BT
# GRN Wi 54 o G A B B 10, SR A1 8 28 BAE TR 388 47
LY EES + 100

BEERAANREFRER G —E2FRARLENES, &
T £ F R E R X RH, AR EEERS 44 (WGCNA)
BREE. B ERI A HI, A T A AT 0, UL
R L EKER, B FENASEERHAEE LRSS, & T
HE A B R AN, 2 S RA % ROLA T AR R TR Mk, 46 At
R BRI R X R, B T BB R I, LA LA E
MR EEREAS N T AEROETEE. P REPEEET. T
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EERRA T E S A /RER, N HEd, o s Bed i LEL
MR WA KR Mo FHEER] ZEFN— RN FEA, Jiguo F
AR B T 28R LR T Rtk R B R, R EF
] AR A 2 3] A0 IE B AR R AT TR 5 X W AT 77 % . Patel
SEANRET —FETHALZMA SVM &R 7%, B B4k
T & A FH F R . Jisha & ADSHE B B K 77 % R AT 5K
EHRITENRE, RHNEEFIEFEHR SVM FHREMHEN
%, WEFIFELARRZHREACHNERF AL, ERTEER
2 i B 7 vk VB A . Mordelet S AN L ] 15 P 45 4 W 9 1] R o A
ARKEWN T RE, BATFEAHSH%KXETHELEK, @ SVM
J T T GRN. compareSVMUSTE] DU sk i 4, =87,  Sigmoid
AL IMAAZ M SVM WAz B4k, EaFRMA, RN ="1T%
B KEME WG ZE - KMAHE W 4% )8 R ABA, LA
SRR EE ATEE MR T, Mandal & AUSF| A & AL B &
WA = (FPA) G — AN T 40 22 ] 4% of 1 8 2 o S (2 40 4

AT HREEHZ AW FERR, ZMESHEFE B RHAT
# 4 it . GENIE3!' K GRNBoost2!'$14F 77 i & 46 1R 42 DL AT 47 3 B9 1
ENH K REE T TF SEEERX 7%k, RENGTNEEFRNE
i, XEEFRLTELZRAMLEANEE. BLXHEH, THRE
W AR EE, AIFIATRENERXR. #THD TF B
mRNA # F W FEF LB R RAEA— Mt & e i, N E
KAFH LA R G R B E R#/THEE, Hik, Buenrostro £ AN
B Fl g & i P] RO SR AE SR T TF 7] g8 50 m v A FR = ot S 7]
FEHAE R GRN W AT R F—, ¥EXEToREEH
WETE, IR e R, 8=, 2R ERET e E N
e, MK AEEE AR — EOR Al B3 ATAC2GRNEY | LISARULL &
SPIDER[??1,
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& 520 i RNA U F 8RB 1 3L, GRN 77 7 B4 T 3 i 48 g
KRARE M TF-EAEAMEER, URXY GRN F X AWHSEALK
B3 Aibar % A4t scRNA-seq #KiE#R L T & & =l 4 %
SCENIC, A& GRNBoost2 778y &. %77 % # A TF-EF %
TR, ERAEERAFERME GRN, FEHAR B FRETF 5% 7
4 A8 15 BRI GRN Wi, #4149 R ST LLR A S A 4
MRS URELREHHREFTNERM, R H . AL AR R R
%, et ke DU R RAEX R ESE R, B~ £ GRN 7
LaafaesdmEFEIEREAFAMNMENL R, LEAPPI
SINCERITIESP & 2 T 4 & [5] /5 & 48 Wi 7 H 77 [\ "1 GRN. 2 40fi
R R RME S RAY— R, I GRNIWGETEERST A
0 E g et 2, — e B AR gt AR A B & 4 F AE T R T
GRN, A 50 A KR R 42 /N AR & 8 BOF0 A 24k 40 B iy
HIV & #BU, J £ GRN #E ¥ 7% 2 F i A A scRNA-seq 2
SCATAC-seq, AT GRN #&E iy £ #5404 7] LAk 540 Bl 508 T F 1Y
gifE. RS BEHKERET AEBAAM, o LEMAGEE S
GRN, AF#HATEH. WRSBEHKERETHEN A, = UEF
—HME TR AAEREATEE, in DeepMAPS (5% Uik
62) B2 FigRP®I GLUEPY, scAIPIFr SOMaticlPO% 7 ik, R 7 A
MAREF &R T EHATIE, RENHEBEMATUEE, ZHES
GRN #E AN RERSERSHH AR Ak, &
AHERSE TF RATMEE KK, EHEFEES TF 2 H4E 17
5] B I X V8 45 70 CRE, ¥ CRE 54 H5 5 IR ) o 3 [ 41 80 5 [ 4 %
B .

BU e GRN 4822 77 ik il R L py AR SR mg, o1 (A Y46 &7 a
TE, HAMT TF &6 FHHWTN, TE7EERTEH TF £ 4
EFHBETNA L, TF WEZRETE, TS ENER L E 4
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TE. KEHTFTEAFEAGEBRINETER TF %65 FHEE,
BE P ERNERFILIREEE, hiw CENICH, &R 7T ZfH %,
cisTarget. DEM f2 HOMER. 4}, GRN W 77 i & 1 [ 0 &
B EMT, BT e X By e AR, Wit 10kb,
& PR B 100kb, 3% R &34 1000kb, BT oh gEE H A R I B
AR AME R, FMEAMEERNER 22 H MR H GRN,
ZHESGRN BTk as R— MrE X R %, ZM%E 5 CRE M
KB TF ZBR Rk, % CRE S8 EFEME. H T 4 K& %48 GRN
sy, TR FEEEBE TF, CREMEEEFHEZ A HFELE >
. aERBEBER—NLEE, S§A MR EXRERNEN, Flin TF
HRRE CRE Fraktt. Mz, FAURETUENEE IR
AW ER N ER B REATERIAAEE KL E - ELRTE,
(B M T 25, 8% R, e ST B A R e
Vi AR R 1 BT DAGE R AR R B TR T AR R R E R
FERX T EHNBEE TEHRERRE IR A E R EZLR, L
MR AR X ANETUTEHRENREG LR ENEFENEN
MPBEFELELE. ZHELSGRN EEFETURELEZE R 5
N 2% A B AT 4 4. FigR #1 GRaNIEP) & fF F 7 4 M FH 7,
DIRECT-NET" s SCENIC+% F dF & M Bl )3 (BaALA&RAL); PECAMY
F1 Symphony 21 | NPt #r # 4%, 48 2 T, CellOracle!®?. Inferelator
3.0M4%0 Pando Iy Hl PRt S M AR Res . EHRAFF, BERHA
4 M BHE Sk E U B B9 4L, seMEGAMSIr IReNAMWIR JH 4 7 o 5k
BT A5 R A St A A 2t 4R BT GRN L 41, Dictys] seMTNIH!
A1 TimeReglPOM & A 48 &40 fg K B An B 4 48 # GRN ZE# 15 &,
il CellOracle 1 SCENICH+# ] L 7 #1458 #E AT Z £ T JiF 4 T . ANANSE
B sc-compRegl2 1 SCENIC+2F 77 ik A4 2 T 40 ft 45 7 M 9 GRN,
HEFER>EREEGETEAT (TP FEAEWNER, A

138



FEATE/RAN G KESH

1 GRN By 77 & Ml TF 4 67 UE T AR EEH X 8 F 8y %
Bz, XUFEKXHAEW TF-DNA £ 44N, e f ezl
J€, ChlP-seq L%, fu TF #F M4 6 EHAFF], BEHK A TF
GHRAEF, AIANSEERELERNER, AERTFE6£7F
£4. EGRN #EIRY, wRHEEZEWEZLETE, =L
A EAILEm TF #g. s, —LHFEZ T LKEA A TF £ 4
AP LT &=, RAEFIRREH %, BN E W F %
A TF & 4T EELE, ZRTRSFHTE.

B E e RN R R (HIi-C) AR FE R FH = MR
MR BEHEA, AT —RNFHEASEE ER s (BlEh) M
BARRXBHATNF. FHiL, Hi-C HERFKT EFALEKRRXEZ |
MAEEIER, UMEEHAWIDHER, HAAXKELAENBETHE
R XM A EREFERRIER LN 2D R EIREMENRE, bR
it T RERXE I EREERRBjHEIERANME, By if] BLe
EXEH RG], Hib, H-C B2 E UENAER. 4T, Hi-C
HBAE, FAEEMAE HI-C SERE "G R 22y, FHibrek
B 2T P R S B AR B L B R BRE I, B TP gE sk D AR
TR . REFI FE (Flin, GAN) 7 T3t Hi-C ki # 47 &%
(53, phsh, FEAER (fflan DDPMD 7] LLSZ 3 Hi-C 326, 1K 4 b 4E [
WA, UEID EHAMEZEE, AR EFMRETE (Fla
W) Z A E AT ERPY, 4k, DDPM By E & > 243
% & U-Net, € 7] 86140 Hi-C 44 =" 7 % ScHiCEDRND™ & 4 Ji] iy
REREZWNERA, FHlt, wRMNAT Hi-C #1& %"%, DDPM W%
WY LEFARERZENE, URTGHEREN,
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) A
g%%g Omics 1
> | swm |
I ! 5 4 3 2 1 0 1 2 3 4 5 g /'
Omics 1 Omics 2 -
Omics 2

& 9-1 T ATEENZALMETTE

B EENHAFHREFEFEY . #F4¥ . x0mEF¥. B
FUAFHE, MALFHRARTERFEEAMBETAY . ZWNEE
¥, EaRAFHENRSG, Fit, NAFWAE, UKL HAFw
AFEWNAS =% —REERETAS RN R EAHERS,
K ED T ik A4 3 2 4 RNA 5 (scRNA-seq) 5 %41 f 4 & i
A M (scATAC-seq) HIBEWBATMITA; —REMEERAEET
FABERS, TEAXEMME RNA WIF (scRNA-seq) 5%& &
kik (ADT) #H#EWMRSG; F-X N -—MHAFWEEG, aF 24
RNA WM F. Baafas e e Jo 5 &g fikis (RNA-ATAC-ADT)
HEmA . BT RNA fr ATAC BB 2048 s AR (K. BB ER A,
B A % #5772 4T 5F RNA-ATAC £ A ¥ @amiTL. £F &
FEBR A LR TR AE S XA LR AT =M HF 58, EARE
HAH=MEFBEN TR, A, BURANZHAFETHFER
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Ex=pfE MG, cEHAMET FAHR, EAZTFIAHEHL
NI S EFEER AW R P F T F R Bka Kk, 7 LU
EAEMBNHARS MRELTHEG. TEAFFHNERE. F
BBk A, AWM BERA (F9-2), FEHNERMATENLE, £HE
WABEAZE, FHRTRENT, AR —BWAIATEHEL,
BARFBAFRANER R —HTLE, XM FANEEET, %
MANEYFER, BEBTIW A BN, EXEE —MEFHEER
WG 7 —MAFHATH . FEANERE S L TREME LR
1, BN E—fEFEAS 8RS (embedding) ¥ A [
HrEAEIR=E Y, ARERSE T HATEEG., XM AWTHE
T, THFATIXNAF# Tﬁ%‘?iﬁT%Hf\@éﬂ%%%ﬁﬁﬁﬂE’JFE”\]"ﬂ
REE T FARAT, BEURRE, RHUEARS T,
Mf’imﬁ%i%ﬁﬁ%ié’ﬂ?%@%‘, a-AVE AL S IR & Eéﬂ
FHAANEBFRIER, RERETFAFN LS RITEALHI,
E—MERFINTE. ERBET, TFEXTRAEFHTREL
B, G MAFH —EMIWER, AR EE, EReURRE,
HAENTRETEES, ZHELSE,

hoal

T el A SA

OO0 OO0 OO0 OO0

Omics 1 Omics 2 Omics 1 Omics 2

SH RS chEf T ERRA S RENRMS

Omics 2

& 9-2 ET N THERERI 2 H 2 HE Rl & A%
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AETKEENBERAS, BRA¥. RWNEEF. Tahid
FHBORIE, BIAEAFZHNFHRA, UK L HFHEHNF
BAR. hE, WANLHFHRENEE, At RAE RN REAH
BEmes. AR ZTASEORAEERSG. —HAF
(RNA-ATAC-ADT) ##E R4 =7, URATE 7 ENEE,
BUREAE W%, s M. gt BrEmasE, NHEA
T e EE 2 ¥ B A Y BT AR

9.2 ZEFMFHRA

AEFNA L MAFHFERRBTX, BNFEA, URSAF
HMFREA. —7H, AEREGHFEATEBNFEATELRE
BEHMRE, A— AW, NléaFIMRES IR ENHWTEF
FREERAENEE, MEERN T EI S HELKEFT K. E
W, AFEEMBEHMRENZMAFNNFHA (B 9-3),

HERIEEUR

scRNA-seq
Nanopore
Droplet- and
microwell- based

BEREHIE

CyTOF
PEA

Bl 9-3 ZAFNFEAR (CITE-seq, HMHEFAMBMKIRT; DR-seq, EFH
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4 DNA-f5f RNA JUIFF; FISH, BMGEAIIRAE; G&T-seq, FFEHAMEEFHAN

FF; MERFISH, £ EWIRE# FISH; Paired-Tag, /M1 RNA RiAFEE

B3 F ) DNA KFAT 04T PEA, JEEERY RWIEE; REAP-seq, RNA Ei&

MEERNFF: scBS-seq, MM TMMBEPNF; scM&T-seq, B0 FZRA

FEEFANF; scRNA-seq, HZIHl RNA WFF; SHARE-seq, % BERgn] 5T G

RN EF RNA RIXFFEN E@EENF; smFISH, B4F FISH; TEA-seq,
AR, RALAG AT AT R AR F A = A4 & D

9.2.1 HIHMIERHE

o0 B R AR W R A UL AR B M R B 2 DNA BT E# AT AR
R, FEHANEHHE DNA N5 (scDNA-seq), C REY1E 5 4 i 4
MmELNEREERREARE R TE. 248 DNA Il JF
(scDNA-seq) B4 1E B =] LLA BOR 71 ¥ WAk AL | 4K 48 g % % Fn kR
MR R. CEBEARXFRET S RANA, BB TRETF S
TR A KT AR BB R R o K A AR A A T A A N TR X R
B EE A NG A E AR A X, o TEEAERA
MR A, AREERD, ATF s e R HmEHA
AN ARY, BEAZTFAELZNA,
9.2.2 BAAfEFRAS

B s RO R R R R A AKCE BT RNA R, #HR A
Z o EEEEFAT, 2HME RNA JFHA (scRNA-seq) B/
Z PR TEMMBEARIT T, AT ELAMAF LN EHT, LK
ENEHRAERBART 2B LR, XTUERASHEAZI, @F
KA EH 1% (FACS), MAHEK DH@EI| bR E®m A, £T
TR B BERY 77 3%, 4 Drop-seq 7 10x Genomics Chromium, 4 A 5
9 B A DNA(cDNAD #, AT SE IR BT £ 77 A~ 28 B B9 T A 20 47
B /5 A Tlumina %2320 5 #8047 o AR 40K FLK 3200 5 B K 7T LA
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REENFIIUEAG XTI L2, SEMRARIANER. K
A, tnadlE A, BIEREMBENEARS, RET —FHLFH
FiL - B B9 R 7 vk
9.2.3 HIHMIRIEEF

FWEAEFHROZELSKE DNA FFINRI#R T, B LA
fl gl R R E R R RI AW RN, R AR
1T RE 4% B 50 45 2 [ 4H 9 25 0 0 & b oy R Fo AR = 28 MR S m9 ALl o 3
& U] RS, ff DNA Y 4722 B f o 22 L A0 28 RE A i S R e B R
FEEALH

Ha e B AR —F kB ER N EE B, 9 EF 4 DNA #3
AT, P LA R I AR R A A R R A I . B4 B R P e B AR
(scBS-seq) #] LB F AL E . # scBS-seq 5 scRNA-seq & & £
il scM&T-seq, F] LA B 3575 2 40 g B AL A fn e S H N 7 B 48 . 77—
A, scNMT-seq (240 fZ /Ml F AN FHNF), #
scM&T-seq § NOMe-seq (&Z/Ma & #EFr 7 &AM F) M54, LUE
R T P, FEAMEE R R,
9.2.4 B4R A S

EEAREFREM ARG EGRNEREAFHTNE, AECNTE
R R E R RE & 8 U2 B mRNA #3# W Ak, 2,2 mRNA
MEERAFA AL, WMo REEE THRXENRAENSR. £
BHMEARAFHNE T EEZEEA SR04 T4 60K, wo
B4 ERAHEA (FACS) fo ¥ATH Bl R A H A (CyTOF; % /&
EIfL & Do 7 — 0 /i Z £ RNA 2T F AT AT Z a Ul e W 3B 5
¥ ENMZ % (PEA). & PEA ¥, kR REMEGHEFEZESE 65,
FAR E RS AT AT IR B 228, YA PCR #EAR, 4kTi A Al 51 47
BEARMATY M, & /5L qPCR 2 NGS LI 2 &4,
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9.2.5 YIS H¥

FHEEENTFEANRRBEFN 2 HEFWNEENE R AT
B, WM ARG LB, HERFEE DT W XML T
WA RRETE2EWER, L HEAEAEA RBEL N4
i [&] BTl & DNA B Z A6 fo s S H 204 , ) 40 scM&T-seq.scMT-seq.
scTrio-seq 7 snmCT-seq. Perturbseq #7 CRISP-seq » M| = # T CRISPR
EZTHAEEE LA RNA ) FHHE AR, BN A,
Paired-seq 7 SNARE-seq, £ %™ 40 Jfl B AZ T #F % %% 20 A 4 & i 7]
B o X B AP A B BUE AV B MK F B AT Z S H F AT
[, CITE-seq f# REAP-seq 7. ¥F & B | & 4% S 4 Fn & B o 4H 19 Sk 3k K
F, TEA-seq 71 scNMT-seq & 4% [ BTl & = Fh 4 2%

9.3 BRAFERMEEZHIEME
9.3.1 ETHREMEMETTIE

RNFTRENFHJFE R EAREEHEENE %8 a4
A H5RWREFWFT & FEMNFR gAY FS a0 LD ¥
RETRIREF ANR Y T 2402 5K 4 851924 scMVAE™fn
DCCABl,  scMVAE # & F| i FEAL(E b fn 2 A i 25, & e id R
& A8 LR R Fe R AE B R A F 8B R T GMM S8l T VB 608 &
FAE, AR EMAFHBENMLEEMIERNRILE, FH
RE G RAHZENET—f, ZEAEHTAE -2 A+ NEN
scRNA-seq 7 scATAC-seq %598 W % A 77, DCCA # I fF it — = 4o
MM EAN VAE EA 5 A SN HFHEHATEE, REETERL
Z B A% X TIRE R0 vE B 7 B R YR 2 ¥ 4048, T4
— 2 fIHY scRNA-seq 1 % 20 i 3k W & F 41 % (scEpigenomics) %X &
HATG 22 Mo

Bl AFHZ e FEE AR T — b 33 AR 2 & A AL, BN 2 41
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L NE A& seMVPH, BT R KX —F M E5¥ 3 scRNA-seq
A1 scATAC-seq # B E WBERT-XIRLNE R 7 B o %t &
A (VAB), F#EIAFETEZHHELERIE (B Transformer MY
ETEHEREAW scATAC) N L H¥HBHWA LB EHZ N FHEEEAN
BEHE, ssMVP RET —ME B EREERER, ATXHE—2
4 fL ey 2 AN B HATER G 24T, JE 23N B £ A 0 AT B & 4 AT
MFHBHEREREN, RE, FRaH . T4, ST g F1 CRE
Fm .
TEMBARFWEF ZE R G ET — A4 Portal {§ T 2
Bl, R thkMEAHESREER, RATE. RELS Y HY
I3 R A 4R B o © 8k B A BIA S0 B AL N LR R R AT
(BFEBRAZ FFELMRIFEEREL 2D A F T, #1%Eex
TAF NG — B RAERZIN T RIFNHEE TG CEBEZ
P M RN, R ER T R AU R A . R i P 4 &
Ve 4% Portal BE4% % & & 4% B AF 2 AT
HEERAFHKBEDNIF LT 4 N SCALEX #y 77 &8, 1777 % &
TEAaEREE (VAE) R, ATELESG RN EHMEE.
SCALEX B9 4w 2 # kit A — MRER Z B, SR 2 /% e,
TRRGHATT N EWBREAD EENE, ZRZBHL AN,
TEEEFHE L EFVIL, FHIER SCALEX 8845 DI & 77 &
eRHMETE. it 5 KR EEEHEEWEIE, M11IEA T SCALEX
EEARE. ¥ RIEMTERERETE L F MR T EL INMF DL EF
EALMEHFEELST R, X8R HFESF SCALEX #F7EH T#4
Ao R R 4 A BE A 4 A AT 1 T B A W B 48 AT T
T K HEE.
THREFXARFNFEANREL T —METHHETINTE R
W% (Con-AAE) WIAERU, F|FBA B o4 8 254 ) AP S 40 4E
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BATEI O MRERY F, FEMTERANAR T HATINE, BEA
EMBESTT R4 BRI, X ERREDETZ [+ T EHEA T
BRA . AT, ERAMTERA TR FERER M5, AT # %X
ANEER, AT#H—F I T —MEF IR B k. WA, AL
WHT — KA R E RWERF THEMNFES, R g EE
3 ST AR S RBUE R

I A 5 i 2 4 A T & B 40 B = B AR = T3, R o] DA
PR X — M REHFEES, BETE, MAT4H scATAC-seq 4
REEN 6, 7] R 5 scRNA-seq ZFA KL EN T AMHE LM EHE
B IEAH XY scATAC-seq HIE RN BT NAF £ R, XEZRR
P HATES, R EFZ Bl ZE  REX —WELE R,
A1 T —H % & scBridge 0V & fi 3 #% % 3 77 B, AT £ H ¥4k
¥ V% A, scBridge & %6 1# f 77 /= B #Y scRNA-seq LT — MR E
WE g RE, AELTEREZERANEEARNEFZRN
SCATAC-seq 4 fif. 28 J5, W ¥ 0 % R A A 55, 7] % B9 scATAC-seq
41 5 scRNA-seq 471 L # 1T # & . % /5, scBridge M7 & 8
SCATAC-seq 40 g F £ ¥ 3 67 2| %/ BV scRNA-seq (48 +, L%
NEFZE, BIESE FTRAIE, AFZFZFHBE/N, BEAHARYK
i, RAZITHRENESGLER,

EAFRRHERANRELE T MoClust EH—FF TREALH
fit % HF B e AP, MoClust =] 7 f| T4 K H Ao ik g 4048, LA
BEEFAMENERAHE. Bh, cEI LR ERGELF
MEFHFEEHTESE, FFIRENEFFERERT. LK, &
FNEMBETINT — M A BN E T RIAER, L& N
FRATLEME. %=, MoClust & & — /xR Ryt gk, &
HRZAT AR KRG IR T Z B AN, LUAETRAY
FRES B EE A
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WAAF-HFETIAFATIE RGN R T 00 TR AR H
T =M% K seMCs B 77 =00, fufllfgk 7 £en £ E B ERZRIT—A
FERE\EIAm AR, URALENRFEFFF WA,
FHEEL B EFENEMR LA RERS REMSRELT,

7 WA B9 R EE A 42 T — M4 A4 SAILERX WK B 5 3 AE
B, Ukt 2 HFREESA L HE A 22 M5 2048 £ 094,
11 F & 2 B sh 4w % (VAE) X scATAC-seq HIEH#ATEME,
scRNA-seq #HEHHNAZTENGEHN, T2 £V %t T XHATEHE,
A7 38 3 M AN S 2 18] N E (B R X AR LM B R S R ik —
SHTHEA, BB R IERESEESAHEMN, B oE R
FEAZ A AR E ZRRA. SAILERX HEEEE 1 FRAEK
A B H scATAC-seq | & Wy %0 ¥ & v B & B 47 B9 scRNA-seq #1
scATAC-seq HI#HE S, ARA &R E L S HEWE Rkt #
A B 24T

it E T ¥RNKAEZHNRYE T scDART, AT ATAC-Seq
f1 RNA-Seq %7 & /i B 52 20 f X B = ] AL 2 X 2 — A o[ B 1Yy
REFEE, CRHELEARNANEZHNRELESEF, RYE
Y6 B HE S P R A R B A

mER S L KFHE ¥R 3300 77 /20 A 84T T
ek, #E7 2amp LR scGPTIS, AR A RESL T —AF 14t
A 3BT H AR R B e — & RTINSk TAE U, % Transformer A4
AT T E N, FEEFIAEMERET, WA, FARARLRET B
HEHFEBATNBARE, §EREELMNTEES AT %
A, T Sk E A A R B KRR AR K 38 B AT 40 8 A 9 2 AR,
FARKINZIE B EEA,
9.3.2 BETHERESRITIE

RNFTRNBRLFEEARBOETEE T EBAHX
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BE¥ERNBEFWTE MABREAFHNEFANRE T —F 2
HIAR EFE LT & (scAD REA K B —HIHH# AR E
B4 (BR g€ 7 KoM 3 DNA B 40D M4, scAl £ & 2| 2 40 &
MEHAHENRAEF R — TR, AT HEENERF T,
scAl 72 & B W AR L 2k ] 5k 34 Fo 2 025 R 23 vy 40 e T 48 o 2R R R T
EFRAHE SLEUNERERIRRNEFEAFRENEZNELR
AR P 5] M- g f AR U R [ R H Y. B, scAl RET A
HAEMFRXNRKREEWE T AR NEFEE, AFRAART
B, ERXFW G E PR AN, EEAALE; DR
=R AW,

KT R ESE IR E A, L AFHREGARELET — 4
AE 4% F '8 M A Fr UK SE | A R R & i 7 £ SCHEMAML,
A T BAn ey W B OB 0] 5 2 (A R AT A 55, 45 5 miR fn
XAEREERTFIFATE —FH, K5, ME— Ma&REHN
SEAMNWEEZFTEN RN R —SE T A T HHRA S5 E 5
WA, #RETETRENSEER T ERLEEE R FEmIRME
AT BT H AT AIREZH AN, FIFETREN T ED
SHUNEXRBNEEFHFREREX TR FIHEIRENR
o W AT K, FAMFARIE LUK S A6 E W RRETR,
ERBEAROIEFREFENF TR,
9.3.3 ETE/M%HE

TR AFEHENRERET —HETEHEENS — & A\ F X
GLUE®), Fl T [5] B % & E o x4 By 5 40 i & 4 5 3038 I3 W7 T R 4L %%
(] B R4S AE B AR o i i A AR AU R R 2 [E) B R AR AR AR A
GLUE U—f & FEWN 77 iR E T &M A FHET B Z 81 E
P ARGy R A Z BT R &P, GLUE X T2 R4 i 54
FHER R, REATY BH. W4, GLUE Bkt — /N8 8
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A, TSR 7 RBRY B TR EZEE,
HERANFHRRARAERNI LT — 5500 77 o WAT AR
KoM O AREAR R A7) FadE x Byt & T A Bi-CCAM, M
AN [B] 52 30 A ok B TR AN 2009 2B 1 o o 3] AT Fn B 22 18] i A £ A 5T (B
B M ARAE R E ), A bi-CCA S B A ERET A TEE £
B Frena e, W DU MR T i T & TR M. bi-CCA A A
TR B, LI T RNA 1 ATAC 335 2 8] WA 20 i T 2 ey o
Hrt 7. ©LEITEA RNA fo it H i A S IE, Fabe 2 I HT e
FRA R o X H-E el FfaEs.
BHLEFTHEAFHLIHBANRET —HETHENELR
KEENICH, FTEImA 24t KA (scRNA-seq) kM &
7l 4 i (scATAC-seq 3t DNA ¥ &) skiRA|40fg KA . NIC B B
ERNEFES . EAAMPARREAX =N FEH RS, ¥ I8
i 18 A 20 B e 5 B E oA 2 R BRI AR U 4, T A AT AR
T R K A R AR LI P 45 B S A SR 3R BUAE R B9 R AE o AR BB 3R BUA 4
FAE KR Al p 2 A, H bk, NIC 89 B AF B 2 o iy 4t o T80 M2
X5 R PN F A B
AR A ] JE e Ao Rk B BIBAJT & 7 MarsGT (& f] 5 28 fi B &%
WA T E AR 2 HE o) W, X8 —F0F T W24 %
HFEHEFRINFN ARG E K EF A, NHT A
DeepMAPS16 TR 7 4 E 442 28 (HGT) WL B gE, X & —F#5&
AREME RN, TULBEANERH I SHE, BLBKE2T
mumi HAENEY N EEEFERELR, EXFNEM L, MarsGT
FINT —ANE TR W HGT 1E 2 %k 447 5k B = i B iy 2 40 i & 41 %
HAE, aFaia, EEME, xR LE-KEREXR, FAHA
X b Rk RALF WL o 20 B
HREMRAFWNHATITEHRRE T — MR A scapGNN #y4 —1E
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R0, xR —ALXTHEHMENE (GNN) WEZSR, T AER
AL -0 . T - R AR - MR BR K R, R A B B B 4 R A HE
Haonfe X H - R B % . 4, scapGNN B4 7 B4 %
EEHAE, THETRAEARER T, FRLEMMEERRAT
2 i 2k AU AE Ok B AR E AR AR

9.4 HREAFEEARBFHIEME
9.4.1 FT LWL 7%k

METE T FIEM Zhi Wei FIA T A T — M2 E SR E ¥ A
scMDCIY, F T £ A 24 A E R K 4. seMDC XA T £
AEmLE, ATAERETABESHEERE, FERAH M
BAABAEENESHEE. T H P REBERMEF, seMDC
I N T # T Kullback-Leibler # Z fy#i% (KL #145), DA% 5|8 WLHY
MRS E NN EE, EOEE, A gsRmBE. KL Fikf
BE KHEEE, FH#THRA. seMDC 2 — #2551 £ # A F
E¥ARKT &, ATEERENZ HFHIE,

FEMFRITERARR N E R AR R T — s
RNA 77| fa Kk 1 DMS-seq 4544 451 B B IR & A (5 Bmb & W 4 4
DeepFusion!??, 1#if 4 & A DMS-seq #3E & 3k 15 H9 45 # S5 4E R 4B R
ZHAMRE RNA 948 E1E A . DeepFusion &4 7 # N2 T % H 44 ¥

BRKEHITCWMEHTHRY, UERRFHEAE LKA LT XE
g

ANINNY¢]

BYIAFHKIARARER T —HHFANEERAXN S HFR
REWEINSGEE DEMOCH!, H T2 64 X HF kg FE84E,
LBk 8- 1R A 48§ 7% . DEMOC A& & & 554 CITE-seq $U1E 7 o % K 4
MEAGHFHENANERERAR FTENHNMA, RAeEE T HF
¥ bR F E T & R ¥ S # scRNA-seq 4 7 7% Enlmpute, 4 ik 3E
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HEH A FHEENE AR ERAIA . 47X = AR
ATNET MR RRNERGEERE, RET 1INV KE KT A
Mg REF 0, MEFIAMENFER, X = KENAHATHRE
Rk

b3 A e PB4 F A #2 ) 7 scCTClust & T %+ CITE-seq %k 18 #
TRERR, T #k CITE-seq & B L FZ BN EE £ R, EUEW
B RRMFH TR, R F R 2 8 7] g oy KA X M 4 1] R
scCTClust & Je | 1 T Py ANt 3t 5% AL 5 Fn B g UL 5 e 14 2 P 4%
G AN EERBURAE. 25, A EEETAR X 7k, *E
TANEEZ M m A, LMEKEIeH 8 - EFZHRES
B, it Ea b, FINT I wmERT &R, AT ERES
o A AT R R

E 4 % e A ¥ Justin Lakkis A7 Mingyao Li FI A4 H 7
sciPENN (#4015 & sk A& M) B, BTl A+ & 8 R
KL, BT HENE., ERERNTERBZESE, UKEH L
CITE-seq 4 #& % . sciPENN 7] DU JF| & W7 45t & 77 7% & ik % 1~ CITE-seq
HESE, EC(TWE g RERIFA T2 EE. sciPENN WL # AH
BETY REMITERR, ME S BESRERNBNTEEK, HH
HeRWtE TN Ty REARNAEEERFEREE,
9.4.2 FTHERESRITIE

BT ARZFoMEFER KR T — A R & 240 18 £ A2 A o AT 4E
% CITEMO™!, CITEMO £/ £ & 44247 (PCAD 4 7| 3k B 4% 2 4H An
ADT 8R4 KR, %5 FRFI A PCA kA X X4 L EAHAEHR
T T AT, CITEMO ERWET — A7 2 A HE X ITH T,
FEm XA, ADT MEZBRSEFoMER. FRILEHA,
CITEMO 7] LA AA izl T ABEAR AT, JHEA HErnmREE.

161



FEATE/RAN G KESH

9.4.3 FET M-Sk

Ut 2% & A % B Wei Chen BIFAFT & T — b 3 #7A9 JL e+ #7 B8 AL 2% R
A A BREM-SCPT, 75 & ¥ x4 B of 0 5 40 f 4 e A G A
BBEHATHRAERE, EH—METHMEMHE N %, BREM-SC fE &
ENEHMARETH . ERERETFHBRAEEN, &
RERITERGEEMNRRELGRE, AESENMKEREXICRY
MR AR, BT, AERERRETERZEBNRERE A, I
HZA® T IH 20, T ASHEN T 2R RRBE N HIER
M E B4/, BREM-SC XA EH/ T —MNE—WIEE, #%H6
T % REAE, A REITE SR Z 8 A A

T %% % K ¥ #9 Wei Chen HI AL JF & 7 SECANTRE, —ff & 4 %
H5H SEmi WE A%, ATHRAMSHFHERER, 2XFEE., ©
" LA 4T CITE-seq 253, .7 LUFk & 4477 CITE-seq #7 scRNA-seq %%
. SECANT #hlgrz A a#E: (1) FlAMNKEE G4 A5 Y
MR e 4R AR B ME AR RN T (D) AENHRERREH
o 5 40 B R AL — M R (3) AU 40 B 3k AUAT A T Bk B ok B A
MR AR E M EE; (4) HEFHTUN scRNA-seq RIBEN T MM ER , 15
H— P ETHEAN %, SECANT T LRI S THENERBEEL
RN AHEN, MAZERTUT REIAEAMRA NS AFHE.
9.4.4 FTE/MLTTE

7% J&. A % 89 Hani Jieun Kim 1 Yingxin Lin B A48 T — /523
T — RPN EAN B % A2 AT CITE-seq HIEH 77 %1 T A #1+
HAHEH, CiteFusel®, ZHHaHTHNERN, EAESLH, BE RNA
FEARKEZERIN. AT EFREITG. BA-ZHRELERS
#r LA B CITE-seq %48 B9 28 B A W 4w WAk, B P A F AL #)0Fn 52 FR
CITE-seq #X#E1EB] T CiteFuse % & H f 2 #E £ & RNA 18 B R IA W
REA1, VLR G BAEKFAT £ R A EAE AR th W9 A8 4 fE % CiteFuse X &
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T2 —NET%IHA T RGHES CITE-seq 2XE + £ 498 RNA F
ADT # X 1 7 %,

9.5 ¥%REAF . EHEFERMREFZHIEME
9.5.1 FET RN LG

= [E #7348 A ¥ 8 Howard Y. Chang 72 James Zou FIfAE H 7
BABELEY, W] DA 54N 40 At o 4% S 4 Fo e 8 R BD B O 2 [ R AT 4
W, BB — M ANT LREENHENEEE, BABEL 7 LLE#EN
4 M1 B scATAC-seq 4 & scRNA-seq, R Z7Féh. XEGERH
EALRY AR, FUTHEARBRNNSZAFNE., ZANHE—F R
7~ 7 BABEL ¥ DL E A4 0 2 M HE 2 45, fl4m CITE-seq, AT
I 6 . RNA A0 g 2 B 8454 . BABEL N 0B R & fo i ix
ERIRHT —MERAK T &,

AR TR A% Y. X. Rachel Wang., 3 [E #7348 K % Wing H.
Wong & # % A RAEH T sclointlP, F FEAEMENE. B FHEM
Jif, RNA | /7 (scRNA-seq) 2 2 40 i, ATAC | 7 (scATAC-seq)# & & .
scJoint F| F v BBy scRNA-seq 038 0915 &, £ b B1E 42 T 44
2 W % Bl B )| AT T A R ARIT IR, EHARE A & fu bk & 7 .
JF B #5548 DL i ASAP-seq A1 CITE-seq 4 B £ A BB &, # %
A FRIEBH T scloint TR E FHMH T, HABLAILIE 7%
FEr A RAAT S e, FlaRERE XA TN,

FEEFHRITNBHANF AR RANRE T — M8 T %4
HiL % 5 25 303E ot T S 6 0 R A 1 AR B AE 42 MIDASPY,
BN R BRSNS F iz ERBEME T, BRI T HEK
R, FHAFMARIE, BEIFHEEEEAFFEELS TS T
HIMERE, BT AR, o, ZRAREHET —MA
RONE M EAZ MW E i Z A, SR E T ER T mE
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0B 5 WAt 7 5, DLSE 30N T 1 2 3T 2098 1Y R U5 A0 0B o g Ao iRE
EHEIEKEE LB EE S BT A B 2 R R R A% i 5 R A
T MIDAS B % o e e Au fh mh 14
9.5.2 FETHFEMETIE

TRBTAFEREFAZTMEEANELT —MIEKE D BAE
% SCOIT®, AT M #4M % 4 5 H4E F R BMHE N . SCOIT Ba %
fhaA, AR, BRI A, DUAERG. E 4 AR
BB ZERT UK S HFKE S A HENIEE, EH &%
NG R N A, AT SEILE A T AT, B EEHN,
SCOIT %23 7 BA ¥ E A RIS EHFEEMNEH T . b,
NV [F] B AT 55 A Ak, PR T AR — A 4 R
TEHEE
9.5.3 HTE/MEITIL

WARAFXN TR, FAHEAF Dong Xu Ffk % # N L A% Qin
Ma FI FA 4% H 7 DeepMAPSEY, A T M scMulti-omics 5 $ W & 47 W 4,
DeepMAPS ¥ scMulti-omics Z#& H — A2, FEH L LE L%
BEREAAF LT X FREHF ] A fEF Z B X R &R
T T EL Y8 & 1 48 B CITE-seq #0348 0 IT B 09 9% 32 M /N ik B 48 A
M EJE scRNA-seq #1 scATAC-seq #HE T F H AR AF R H AW
P& . oh, ZRIAERE T — N e F £ sh e An v AL o) Bt
i DeepMAPS Web Mk 4%, L4 & scMulti-omics 453 447 B9 7] A 4
Ao E A

* E X WAR M 32 K % Jiliang Tang #k % H A £F % 2 40 fE iy = /> <
RES: BTN, BESRRAERaHAN, #E T —MEHEMHE N
2% ScMOoGNNB®L, 7 77 vk %t 38 20 f B T E A S 9 A AT 22 AR, RAE
20 B 7 2R AR 72 GNN P %%, 1 [B] 45 5 1 A 40 0 1R S e 21 T Y 4%
FAEA B EM U E R, ANTTHRARFMESZ e EMH KR,
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Flet, a7 ERAH s EREE, TEFREXNNEHEESFHTYT
RBAEF, ARMMAERNEMBHBELELSF AN BRI,

BT R F K8 A A B R AT Lab gk Z £ AR T scMHNNES,
PEAETHEWE NS RESGLHM L HFRET L EXF LK
A2 AWy 2 BB X BREAM S, scMHNN 1E £ 4 5 # & _EH AT B %
HAE, TUHREN BB R RIS LM 7 FUFE. B /5, scMHNN
i 1t B BT AU B Ak 5 ST R B A W A RO . B T T K
HEERAE, ZARFE—FIIAT IINEFRHALER, RELER
TCHY 2 f 1 A 5%, BRP] SE3N VR w40 L R AL VE R

FHAFEHANRE T — ML KX Louvain FEMEZE
scMLCP, sceMLC ## 7 2 E 2 E S B RS MM %, Uk
EARRHERESHN—BREEL, REXAREN S EHRXEN 7 %
EF B RN MME. I, secMLC BA ZiEH, TUY BRI AR
T R DA b A A Y S A R R AR

FOMBEAFTHHARANRE T — M ETEHERNE N EH
B % 3B A FAESE GCON-SCP¥, 7 £ A2 mp sk iE +,
GCN-SC B E EF A AR L MBI BEFEASEHES, EA%E
EHEBMHESE. CHAEERAAEERIEHY, Y5 EREH
BEENI B AR R, #— P KA GCN B, FIAX
Bom R A RR A E R R EEHE RN T RER. R, ETH
27 7] A 70 K8 [ o R AT PR
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