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BIE3SIF

ANERWmRE R RELE T —RZMER L E, RANTEXER
— R UBN EMEy “F g Retz]” N, 2024 5 iF IR Z 8954,
THEX —ELTRA NN, %32 ¥ X% T Geoffrey Hinton 1
John Hopfield, TX&Z# T M A1E A A4 P 4-<0 48 1y 22 4L 1 o0 Rk,
FHRTEEZRSRNEMER TN ELE, SHER, FX
i %45 David Baker. Demis Hassabis 7 John Jumper, L& % {13z
Al EE G REMTN AW Ea R, WEETEENFAR
H RN A HFLT. X—FHES, NIERCAERT 24
WHBI T A%, CEEA MU ARANAE, RENMAFEI
FEMBFRENER SR,

LR E 3] A &R, U AEZHA (Large Language Models,
LLMs) AR FxHEBRANALEE (Generative A , ELHATRA
WA, RABRXEMFHFROATREEA . AlphaFold2 & 7 #f 5
T H 3 A& F 50 F 89 5& G FuaT & % &A%, DeepMind B FunSearch
Ao EgHF A AT LIRE A (Cap Set Problem) 4~ A 7™
W AT ED, B RBE MR RR, TR Al EEEERFHE
WA RN A 5 LB AN, EHURE CR AR A L BUE &AL
AL MEER ., WEILE T 2L EE WL 5 AP,

X REMNRZIERUFE I E EEM—RE AR E 4.
EVRIABRE T iR EHATA, EHETETHAERFNER, HHE
MEIT ANEEBELE, F—REAEFHARALYT BT AX

WA -HFk 2E7 BT, TR HAREHR ALE#TREARREM] HAFF, RE, & #6541
BRAE, 2023.

21 Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021,
596(7873): 583-589.

131 Romera-Paredes B, Barekatain M, Novikov A, et al. Mathematical discoveries from program search with large
language models[J]. Nature, 2024, 625(7995): 468-475.

4] Agrawal A, Gans J, Goldfarb A. Power and prediction: the disruptive economics of artificial intelligence[M].
Boston, Massachusetts: Harvard Business Review Press, 2022.

Bl'Wang H, Fu T, Du Y, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972):
47-60.
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N . W YA Al 4, EUERAI AR EREE, &
Ba NRHAFE =,

MERXREORERA, mRAERRNEA# ST EEFEEH AL
A (Paradigm) Wy, XA, LIWE. 10X 5 HFHAZCH
GRFXHRTHFHE LR, e, UF@H. ZHEHMEIRE
W, BENBENEETEEEBETFEHREAENELEE, BET
MEHE ZHEX. METENNEE, ELHETEENE REN.
ABEENEERIAZWITERF, BREAAFE=FA., MAJLT+F,
EHMEEREBENE REET AEERHNK, NEEHEF LIARE
BXEEAENHEFEAME, WHELAAAFEEAZ, XTA
T AT AR F TR ERAER,

Wz, —MHARBEEENELERERERE. FEEANTW
HREAXNEEFI. CHEBAT BT ENEABELSNMTENE
MERAR, ERORKEETE AL DEIN ST TE, AN
iR E B RR S 5FHC, A AFEAF, ALTNMRESEHR
EHAE, ERReRERFEN. RUTZRATE, &) AW kH
TEFREARAREZEF ARG REWBARR . LA E B ER
EFBERXEEZNFRABRIEFERE ), tEZENLESR
FEMEUS B E TR ZEHR, EA-IMFRARNA, F
R, HeEg)% 58520 %, BALZAE. gai5. AAEKER
WA ZTE, E2hBhx—HEAMEtHNEEE. Hit,
ANTE W B F# % (Al for Science, Al4S)fE # & #F % F 84 AL
A, TREZATHNER, EEMHFAMPALEFEXRHLERESL
TEHLF B RTBE HEIR R

WHIGH ER, FZ-%e. BEEGNEHM] &F4, T, & AU A% H Mt 2012
21 Hey T, Tansley S, Tolle K, 2. % 10 3% &.: 3 % £ & £} & I [M]. Bei jing: £ 4L, 2012.
Bl'Wei J, Yang Y, Zhang X, et al. From Al for science to agentic science: a survey on autonomous scientific
discovery[EB/OL]. (2025-08-18)[2025-09-14]. http://arxiv.org/abs/2508.14111.
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1.1 HEMRRIESFNE : SeR 2 F5LEE%

ANLE GBS FFHRT (AI4S) , XN AET B AR F W HE
AFHRA, SHAEEBRFHFR, WA FHARABLHEN, EE
BE—RINEZIMRANRE., ERCESEETEARFSHEFH
FETFEM EFERZNEZR, IMEZREAAEETA. #RAW A
FEWFLNET. BRXMERAS TR A4S EHF A T8I
HAEXEE,

FREXMTFLHNLEL, AFARIBKAFERNNT
FRME: —ZFEAAR “ERZE7, AL REULE; =
ERRBRGHEERZ B RS “EEREE” . XEEAR
EARZ B LN B &R R, WK T AR R A%
Ho B SO A . H B AT AR A R IR E R .

1.1.1 Y22 4 P SEaE ™

REHAATNBNE N EEFEEABFERZNTFELES
TERKA, XMAZHFREHHN “HREE” (Paradigm Wars)
N, GEEAMFRABMAN G —WEIEEXELY REASL, HE
R R R AR 48 S I A K T E A F I S ey B a8 9%

BEHML L, ZEHAEERMFEEENRT, &
LERAME, RASMEFEFN AL, PRTUENH., ZRAWHEXR
MERIFTAFENZIEEX TSR, FIEFXETEZERNAREKR L
1, ANABFGERILITARERZIIWENI Z#HF ., LR R NE
FREMNEX, THRAXF L LRFNET L, BIR/FFELIL
MAEE, X—HHRREFTE W B ~F /K (John B.
CarrolD) , A THRFIZI B, MATENN T ERL, HWEER
T Fl e ERFIEXP, £« wEEH (Lee Cronbach)

11 Gage N. The paradigm wars and their aftermath a “historical” sketch of research on teaching since 1989[J].
Educational Researcher, 1989, 18(7): 4-10.
121 Carroll J B. The carroll model: a 25-year retrospective and prospective view[J]. Educational Researcher, 1989,
18(1): 26-31.
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1957 FHZ B WA T, H—FEHAT ZIEE XN EFEEMTRKE
MWL R (REMARAEREAFRE) U,

AT, FEMRE HEARBARTANERE., FREEMN
BREME, pBRE R AED, »8E CEEN £ X AR
Wiy, ERIAEZSTH, s MAETNEZS, £IARLE
BEEZNEN, BRBMRAIHARESHRSEH L) F L EELDN
P, BBEREXNHAAELAREANRNENAEE W EFATHZ
MY HETAFMETHERENL, ahEFTRES. ZAHARFR
X R A

fE, HAERETANEIA—FFETHTFARANEREE,
WAB R KL ETEENETHREMERAEN G FEIE,
58 VA A AT B AR AR (B DS, X B B e A E B A ROk ERIR AR,
FIAT 20270 FRE 90 FREVHAUF R, BRLAHFTHAAM
e\ % min A I F R B, (B A L R AT I B
N R EARMBEY T PRI, M2 -8, AR
AR (0 A4S W2 B9 SEiE £ X Hiw) #Hbh a5 H TR E 3
Eo R EEGRE,

1.1.2 B 5 ST TR

B_ABOFEREREEERZ B FENE RS, B “H5-
5 #% 75 74> (Research-Practice Gap) S, X — Al A2 % F 4R
RIFER, BEOWHEHTRA RN EMEEZI., FAF~EWE
W, BEARZIERN, EEEUE —SHFT I EETRER. XN
AR B A EMRENREY, —THWEILERFHFEKRKL 1T F

U1 Cronbach L J. The two disciplines of scientific psychology[J]. American Psychologist, 1957, 12(11): 671-684.

121 Nickerson C. Interpretivism paradigm & research philosophy[EB/OLY]. (2024-02-13)[2025-09-14].
https://www.simplypsychology.org/interpretivism-paradigm.html.

B Denzin N K, Lincoln Y S. The SAGE handbook of qualitative research[M]. Fifth edition. Los Angeles London
New Delhi Singapore Washington DC Melbourne: SAGE, 2018.

4l Taylor P C, Medina M. Educational research paradigms: from positivism to pluralism[J]. College Research
Journal, 2011, 1(1): 1-16.

Bl Rycroft-Smith L. Knowledge brokering to bridge the research-practice gap in education: where are we now?[J].
Review of Education, 2022, 10(1): e3341.
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7 Re Bz BRI

X EENEREHRFEMR, RELEETHRESILEREHA
HBEEXN. BT . BHILE AR LR B R B 8K
BEomtatmr A miEl, UARSRELXAZEER, &
A&V UHFAET; EEENE X ERRER T 0L IR AR,
FEZTERMBEENTE, FFELTNERIE P LA RE M.
XA EHERRT, ERHFARNELREEE, 2R FRE
BEW R E MR ERE

21 ML X R HEIEHE (Bvidence-Based Education) 12 35
F#ETRAMFIEERTEGX —HE, AT, X—zZxdERAE
PLAT BRI e S5 R R 7 vk, ST M AR AT R R Y B SR = X R
M, ZAT AR A EFTAMNED, X—FW, EXHE
EL, THAAINRTHEARTBNE RGN ERF . AT
— R, HEARFRABRLTHFN T ERRBE, WRITAHR
(Design-Based Research, DBR) & f£ B 5L [ 3] F #E 1T % R &% 1T,
#0iR 3 4, (Knowledge Translation, KT) #1527 £ 2 (Implementation
Science) U £ G5B 5T 4 4 B 70k R R XL T SE Bk

KR MR ELFRH R T HEARNEFES. EMHEA
BT B B AL R, WS EE T ¥ S T
Pbk, FAREGHRGERN G AR ETZ TR R, X4
A1 A4S £ 208 B 5% F MR B Y B AR AT
1.2 HARXTHEMRHIE NS

Tt A4S EH A A X TR, TRF EEM AT IR s
W, TEEFARALAGEHFTATNELGRE. TR AIRAEH
FHRABH N AENAR, X—HRTUELERETFER

1 Bauer M S, Kirchner J. Implementation science: What is it and why should I care?[J]. VSI:Implementation
Science, 2020, 283: 112376.
21 Ponce O A, Pagan-Maldonado N, Gomez Galan J. Philosophy of educational research: new epistemological,
methodological and historical approach[J]. International Journal of Educational Excellence, 2020, 6(2): 63-79.
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(Moravec's Paradox) 7% Z| 3 Z| f2 B .
FHERFRLENEAG AT T RN « %% T 1988
FRY, HEZONEE: LT ENES 7K S8 2K K 3L B R
FANKFHENE S, MY CN1— 2 ZEWR AT/ 7] AR E
HEN, X—ZIAHET EHATHENIAFENET AR, ARFE
KMFI A RRERBNEIOANBES, WHFEH, ZHEE R
WA, MUrENmE KM AZEI; MAKRSEERERE ST,
Wl R, WA BREMEAETER, SUHENMEALRT E
AL
MHFHRAAEFE, T—FREHLRERE. AKEREmWF
B o] RE ] A F B A, X R 7 B R YR A AR AT R
LI X F, ERNERKEARTERNEELBYEAAREER
W—ERE”, HZUAR, TeRBTENEE. EABRAE
BERALB RN T RN E, AT, wEEERAT,
W FmEE, REAE FEETHANFRIT, ARNEEER
EARR, sWFEZRLIAEER. FHik, A AlLEE R IE—MEN
TH#iLFEwERE, TWER - IMAEATELE (EETHALER
/L) MEEERERZ
ENETFRAEBREABAGHREARANAARET EEZN
o ZARREFWNZCRAGEEILT Z 4w iF e fr#hd vy E
G EMFAEEENRESXTEREY; BRENEZETHFR
X, HREEFMRENFENERIERE Y, LEFILE. #HFE
HFEMP AL EARALREREZZTAZINSLIERN, XL
e AR ERM T ERFIB A E SRR, MAEH 2w ZiamE,
LHEFHARE T RENIECTN, ETFET AU TAEXF
FR. IRFFERNKRTELFE, 2T EX. XUATE.

i
g_t

3

N

<
~
N

Al

U1 Moravec H. Mind children: the future of robot and human intelligence[M]. 4. print. Cambridge: Harvard Univ.
Press, 1995.
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MARZREFEHNARTR, TaEEHRTLESIZE. RAEFERE
., BREGMRES X, ZIHEMESN, RTAREERHELT,
K38 R B At o BB A8 AT B U 1E BT 238 R B AL
BR ALETRSEBRIT, ERAEDLA M. EH0ER,
ErEEANEAETWEME. 2 X ERERRBEN ZFT A,
BTN ER AlIEREARTHNA T EE Y AL E T IFLR
W B Eia” o B, BebiE S RS (TS) Kl AR T4
Wyl m AT B ALK, FEHEZEE (EDMD ¥ £ 8 & Hit
SFAABEFTRATITNMER, XLy FLELFEMNE, EER
ABRE FEBTHEAROZOREK: BRI EERFHEXNAX
ZH,
AEEEANHASFEE AlIEN S ERNE 7 FL T ERGET &
AR, BEAEBEXAHE LWL, RIEEEARFT A
RiEE. XA FRANE It FEMGE . REXMNEMIFER
EHERIER, ECEAIERBEHARAEARELENNER
BE. AETHEARERANFTRICRTER A=A, ERR
FHIEBFHRERR, ERFTEREHFREENE S iR,
KAEARENBEXET, ALTNHAERTAEENMEENT
Efe, MERGSSIRFHANZOES T, HEBEMEEA
KWNFINZAREHE LY. KB EAE Al 8% ERF 2T AEM
ZHER, RAIATFALZWEXET, XERFABEAKILE
S REARE, ERXHMH “HBHEL” BN, FHEERRAINHF
MR HERRAMERN., BXAEAHN., X—RAEWNE AR, IE
A A ST BT I ATV e R
1.3 EXHEMRFR Al4S
EEBTHZEARNESERURFEAE LR E, Al

WA, G, KE ETAEEEENAFTREAR: EibEEKR L. £RTEAFEHRME, 2026,
7



AUEAFHMFEE “BFHAFTHALS” X—F XA, AFEE
A\ 1 AI4S-Ed (A for Science in Education Research) #J & X,
Wit 5EHEF RN ATE G (AIED) f 3] 047 (LAY &M x#t 4
W, PR R, XMMAHITWEERET, CHBTT
AI4S-Ed W A FUHEAE: MIZFH Al RSt F LB iz A Al T £ #
FHRIEAS,

HERRFHAUS T URFEA: — MW HRER, Kok
WIZHAATEREA, FAZUAEEHEE, FRAATHGEME
THEBARRRARKHEA, RER, MM REXTF .
FRETRGNHFHERNEANIEZ, X—FARENEEELEY
WEEF £ R RBR, RIUTERXERER, BaiX#ER 5E
wHE, UAENHTERRTHRRESL M REHT.

HIEHIEIE AIAS-Ed A1, AL ER RS H T AL H W
TR AHAT R AR

HEFTHATER (AIED) 1 — AN RABI R X F AT, H
B BRI, AL XRFRFN ALRS R 5. AIED i #
ARRAFEERHERTRAA. BENFIFE. HANEAFNSEAN
H#HF AU, AIED WR A BAFEZE T, € X/ [E A Z
FE AL FAFBEF? 7, 1 AIMS-EdERREZR A, €%
OHE AEC R T E I E, RARIAT 258, iz ey 4
W,

F3 a4 (LA REF I SATHARF 2 (SoLAR) #y & X2,
ERTHFAZREFILRNEENRE., 2. BB, F
EREEL EAEXATREENFEL, UEERFIEHF. LA BRA
EHEBEMFRAIFEA, BEZERETHRUFERFTAANNF

1'Wang S, Wang F, Zhu Z, et al. Artificial intelligence in education: a systematic literature review[J]. Expert
Systems with Applications, 2024, 252: 124167.

21 SOLAR. What is learning analytics[EB/OL]. 2025[2025-10-08]. https://www.solaresearch.org/about/what-is-
learning-analytics/.
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WA, HAAPFHaFHEOERE. NEMEEE oM F S B
Bedr. LA AEEKER TR LBIE A, T AI4S-Ed N E AT
ERFREAFLRIENNEZTEL. @52, LAXERZRET
H AR R R A, AT4S-Ed MR 5 B8 & G 0y & 3 1k B R AL A

MBAMIRE, A4S-Ed Gt EH 2% (CSS) H & X ME £
N, CSSAIAWH TR, AMEHEEFEN T EMEEE4 LI
5, NEGAL R 7k UL R B F R R T AT R B AR . AL4S-
Ed [l & CSS £ A T4 g Bt R (4 f ki tt, AREFAGTHET A,
W e, EH ALENRLINEEE, TIANKESTEER £
J B B

KINNERTXEHEAMAEZTERLEE LN E R
£ 1-1 HE ML A4S HHEES B

FAE | BAREF | FI 00 LA | ZFFHWALE | ZFARFHUAFE R
) Al4S &t (AIED) (AI4S-Ed)
FTEH | RAEAN | HFIHE | FRAE#IEU | ERAERATFIE
i #, £F | B, AMEME | XFREER | HFNTARFER,
ANFFE | RERETE ¥,
#o E B Rk o
HBAXN | BAAR. | FEHFFI | ALEREALE | ZFABRFT T RBENF
% BN T (n | HESETHA | THE. HFENE. &
¥R B, |LMS. MOOC | A. #it5% |BRRHMEREXZ, U
EMIEN | FE) FFY |, AFERH| AT RANKEESLAT
FREHEMWN | FWTAE |FRE. BEN R,
SEHRER |#. EHHE | FI L%, Al
R EA | R E. | MERITERET
EFa AL, . HENE
A Al H B &
B,
AW | ZaER: B (| ZRAEVEE|ZAEXHE, |[MNAREEZEN: &
x| REE—A |EEX: *FE |[EEREERE|AINZIEE XHEE %
EMEy. | e Az, KE | FREMEXERZZE
WAL | FBEESEE | AITERRES BA) TR St A I
o #, TEHE LB
EHBLEREE

U1 Lazer D, Pentland A, Adamic L, et al. Computational social science[J]. Science, 2009, 323(5915): 721-723.
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FAE | BER/BEF |FIH QA | RFTFWALE | AEHAFHMRFLEE
Hy A14S #t (AIED) (A14S-Ed)
ERp

oo | #raR, T | BECRE. | AR ALK | FAREA, HRE
H R | B, TE (BEEATRE | 2 ZREL. 2R
w. &R | M. ®EF. |(R%, flegk R

aaCl:p HWIAR%. BE
A MFE. HEMN
Ao
AP BANAEEAR [“BEFEE | “XNPWRNE | “BFERE X ETEF
A | RSN | [TREFAT | A feERTH | EBRETATED Y B

Zftar” |RBHRKE? ?| HZELK?” | ARIEAFEEHNE
RRAR?”

WX — IR AEE T LA H, AMS-Ed REH —F 2 #HHWH R
W, CREW AL E B AR F T EANRLIE S, NHT R
B2, BREEFNEAB BT A RARIR, XA 2
BEATH, MEEEEAINTIEF IHESHEARNL TESEZ
8] &1

AI4S-BEd TE A #T a9 il £ = K, EMFUEARAE=AN %
E. £EARREHE, CEZATAIFTREAARIER I NE LW
Mo £RRNAINEXEBENERTAXBERANRRTF IRk,
BEX RPN EEREL O A, XFGEIHFAEERRALER,
MAEMBMY BRARENBRS, ERNGEHEEANE LEE
HEME I,

77 W EE, AI4S-Ed BT Bapy gl ftd, & & HE
MR E R ENARER, BT AERIXE K. Z2HESTFAH
FiE, ALRAFRABHNEN S 55, X558 ERA AR
KA WGE R e, TR DAE X DU B9 #1284

EMEEE, AI4S-Ed BF#H AW S nihEE KR, BEMEMHK
RV AR o XERAEIZH AR REFHRAERE, #EBEARSE
THEHRAEHN, BE#HFANLERERELSNTFEN,

10




1.4 iR EHLEH

ETHAIN, ARERRAKRR AUS LA THEHARN LT
B, MENB OB AR AI4S-EAdEN —RZ L E, EEEH
FARAEFARENER, WHEFAENTERERM. REMRE.
BEATCARARERARE T RAEIKR. XFXENRET W,
Bk TRATGRGER LA A LB A WE T, 248N e A E KR
HE 42 o B IE Y ST R

HRGHBEFX—ZCBRE, REFEZUT LAEE XKW
B WA, ME-ANNERB SN, NERE LR, AREEE X
WL TER.

¥ _FRHFE T AUS-Ed W ARMEATE, NRFHT XA FA
HAERNE, PMAESHEAN R EEE., E A B R A4S-Ed
AN ERFRENE, QFHARTERELFRLE, ARARL
REHFHRNEHEEA

F=. 0. A TEREFERBETNLTE, B ARIT Al
MR EARFTENAR, FTEERELG N, BORIFRE.
BRI, RBEERETENNA, UKAENR IR, 5
B RE AL A R BE X — MR S DU BT AR, SR8 2 F] 41 Fo
FEkFN. FTERRITAIERTEALREFHE N, LELERE
WX FEALL kG RERBEN T,

FL., \BEZERAEASARGENEN., ZLFEH T ALSHA TR
EMEREE, AEWARIFNTESEN. BRELRE, UK
GERAEwAENFAIE. FN\ENTHRAA T AL 0 KT
FREFIRR, ABENFRERZRANTER. ANBEERNLE,
LR T LA 5 A AT R AR .

FRELTIIRITAIEREGAR G ZEREE TENER. ¥ WE
W EE T Al T (R 3t A iR B LB AL, T T S5 B AL
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BRI R A RWEKA, HREZANE AR EAFTES,

FLERGFN AL T RO ER K. BREET FHEKIT L5,
REYNERWEE G AL AR AR ZH., ARCENFTEE,
AR AR FE S A B2 45w Y L B

WL —EHZH, AREGEAZTARE. BLRFTE M
BAFEAZRBE—ANLENINEL. FERANE, HEHEL
B, BPAMAEARE. o FEX., mREEEWNAR, EF
REZNG F BB EE, FESBENEAE M. AL ULYRR XL
B RLRGERTH T REE, BT ANEHELINETHFT LA FENR
GERAE, HERBEMUELRERFING . AT, €4 8 EEHT
ARfE, BARGLEEE “BRATLZE KT 2FENHFT? 7 UK
“HIHLBWHTHE? 7 R A M HE 5 A

F M, AI4S-Ed WA RBFEEFLACHT G A XK Z B REFF
., XEXRERF—KRALE, NREEZBHERF R AIEA,
FEAZREWMAXERFMAERER . MNFEEBARTTR
Re s, AMRBRAMS AT, FEEELHRNE LU
HFH T EE; EFEXN AW A LR AR L RFEEIR,

FWwR X iR, AL EMTFLZEABALTERGRZAZLT A
Kugihm g KAk e, 4K, KIETER A KA Al EHKF
KPR, RS ED —KRZER, Y AIFESEINER
fo iR AUiE, RATIE A WA ] g8 = A KA &0 77 A A o R AR R —
KRIRAMEEN,

AFRM|EK BRF—ANERLY: FHERAR A4S WHEITREF
Tt fn KB, B G TA N AR W R AW E T — 3,
BRI ENESFAITRNTER ), WEFBINVREE 2HEAT
HEM, CELFENREFTHA TR Z F: ERITHECIF &
NP E RN, EATRERANKENETR, ERERK
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T2,

AREHENTERBEAHIN L RER, 1248 EI AI4S-
Ed X —#Xu XML AN EE, RANE SRR, (R#HH 530K
RNBE, E—IMEARESLAHMERIENFHTXR. T#HHE
MR, REFEMRAENTRSE, EXBRERT AR EfRE,
A ERN S FTHIR AT ENAE LT, RR AT RSN IR
., BRERTARERE, HFARLERT EES T A A4S
R ER, FERATRESRFTMNEZ B FHRISFH, XK
E—NFEIEAEEMREFLEAS S, EXNEFRHAERERNK
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E2E AIFERBHFEMENX

B (AD EU—MEHEEN A EELE AR\ ESL.
BRRHHUHAFHR” (A4S Ik, AIEGHELEH
SRR TAMEE, LA M e FEa A, A
NESEMNAATIEEEAZEM AR LES 7%, L6
WFBEERARRRR WL FE, x—FACEZMAHIEF X
W, wEAREHTHE. 2T AFEN. EREBEAH A RITF
L4016, B R & A T4 B OE 78 J 0 2 BT 501 FT S5 9 Bl 3 8

HEF R FE G A4S RE v . MEHTHRTUEDR
BEN, BEFHBFETBENRTURE, HRNEBE LN
BZAANZRET AR OREEAT, EEE R EKX RS
TR, UAESHRBARTNH —RATE AN,
AFEGULE A4S JHEe T R 2, # A0 EHRE LTS,
RRAIRAIFT iz, BRAGHEFHRRAE, FRILXE &4
FaT. RN AR gk 7 B0,

MEFRE TR AT LXRERARSERAE. FEAE., &
BHRANANGE U UABEFHEE A RR AT SR I REE DL
BB REAEN, ARLI AR TR EGELE, £
—ANBRFEFNEANA. AHARARE L, ATFERALEA

WETK, Z2FE ATZEBAWHFZARIHEA: N A4S 218 A 2] + ER FII T, 2023, 38(4):
536-540.

DI FEA. Fa AT (AI4R) « FEAHEAD]. + BT, 2024, 39(1): 1-9.

Bl'Wang H, Fu T, Du Y, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972):
47-60.

M Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021,
596(7873): 583-589.

1 Bryant P, Pozzati G, Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2[J].
Nature Communications, 2022, 13(1): 1265.

[l Leng C, Tang Z, Zhou Y G, et al. Fifth Paradigm in Science: A Case Study of an Intelligence-Driven Material
Design[J]. Engineering, 2023, 24: 126-137.

I Hakimi L, Eynon R, Murphy V A. The Ethics of Using Digital Trace Data in Education: A Thematic Review of
the Research Landscape[J]. Review of Educational Research, 2021, 91(5): 671-717.

B Vaswani A, Shazeer N, Parmar N, et al. Attention is All you Need[C]//Guyon I, Luxburg U V, Bengio S, et al.
Advances in Neural Information Processing Systems: Vol. 30. Curran Associates, Inc., 2017.

Pl Bommasani R, Hudson D A, Adeli E, et al. On the Opportunities and Risks of Foundation Models[EB/OL].
(2022-07-12)[2024-04-14]. http://arxiv.org/abs/2108.07258.

NS - ER, FL-bd. BRELZGWNEMM] &54, FAH M, F. LT A% HRA, 2012
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HERFRAREER “EXAEBNEE” U, EAHLLHFHNEES
X, BRERAREEMBENAXKTAZTERTEWmE ¥ E AR,
AT4S xf H Zve o [H e F AR i fe 2 4,

RAERREGENEIAEN, ME—GRINESRALE,
VAT —AMNUAKREE RS, DLATE A ENKE. B
FHEZFHE - BAERMEEN X ENLFTARERN. AT ETRE
EUHMERNL —REWLH, RIWET “ANBEARESEGL”
LB (il 2-1 o)

ZHEBEL T ANEHRE WA ERGES ESNET A G,
Al B N T EEH# A EETIERFR, URFIES 5%
MEL AN EZHEMRHEATREL, AMEZIFEN, RTHE,
FATH AR AEF, EETRUARLT, BIEEREEZLTHNE
WERL, MEHEE “FA-FE-IE WEAMESR, REIMXEK
AEEEWEKRLTE,

ANIWERARES RS

Human-Al Collaborative Research Ecosystem

R4, Rt | T

| (Networked) (Cumulative) (Parallelized)

T Itemmworkiow A g
e EIBSINMERNST | LLMERIZ LS S5 |
RERFTIGE ‘ !

| 1 R ? | %{#i@iﬁ \ | |
[ .
| L (ED)« IERGIE >(ED)--- |
2 AR €--o-- > 3. AT | i (Level 2: ALSHAID)

3 | BEwREmS CENETE 1
l‘ L"'ﬂg’% * ‘J i Lhas e S 3
: NC (1) sosee §s mmz ) k ‘
% FRIR KR

e RABRE

& 2-1 AHLI RIB TR AR RGN B

U1 Grossmann I, Feinberg M, Parker D C, et al. Al and the transformation of social science research[J]. Science,
2023, 380(6650): 1108-1109.
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21 HEMRSEATEMNERERA
2.1.1 RHEEFFREITER

S 8 » EE (Thomas Kuhn) # (B FEGamWEH) +, K
“TR A XN R R AR F R R R BT BN A ST R B0 Ak A
EBEAT. —IMEATRNEeERAERLEN, EAEHMMZT
WLZEFMEN A7, URMEXE “@" ek At
Frll, ERAEFTH “FAME” BH, ARXREFNZEL L
ERAERNHAT “MFk” , MEKRKEIRS,

AT, 4 “FAME THEERARXLEBEN “REHA
27 B, GIE2"%. FENEILSHERFZXSREARANE
N, RATRGIR “BEES”, HHEX#H—1Ma#Hw,. £A#
BB B R R R RLREL,

ERMEBLHEABEEGH “FEM” o “BERER” M5 AR
FWo EAENA R R, FHBE « 7L F7EH (Imre Lakatos) 21 7
“HT RN MBS, A ARF R RIFFR R, ME— &
FIME B % F WA R NAERED, M ERNAHAT - 2E
B R, UR—AE#EBEEAE R, T REBGRN R
7o — AN AT RE A S B TN BT = 5L, TR — N R A AR U
ARt E=E BB

RENATE, Al ARMNERT FAMF LRSI T,
ERW “HX-r¥-Ea” BAHRATRARAELERET AE,
AT “FRNA” WL RMNAEREI R TR ESE 7 %,
AU CE AT ABEANER, ARAFEUAETHEA A
REHAIBEAT AW HFTARTEAZL

WHIGH ER, FZ-%e. BEEGNEHM] &F4, T, & AU A% H Mt 2012
DG HER, FRhe. RFEGNEHM]. & F0, AFf, B AU AF B AL, 2012,
Bl Lakatos I. Falsification and the Methodology of Scientific Research Programmes[M]//Harding S G. Can
Theories be Refuted? Essays on the Duhem-Quine Thesis. Dordrecht: Springer Netherlands, 1976: 205-259.
16



2.1.2 FEBUE B

HHFEFNBEREATHEHRN T L, TUFE—FEX
AR I B BEFURMVBAFATEADNNE, LR
M, BRAE, TARFPEBETFENFWEATHE, AR
UWERTHFEAR: FHNERAFRABLTH, AEFRES
ERERF L MENERMFEARN THRR O EEAER
EI& “HfT Bl 20 #2290 FX, HHEMFRAGFHESESEIE
7 B GIEEA; A1 HMAE, BEFERFERX (FEHK
FHER) WARAKEZEEI pEFE, NEEEREF LI
R AR EREAD, HERGTANKKERRTETFIRE
BEX AR F I NB TR NmERZRE, REFIEERTRH
[ARENF ] 55 Z iR raXN%E,

FHORABRAMRI T HEARAN ERE, ERERTRK
FREMNEN, HFHRECHZ G D:

(D BEFENUEETROREERER: AT IEFE£T
BE. FES., FEMUNEE (WREFZR, LXK, #1EH
FE) W, FHEAERABEMUHEMLZIAERE, EARE
Bz LEaBRERXNEEMURE. HETEET BN ERINF 7T
HHEETE. BEEWHESATRXEREAEZNTE O R,

() BRARAERMENTERRIR: HEZ - TATWERE
ENRG, AHTASRE, FEAEREMNEF . EROSHIT

U1 Gray J, Szalay A. eScience-A transformed scientific method[J]. presentation to the Computer Science and
Technology Board of the National Research Council, Mountain View, CA, 2007.

RIS, IR, KEE, . BEEERRNEATLSZRF LI BHHF AR, 2020, 41(10): 5-14.

B Swaminathan V, Lamberton C, Sridhar S, et al. Paradigms for Progress: An Anomaly-First Framework for
Paradigm Development[J]. Journal of Marketing, 2023, 87(6): 816-825.

WA, PERAE, TRE, F O EHFF RN 1. BRXERRD]. £RFEAFZFREH A FR),
2020, 38(6): 1-19.

ClLXinT, FEF, FAF, & FEARERAKER 42 R F 5 TR F98, 2018(2): 11-27.

[l van den Beemt A, Buijs J, van der Aalst W. Analysing Structured Learning Behaviour in Massive Open Online
Courses (MOOCs): An Approach Based on Process Mining and Clustering[J]. The International Review of
Research in Open and Distributed Learning, 2018, 19(5).

I Henrie C R, Bodily R, Larsen R, et al. Exploring the potential of LMS log data as a proxy measure of student
engagement[J]. Journal of Computing in Higher Education, 2018, 30(2): 344-362.

B Hakimi L, Eynon R, Murphy V A. The Ethics of Using Digital Trace Data in Education: A Thematic Review of
the Research Landscape[J]. Review of Educational Research, 2021, 91(5): 671-717.
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EAFBREZREFEEETEHANBRE, &UF R B
BFEAZEBHNE K., flin, BIFF— R FRENKH. HEMH
e, FEHEANFTETEERIEFIRE,

XEPZH AW RN, EHEEEFELCAARCEEDE, HF
BlERRERANEFRRY., EHEET, UAETHEREFH R Al
B AAZCHR ) J7 6 ATAS RLIET A .
2.1.3 KiE 5 AR RAHE R

WRNAE LN EERANF AN ETELE, o ERE
HEGM, UDKEBEEHERENRENAIRASIFNERLTE, £EE
MERREBAER, EESNEE FZIT R,

H—, AREGENER: MTETRIAE RN EE

MITEFERINBETERR, AIEHARFTEREHNE I E
Rt E T BERSBF. MH— R ALEATAMHEX, WARE
Al ABEAN—NMRIIMITEZT A - ML, £E2H
BEoREHRENGREK, AHATK XK AIBAENZLIAFHS
SEXAHANTE. 2 WEIM 2R =A & R R, FoHHETR
T AL ERE -5 NHBPATE ZHHE RN B REMN, L —
KRG e B TR BB, AXNFPATEZRARTHLELHD, ©E
ZIAFE—NHENTIE, MEE-—ERELSZ5THRANERE
B, XERE, REARNENER, ENCANFARERLTC
R, AW AR ERWHE" WHEFTER, XEXHRERLRE
M — KRR AR E.

Ho, mRRENES: AEARABEER

BEFERAERATREINEE T LI w1 AKX B A
BR. MABEEEEIREN AR, £ LR WER, NI

11 Zheng T, Deng Z, Tsang H T, et al. From automation to autonomy: a survey on large language models in
scientific discovery[EB/OL]. (2025-05-19)[2025-07-30]. http://arxiv.org/abs/2505.13259.

21 Gao C, Lan X, Li N, et al. Large Language Models Empowered Agent-based Modeling and Simulation: A
Survey and Perspectives| EB/OL]. (2023-12-19)[2024-02-07]. http://arxiv.org/abs/2312.11970.
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BT “ER” 2FmIRNT e, XAERIET LA BT AR
MEfUL, BEAENEREN, B2 DA R EENRFL XX, X
MRS, FERKESHNIEN, RIHARXELH, KEFHEE
EBRRAERFTERINE T WAAARAWRET, e ETERAATE
TR #H BRI ER., EEFMRAT, GPT4 CE R A KT 41T
Eh FRENH AL WE SRR, BRIT AL A#H T EE £ K
R R,

AT FRITAMRET —LF HRZNE RN A Flax
THEARERE T “EMNEIARL” (Adaptive Epistemology) X —
M, VLRLAT A R AR AL A 4L 2 B F 8 %4 R ey iR R BB, % 3&
WAA, ERESTFERERNARLRNEHFHNA, MATH
B NN EF R ARG, MEHARAEE S
ANRGRE (m AD ERFSNEPSH ., FEEGIAE R,
EWERT, HahWwA e NI LHBEANEE, BXAGES )
BEAMAERN S GH . LHE TS E N AR 3L AR
WAERSNIRE, BB ERXTARTHNELTHTENUER,
MR R ER R ENNBERRRES., FRFARNE 22T K
A%, MELEARBNIEL, E5ERXAIWEF, RAEH
MREAER K “EHER” — T REETH ERM®. £X
g FERAGEREREN “RF7 (prompts) » HIk, AIFFH
MARELA LT HERET. EHEFHEARWKRIR, EEMN
MAMBEIAZH “ZRER”, BEAANRG AT AR “3E

11 Zhang Z, Zhang-Li D, Yu J, et al. Simulating classroom education with LLM-empowered agents|[EB/OL].
(2024-11-27)[2025-07-30]. http://arxiv.org/abs/2406.19226.

121 Zheng T, Deng Z, Tsang H T, et al. From automation to autonomy: a survey on large language models in
scientific discovery[EB/OL]. (2025-05-19)[2025-07-30]. http://arxiv.org/abs/2505.13259.

Bl Zhou Y, Liu H, Srivastava T, et al. Hypothesis generation with large language models[C]//Peled-Cohen L,
Calderon N, Lissak S, et al. Proceedings of the 1st Workshop on NLP for Science (nlp4science). Miami, FL,
USA: Association for Computational Linguistics, 2024: 117-139.

4] Abdel-Rehim A, Zenil H, Orhobor O, et al. Scientific hypothesis generation by large language models:
laboratory validation in breast cancer treatment[J]. Journal of the Royal Society, Interface, 2025, 22(227):
20240674.

B1 Punziano G. Adaptive epistemology: embracing generative Al as a paradigm shift in social science[J]. Societies,
2025, 15(7): 205.

1 Dhar V. The paradigm shifts in artificial intelligence[J]. Communications of the ACM, 2024, 67(11): 50-59.

19



Bl A7, XL FANR L ERMY—RKEZ D

H=, FRARNEB: AXXFH R EECH

FRRX—ERFEHARRENAEER, BEERARXXHR
HHEZXRTAEFMAE W EEELf T ERRE. A4S FTEFH
“AI+X” BREZATRX, ARBX—EREETHW T, AIEEK
BEEBEOBWEEMEIR, TRFHEL, ZIRENEFHEL,
DLR 3 kb . GAEEEA XK AIB AR S E—MEFH”
FIRE B AW, H “#HaiR8” (World Knowledge) W 7E 3 &
TRECEZE, £aF. F5F. HWENHFF LGN AR
R, XEFCRARA—MEFERMER “EAE” M A
F a7 o Flintk AgentRxiv X AF 4 B EH LA LR T B E £
Ao, BAEIZ—W, TRFWHRE, EEERETEFRETR
WHT R E (RALFRE) e E— N MERNFe L, ETRILNK
P#ATEREQFH, THBEATHEEEENFRIFE, M2EA
TREWM “FmiR%EL”, EEBRE—NEWMFTK. 15, THFRW
ML, BIIHFHAAN “SFEREE” ZHAEWN “HFH
AT .
2.2 PR MRV R

MERAROLEEREAEMENFEA, R L, FANRIS
ERBFAREZNMAFR, BUHREEEANIEHE R, AT,
ABEEEABEF —RAIBAWEIEEREX —AH. EEFEHK
BN LEFH gy 87 “HFRmR” B, yRAUEMRINE £
AL F ARG T WA RE S . X AR AR F A R I AR,
MR AR B R G TE 5, BRI RGN, AEN,
Y B AL F AR

[ Bommasani R, Hudson D A, Adeli E, et al. On the Opportunities and Risks of Foundation Models[EB/OL].
(2022-07-12)[2024-04-14]. http://arxiv.org/abs/2108.07258.
121 Schmidgall S, Moor M. AgentRxiv: towards collaborative autonomous research[EB/OL]. (2025-03-23)[2025-
07-30]. http://arxiv.org/abs/2503.18102.
Bl Ha D, Schmidhuber J. World Models[EB/OLY]. (2018-03-28)[2024-05-05]. http://arxiv.org/abs/1803.10122.
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2.2.1 ¥ A BB

AREEEHAREHNERKX AIRARBEEET R, £ EK. 5
AEAWHERHRER, BN E. RE. XBREMTELESS
N R R BCE A Y E AL EY .

JEL, Al EE T EFM, NEE XK E T 8ot
RENE, RAHMARTNER ;B EIEZT g, #E AR g
WA E AL, XAKRBERT HANEN E. fliv, RHAELT,
AlEH IR A CENET LN R ERY BREIE RN F]FE
AN EAFF R, BEEACEF, WFHFE. AFHEAES
A AR, R A F A R AL,

KE L, BHZESBERT, ALK IRE ZHFH K,
BFE. WMFERWHEN G W TER, KREZEDZHHFHK
AW REEE, REE WL ARFTEE A, FFREH, ATEHT
PR A ERAE2FIEIRNTRMRE, TR EFARN, &
BEES. TR, L. XFE s REFE AR ER,

RERME L, ETHMR IR, AL AGS X I A B F B A A
REBEREBRY AR, LIEFAM RN EERRE, T XER
HEFFEENZXHA, flin, EFHRETRAAT, AlRRBES
F M. AR EFA T EAM F ey iR, A MG E S R
R R B ZAE,

WMEML, AIBRAEAMALEE, T8z NWER, F5
REPkHBE R B ER, A FaRE ZIRE W KB, R HEFEK
WEREREK, Y HFTELUTREFWAERE. “BFERELIE”
(Scientific Hypothesis Evidencing, SHE) * %3 1, &£ F KX 1E

(]

[ Peldez-Sanchez I C, Velarde-Camaqui D, Glasserman-Morales L D. The impact of large language models on
higher education: exploring the connection between Al and education 4.0[J]. Frontiers in Education, 2024, 9:
1392091.

12 Mannekote A, Davies A, Pinto J D, et al. Large language models for whole-learner support: opportunities and
challenges[J]. Frontiers in Artificial Intelligence, 2024, 7: 1460364.

Bl Xing W, Nixon N, Crossley S, et al. The use of large language models in education[J]. International Journal of
Artificial Intelligence in Education, 2025, 35(2): 439-443.
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ERAREMF CRBE G ABHEZ L IFEIR K 20 7R
W, ZRRAXR AIRACRILE — 2R F BT L ERE A0, &
Bh ATHYSR AN F0RE 77, B A& sb 9o bk b Bl R oy Ao iR 4 4 Ao B 4
B, RIE G B 7 M DRk BT E] AR

XU EEME RN, EEAHE Al AE KT R H AN
WEEEE, BEHAIWBEA NG, ZEAREFREHREET
guiR GE M A B R, RINAE G B A2 R DA B T 1] R
2.2.2 BRI

BT IR Rt R IESE T L Ay, R#H—FJH R T KX A
BARNANEZNRRE T &, Y5, ARFETHHLATH ALE
AEER “REPRE” , MAERNTHEES R G EHCE. 7
A I E AL F R YLHY AR T 7 28I

® — R W AZ 0 E TR F R & &R (Scientific Hypothesis
Generation, SHG) #H# Mg H — M ER1ES £ &K (NLG) E 4%,
A, ARFFAT TN ERNEESE, £+ HypoGen HIEE £
—PMEAERERENATE., ZHEECST AMETENFF 2N
o R BURY £ 5500 /NS5 A g E AR, H AR — A EA “Bit-
Flip-Spark” & “# # 4 ” (Chain-of-Reasoning) HJ# 3, # A4S
QFF IR FONEZFRMET F ey A
e Bit (¥MEK) : ABMKRFARAH T —NLRFEERFR

P F AR R BT
e Flip (RIF®&E) : FWHERA R XREWN. B EEFDABRHK T

B R R

Ul Koneru S, Wu J, Rajtmajer S. Can Large Language Models Discern Evidence for Scientific Hypotheses? Case
Studies in the Social Sciences| EB/OL]. (2024-03-25)[2024-04-16]. http://arxiv.org/abs/2309.06578.

121 Alkan A K, Sourav S, Jablonska M, et al. A survey on hypothesis generation for scientific discovery in the era
of large language models[EB/OL]. (2025-04-07)[2025-07-30]. http://arxiv.org/abs/2504.05496.

1 O’Neill C, Ghosal T, Riileanu R, et al. Sparks of science: hypothesis generation using structured paper
data[EB/OL]. (2025-04-17)[2025-07-30]. http://arxiv.org/abs/2504.12976.

[ Xiong G, Xie E, Shariatmadari A H, et al. Improving scientific hypothesis generation with knowledge grounded
large language models[EB/OL]. (2024-11-04)[2025-07-30]. http://arxiv.org/abs/2411.02382.

B1 O’Neill C, Ghosal T, Raileanu R, et al. Sparks of science: hypothesis generation using structured paper
data[EB/OL]. (2025-04-17)[2025-07-30]. http://arxiv.org/abs/2504.12976.
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o Spark (Z/EID : FEEWEEREN “Bit” 2| “Flip” 8
oo BT,

e Chain-of-Reasoning (¥ 4t) : ®#HE— T EFRWHMZE, TEHF
EMNRA| A RN ik T B R BRI, BERERAK
R, HATFERRE, REEZRAEEE RS,
XS ANEIE EHATHAE, GAEFHERA IR A KK

AT GE A U—F “FHEETER” BFARERBI. EHEE

i, B ENFEEMEARME “Bit” (BIFEAKRR) , A FaE

A AR N EY “Spark” Fri¥ 48y “Chain-of-Reasoning” , & & —

MNEE, AL TATNBRN. XM FEEmEE ARG, #

WH—NERey, TEENAERTRE, AFFHARFRET 158

AT R, g% AT ARG “FR”, AT RIAT &

W A B I BT 2
TESEPR R, A8 AT E A ¥ K R4 (Al Co-Scientist)

CERIT XMERNBEAE . ZRGET Gemini 2.0 H#Z, 15

ABRURFEEZHFIRNFRERFTABAMFARRE, ELHE

A R XN FARBAAF T BF BRI, X7 &85 E

AMAENBT, BUA—NEEE, TEENERTIE, AHFHAR

EFRET —ABANIE, ¥ RAGEHFHARTZN “FHR,

I 2 D] RE B R Y T R

2.2.3 BEZIuARKE
AR AR ARy R AR AT AE REE AR,

AR EEATESHNEARFETCANAE, Rz ZEMAITE.

B, RrBE#tRiEif, SOk ALER AN —PNE AR ESR

G, Eoe LT ERERIE, UAREERMNERNBEH (Brand et

al., 2024)

U1 Gottweis J, Natarajan V. Accelerating scientific breakthroughs with an Al co-scientistf EB/OL]. (2025-02-
19)[2025-08-04]. https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/.
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Fa R B R B U A R R — PRI T . T REH T
KG-Col (Knowledge Grounded Chain of Ideas) % %, i i1 4h#i4s
MU s R EE RSB AEEEA S, DFERE T HFEEERNE
W, RO TEERFHOTIARN. ZRREE =N RBEESE.
iR BT 20 ET X R, AR E R B R, DR A
WS SR LT WA

LRI EREREMH®T 5 —ME4E%Z. HILMA (Human-in-
the-loop Multi-agent Framework ) AE 28 & T 45 44 (L &7 B8 218 o IV X 8L
BEMBGBEERE, A7 R FBICEKRRESRET 6FIER AN
e 2B, ZEERET EM. Fammfn xRz IH, 5
Bomaot Rt RETI A ME THE, A ALER R 28w ey
M rR A, A, ZAE R B ENRFEAT I RN S A
RABAE 77 G R AR UL A Ak, BB A LA 2R 5 OB B oG A b AR
— B REM L FNAERBRR.

MEMAEERANBRAEREF = MEE T E, HAHAI
RTETHFRE ST R AE KRS, ZR % ERH.
il HEBAERWER, ARFARXFRERLRESERT BATL
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N BENBEEXRELRBEENEEINT, AITEERGEBETH
ANERFRH T RE AW BB KRB, WA R 2B ZE R, Flim,
FEEMEFF, FNEAITEZA TN EARIGESHRER N A
EEN, EHARFHER, AR AINEATAEACGZLEFEEX

ITMESSERI L, CROCKETT M J. Artificial intelligence and illusions of understanding in scientific research[J].
Nature, 2024, 627(8002): 49-58.
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FHANEE (XK, B WRES5BX T, EEEHRTF,
RIEBEHAT UG M BAEAR T OEEMUK, GBREERENT
REBEAARNERIFETHNET EERFAT, ERA ST £~
NEFAZRRBETE, AL ZAEERmEs T E, Lhakn
ZTFAEEFTWEEARIT, BEHE. XMEXAL. IEHE
REZEEHES. INTEEEHFENAAZALANEE, BB LE
RALFARXWIEERVES T LY, FHEFEGERFANT,
Covington % AP KB EHA A& RARWER FIREFLEZW
ERER, ZHHEEIEED, Norberg & ANMR A ESHA E R
B R R RT3 ERRE A, K I GPT-4 7] LAAS B4R & ¥ 1 M 45 47,
PlaoiE s, 4 F B 2 B A TE AR D,

EHREEATERTH, AIEFANEAHFENRZIREE
g, EwBk A EHA XEHE (UNESCO) Frig 8wy, Al T # &
“DNEATET “UMEFIRE” TE “HERNRREEE FL
TAE, BAERFBHIFEZIA T FEULRANMAEREEF T BT
B, amEHET, ABEEANUATReFESEE. R/
Atz QEREAFITEUREENE KGR TE, fla, &
REMMEAHFTEZEST, AITURIFRIFRALNE “W—F—
G—F—H" 2RBHAR, FeFIEBREAZIFENF X
FEASMBERE, FAMEAF T RHERFAD . Abdelghani % A A
FAAEEHEAENAERBATFHOCNEER, WHRMIILEREE S,

TPARKER M J, ANDERSON C, STONE C, et al. A large language model approach to educational survey
feedback analysis[J]. International Journal of Artificial Intelligence in Education, 2025, 35(2): 444-481.

21 COVINGTON N V, VRUWINK O. ChatGPT in undergraduate education: Performance of GPT-3.5 and
identification of Al-generated text in introductory neuroscience[J]. International Journal of Artificial
Intelligence in Education, 2025, 35(2): 627-650.

BINORBERG K A, ALMOUBAYYED H, DE LEY L, et al. Rewriting content with GPT-4 to support emerging
readers in adaptive mathematics software[J]. International Journal of Artificial Intelligence in Education,
2025, 35(2): 587-626.

I MCDONALD N, Aditya Johri, Areej Ali, et al. Generative artificial intelligence in higher education: Evidence
from an analysis of institutional policies and guidelines[J]. Computers in Human Behavior: Artificial Humans,
2025, 3:100121.

5 S0 BB, A ML, ORI S (0 PR (P80 VTR 5 28 ¥ MR [J]. Y3034, 2025, (06): 78-84.

102



FRANHE AN, Goslen F AR ERMEF A& = B A £ E TR F
NHEF A E AR, UXHFENEEFT, KAFAKES
BRI & R BT XA % BB % #4R), Dijkstra & A F ABEEHA %
AR A A FER DA E M, XA T 2T F 0
BTN AE, Re T FENFE I 55 EB, Bernius F A A
BFEIANRBRBFFAENXALEZERRGE, T TEERD
85%, EHEE, ¥AERWINHEFRE WED R AW,

(2) NI RE415 HF A PRk

ATHEGETRIUMEIEAT, AR EEXKRAERE. REDW
“ORT NESFEERCEAZ Y, S8 E KRR MHCH R IRR,
ANIE@HHFERRFALEE, MELEXREUGENT X, AT
RRMEZFENTE., AXNHERHEEENH LA E R —ANF MU
FEZATFENSE .

TwERAZERTEEA, BRX—RBEE “24%” XIS XK H
MR T FARBER, EHIFRHETELZNH R, Haman F A0
B Bor, £ ChatGPT 4 & HY & % Xk F 66% 4 4iE A 20, Bf
EHRENSE RO Z TR XS, BT HRENRIER
HEl, XWE/RFDEHINY, ALERENFAKEFENAAR,
FENAGEEZT £ TEL . FLERERG, RiEETE
MRY RO FEE. FE, AT ABERODEZHRNTE, AT
BRBUITEFNEXHRE, INEAEEGERENNEER

U1 Abdelghani R, Wang Y H, Yuan X, et al. GPT-3-driven pedagogical agents for training children’s curious
question-asking skills [J] . International Journal of Artificial Intelligence in Education, 2024, 34 (2) :
483-518.

21 GOSLEN A, KIM Y J, ROWE J, et al. LLM-based student plan generation for adaptive scaffolding in game-
based learning environments[J]. International Journal of Artificial Intelligence in Education, 2025, 35(2): 533-
558.

BIDIJKSTRA R, GENC Z, KAYAL S, et al. Reading comprehension quiz generation using generative pre-trained
transformers[J]. 2022.

“ Bernius J P, Krusche S, Bruegge B. Machine learning based feedback on textual student answers in large
courses [J] . Computers and Education: Artificial Intelligence, 2022, 3: 100081.

5] Haman M, Skolnik M. Using ChatGPT to conduct a literature review[J]. Accountability in Research, 2024

1l Franzoni Veldzquez A L, Huerta E, Jensen S. Retracting ChatGPT: Completeness and relevance of academic
references[J]. Discover Education, 2024, 3(1): 226.
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WHEFERZHE, TEERN “BW XTI 7 #X., Ao T ALLHE
HEMAKE WWHEIRFF At — P RANT, AlofpiEHiR
REREEERAE, NI RT RNEE, BETE, Al#EL SR
EhEpRe (WHRAEERE. ENARFEREER) , &F
P AR ) T B R A ﬁﬂﬁﬂ%ﬁiﬁkﬁﬂwﬁ%ﬂim

BRI, Al & kAL 1 3 7 45 45 i AR XA 5 7 R BRALR
o (o3t 6 2 A YWE%‘TETE/@%?%) , EIA RN T ER
ARG o, BB AR A (I E DR B 7578 5 B AKX
B, RN E AN SEED, ZEEFFHERIMHFETTF
A AL SUAA M 8y “R Rapx” , AL# AR & RS CAR Mk
W R ARSI B £, T AR T B ARG A R e e W e, (]
i A K B J X AL SUARBIR A RE 77 A IR 2 — 22 R T A i [ 3% )

(3) ANTH IR E R a5 R 57 bk

(Science) #FlteH, AIF@RMBEIG™RW “[EEZK L
M7, FEREHRXEHRZ A TWEREGTMAEUEZN, X5 L+
FRICEFE, EFFIARMNANKMN, ARAREZET B FHmiR
WA EMREN, THEFHEH S, ATHW “FTEAHK
" BN EAGINREFE: EAZRNHSE (Ehk
AEAMHER) SHEEBRNENRN, EETHERANHA
ERBEUEZI; HEAAMESERK ALWEREBE, WEBET #Z
GHARRBR, FREEEELAY, BFENERLEONHMAE

£ BIED),
ATEGHARIEAESHECERY “hX T " WEA
TR, BHRGSUTLAAMEEHEnX, B AIWETEL—

UT gk, F30 7. N TR Bk B AR R SCAR MR I TE[J]. RH 5 iR, 2023, (08): 56-62.

P21 F g, pe ¥, Al L S0 R BN TR N 2510 5% — 0L A [J]. AR R I A S 240 (HT 3 4L 2B 24 BR), 2025, (04): 98-
107+171.

BT 2 p0F, H1R, BURA . BB AL SCAS R b Bk 147 9 52 RIRE 1 40 T[], i 4k 3, 2024, 43 (11): 139-143+138.
4] Hutson M. Artificial intelligence faces reproducibility crisis[J]. Science, 2018
BV F 5, it A T8 R B ol S AL RS R HHRL]. R BHIELT 5, 2025, 41 (07): 82-89.
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MREBFEA, UHFZZA0, ZFER>FAERAERES Al £
RETHEFEERHKEK: ZE (FR)Y 254X 65 A 400 £ ¥
ERRET B, T FWFEYGEFEA ChatGPT F I AN E A K
W E R FMREN, (BAH) 23F3N, =02 —_WxEHFAEH
BZREAANTIERTRFLY, XEHFTOE T ALTEER AL
FABGEHNTH, BB T EHZEFFPHEA ChatGPTH FEEZE R T,
ERAANTIE@ T ERE#EGFFATENSE, EEARTAE, #£2
ERENEEETAEBRXA, EMERK.

ERLEHHEZ, AIGCE AL EY “Kig” AEBERXABEE RA,
HAeBBERFETRLXAE, B “BAKRSG” § “AIRE”
W A F AL B, B RE R, FE B AR ALSFAETE £ 50 A1
R, TEATEATIEF R G RREA BIRAl, B A Al £ KN AR B
XZ5RFHEMFEULEK, FFEHFABRER S EAREX R
FAT L 3 3 JE o

HEr, ¥ A®ABKEE ALREF 2B m. 2023 F (Nature) #F
R, FRAOXERHEECEL 1 TR, DEMaf, BELE,
BEPH T EEL L T EHEPHEERS, IRKEEKWEET
BHNFAEXHENEKEEY, X728 BET RS HAIHES,
fl4m (Physica Scripta) F#I{ A KW — K g EE T~ — MEXKFFE
HARWL >0, 7 FRFH B ChatGPT 484, S s BAED. X F
ERTIEHERENEHBEER ALHBF AR, MHEHEET AT
it X FAZFAEE A, (Springer Nature) & 2025 S # & 7 —
AATHEFIMEXNEHE, REZ BT SETRRBNIXFE

[l Hennessey L S | M. Almost half of cambridge students admit they have used ChatGPT[EB/OL]. (2023-04-
21)[2025-08-25]. https://www.thetimes.com/business-money/technology/article/cambridge-university-
students-chatgpt-ai-degree-2023-rnsv7mw7z.

121 Carter S. Should kids use ChatGPT for school? Experts weigh in[EB/OL]. [2025-08-25].
https://www.forbes.com/sites/digital-assets/2025/08/06/should-kids-use-chatgpt-ai-for-school-parents-are-
divided/.

BY L, S AIGC /NSRS AR A (03 1 5 1 DR I]. o ) 0 5, 2025, (06): 84-92.

M 'Van Noorden R. More than 10,000 research papers were retracted in 2023 — a new record[J]. Nature, 2023,
624(7992): 479-481.

Bl Conroy G. Scientific sleuths spot dishonest ChatGPT use in papers[J]. Nature, 2023.
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FESER, JIAT AN FENZRIAHET., X—FHRH, &
ERMAHRE, KeEMFERROITRFETERE, TEFR
BOFE AR W R K4 28 1 R, (Neurosurgical Review) i [E T #
BRFARX, RERMELXWELE, HFRLSBXKE TH
— RFP,

BEAMATIEREERE, TR EREN XA, B
BamER, E2FHANMFMBA, ERFHARENA TEW
“BIRBRR”, BEBAGEAARFARENMTHER., #AKR
iE, BFBBEMRANTEAE. EXLERLT, FLHAEIN,
AT REHY = HOF R Al #r ey AR B OB A8, (U ARy R BT R,
TEE R, Hib, ATAR, FFRIFMHARRHATERAE
BMTE, TREEALNFR, EZEFFARE. BWEREH
AT AN Rzl RIEARAF TR E L EEE,

5.1.2 A TEser il TR KB E R

EHRFARATHENARERE, FARRERERBLE WY /1S
i, AW, AIFRBELT AR —MEMNEGEANNE F £ A L4
WHRRNFZY, T X—B R, FEHFRENRSERRAIRE, &
PRI FEFENARSHAERELER D, XEEHTEFRKR
TR R, & AR L i 200 & Ko

EHREET, ANITEGRANS RN T A G AN —F 5 A0
RHFE. AT, REXZIEAREH, TRAIPREMNITE (4
Turnitin, Originality.Al. GPTZero. DetectGPT %) % & A Z®E 7%
WRAMEE, BB AL, XBTEWNRRE (KAXEERFITH
AT AR FIRHE CRERANBEATEE R AL

111 Aksenfeld R. Springer nature to retract machine learning book following retraction watch coverage[EB/OL].
(2025-07-16)[2025-08-23]. https://retractionwatch.com/2025/07/16/springer-nature-to-retract-machine-
learning-book-following-retraction-watch-coverage/.

121 Orrall A. As springer nature journal clears Al papers, one university’s retractions rise drastically[EB/OL].
(2025-02-10)[2025-08-23]. https://retractionwatch.com/2025/02/10/as-springer-nature-journal-clears-ai-
papers-one-universitys-retractions-rise-drastically/.
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¥ %o Tumitin AT A NERARFELFIRE, HHET RAeHEE
B, AANEREREMAST T — S ATIEEREE, Fergus
4 A3 3T Turnitin 2 A A 35 4 00 20 4 4 ChatGPT i H B fh 5 &
T, & ChatGPT 4 & & F 15 ¥ 5 & ik, fﬁ&ﬁ%ﬁ
Turnitin 4 B, ChatGPT 7] DL i# i1 & 5 |5] 21 #y & % 3k # Turnitin
XA REFENENERE: FLEFETTULREHREKFAA. #1
REFINEZR, MAaphWED R, E—THTF, @
ChatGPT £ sV ER R X% T #ig A, WHEmARZIELF 68%
M IE B AT AP R, 2o R BT S H R B E A R L Ik e A A Bk
XAAR P Z, FHERHIEFTEEEAATERERXR, Tialk
EzHRE®AGE, HABRMAEERTEMEFEENEE, I
AR R KL EREE, s, FA M AIGC fe il &£ K4 A
T9E R Al & &89 KA 7 & 553D
)fﬁiﬂﬂlﬁﬁ/ﬂ%fﬁﬁ_%i}(%”@/Mﬂfﬁﬂ%i@Wﬁﬁ’ﬂﬁ%%ﬂo Hr8
BAF BT RIEE, ANITHRRNT AR EFEZNEFR
ElRL, 2FSHEE T’Fnu%%i%)j A ANTLEE éﬁi’c o XA f W,
WEAREBEET, RNFEFEEA XA “BRE”, BERLCEHF
F AT T T’Fﬁj‘%iﬁﬂﬁiﬁaﬁ 51?9%1551%%9/7 & &I %
WRK., WEEhadEe, FREXCAARERK, R5ATE
REE R X AR R ITEAMN. AAREH—FETR, ALRG 7 e E
AR EERBUEEEN —IRKE T £ m LR %

1 Fergus S, Botha M, Ostovar M. Evaluating academic answers generated using ChatGPT[J]. Journal of Chemical
Education, 2023, 100(4): 1672-1675.

121 AlAfnan M A, Dishari S, Jovic M, et al. ChatGPT as an educational tool: Opportunities, challenges, and
recommendations for communication, business writing, and composition courses[J]. Journal of Artificial
Intelligence and Technology, 2023, 3(2): 60-68.

B3] Thorp H H. ChatGPT is fun, but not an author[J]. Science, 2023, 379(6630): 313-313.

] Bahammam A S, Trabelsi K, Pandi-Perumal S R, et al. Adapting to the impact of artificial intelligence in
scientific writing: Balancing benefits and drawbacks while developing policies and regulations[J]. Journal of
Nature and Science of Medicine, 2023, 6(3): 152.

B1Pan W H, Chok M J, Jonathan Leong Shan Wong, et al. Assessing Al detectors in identifying Al-generated code:
Implications for education | proceedings of the 46th international conference on software engineering:
software engineering education and training[ EB/OL]. 2024[2025-09-06].
https://dl.acm.org/doi/10.1145/3639474.3640068.

1 Liang W, Yuksekgonul M, Mao Y, et al. GPT detectors are biased against non-native English writers

[J] . Patterns, 2023, 4 (7) .
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RBEHA, MAAEFERERZ T ERAZ RIS RN, T3
Bl T B A Bk Oy BB RN, Y A i TR IS SOB R — A
HkEEe, WATRSTREMEFRARA, ATITHE T A
tEEMEIEREERANERE.

AT AN AR, S ATEGBEHARN R AW Z LT &
B, R TR EATE U A LA AR KA R HAT IR A #
W, X —H#BERKNAIPHEERA BB HA, BRARFAREL
It X XA, RN LER ) —TARZRTHRE RZNFEE,
TEFETAEGHFERZRWAIE#RT. Hlt, —MELAWIFGAE
BT EHRNEEZRLETFHANDE, XA FH RN
AN, EREFFATEENLAEK,

5.2 Al BRI R EFRE

WA Al EM AT EENR, FRNRERET EREMRY
BRISOEMN, ERRITHEST AL RN R ERE, TR
BRAXRNEE, EREFFARTNENLAER, WEPEAN
FALEGRNERAEEREE,

5.2.1 AI4S )3 B B 1) /3

AL THRABANAN, TREFIANT BRWHEETE, W2MR
REFGIRTFARM AUSHREME T ERHMEZIXT . X—XT
FEETUTIAME XBHEO KL, &%, FABRETIRAIE
AABARWN “BR” HUHESARBFFTERLURRFR., FRHH
FHRTEERARLARNERAEFARERGTEENE, T ALK
Ayt N Fs WA “BH7 PHATRMEN, XLEAWEHRE
AemENELNE, EATEERUCITH S, RESH G EF
GENTRATREEHE, 5HEANETEXANNET T H,
AR BERHT ABE S IR RITAE R, WaEE R,

U0 | g2 AT R f vk OO 1] 80 FC o R[], 117 S 23 (2 2 2 RS2 4R), 2019, 42 (04): 124-129.
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XFURLREBELH KRR EM S TR XA R E
AR SR B AT 2 — 25 A Bl

DAY G BB S B A B, B5EOR X E I E
ExE (flaw, FIE, MENENEL , BN ER LA
EWRAREREZNDH., RAEHFRRIBEELRTE, K E
BEIBRAXNAT RN —TOCH A K 5 G0 A AL & 5 3 8
XERHAT F &, ZI AT 56%8 5 FALE 5 o R E REH
RAWRSHKME, RA 20%RH‘T X T EMIRE KRS T AN,
KA CRMERAE” BEZ AR T A AR 3] B BB A A
BEARKBEHNRNFEE, ERFRAMEE LR FEHATERDY
RENE, NTIRIBTHARERNTEE, EXARRFFELANE
AN RN 2 ———F R« BE /R B TP 1 R A R T SE A
Rk 8

MEFTENRRETREFRBRESICEHIBRK, UER
HRNERNG . A, — M TEBELARERN “RA7 RE,
HERAR EREUH RAGUHOEHN. “BAF” EATEELF
IBFEFHFENWHEATEELWERKR, KL BT TN E
WE, EXaTraafF LETRENE L.

fln, —PMATRESRAe T ANEGT AER, REEN
RELXIALF, EFEsMETR, ZREAFFFIET WA
EEMFRE, Al “FEFPEEFET” FHT RBLRKE,
HAENGEEF LT ARNEGHATHET T RN R, B
M, ZEMEZRELRAT —ABRN “TERMNE” , ZERNT
D F R AT, R FIRZ R, ATEA ] e 3T 5 3] %K
AR ERERNF R LB R ETN. XM “REE

\|

~

1 ARNOLD C, BIEDEBACH L, KUPFER A, et al. The role of hyperparameters in machine learning models and
how to tune them[J]. Political Science Research and Methods, 2024, 12(4): 841-848.
12l BUHRMESTER V, MUNCH D, ARENS M. Analysis of explainers of black box deep neural networks for
computer vision: A survey[J]. Machine Learning and Knowledge Extraction, 2021, 3(4): 966-989.
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B ARAERTHFRRNERTH, EAVHEFUGENNER
AN, FEREHARXOWE.

FR, Al A B AR AR BURT 008 V7 S my A . AL AR A iy e
MESERBRTWALKENRE. WEFET2ER, &FHLTKH
WREHB/RESF. LRI H, ERAELH ARG, AR
GHBRE, HERFRMELTE. 2023 FHREE T (MIT) . Cohere
for Al % 11 MHLA L E % A7 7 4% % 3 JE 18 9L (The Data Provenance
Initiative) [, & 72 f 3 AL UM S E R A . AT, KEHR
BV AL 1800 MRE SRR HIT LI T RGME A AL, ERATHIHIE
HEFE L, FIERREGL 72%LL L, #HixEFik 50% L2,
PR ERNKRZARFTRT EENEEMCERN R, EHEFHE
AR ETXERENARLERE A AT MR RATE A
B lE FL, GebruF ARH T “HEEWNHER" WS, KN
THETOHNHEER, ZERFEXRAG M REERRE — 0 mEWL
WOCYREAET , AR EN. R, KESE, BEREME
AR B E B, HH By R R R A A A (A ey,
REHEAESHEAEMETE, FRDEEEA

AT oA 2 AU 3t 32 = A 1 8 R ﬁ]aﬁfa?&TK’%fCﬁfi A
Mg mEREEERET T A6, BXHRATIEMATL
R HF %Q/ﬁ?ﬁ%ﬁ’?ﬂ%ﬁﬁifﬁ%ﬂ”ﬁf , VU8 E Rt
TR, RIEARERNERE. ALE#HFG., 2 5FFF LA
BREXNETAEE, $EEZTW . RAMBRREE, HFER
18K A

EARE T A RENZ G, FLOABHLNT EEHRER
SEHRMRAERZEMNER, XLFEAFETHFAI UL EF
(1 Data Provenance Initiative[EB/OL]. [2025-10-12]. https://www.dataprovenance.org/about.

2] LOl}:eGnI:E; i, Z[é\lll;llj\tllzrll l;l, gf[I}E]N A, et al. The data provenance initiative: A large scale audit of dataset

B GEBRU T, MORGENSTERN J, VECCHIONE B, et al. Datasheets for datasets[A]. arXiv, 2021.
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S4B . AT E AR E4EN, DARPA 1 ACM &AM 5 & T “IF i
F2#3551” , KDD, NeurlPS. ICLR F2 ICML % TR & ML 28 % 3] 230
HlET R MEEEN, BENNEZBRSGHR AR FBENE
Eﬁf)ﬁz[l]

W& E W k2 — 2 E M (pre-registration) &ﬁt%iﬁ
EHATLTZA, BEREBEREEINITXNEE = F T 6
TR, U EHERKEBRARIT R EHNE ﬁﬁiﬁoﬁﬁﬁ
ALAB b “EBMITR” FA. T LT Usn =Hf, 25 2% X
FRTREAM . EMRE R M E RS KO R TEAREH
RAFARV AR LA R, AR XLARNREETF
AE B EAT RENE S, WIERTE5FRA. REMLMART
AREE, EMBEERARARETEARZ A, 2HHFEX
—RFENAR TR, IMEFREZEMMEN—MEK, ME
TEEEE —MRLMRBEARE R,

T AR N N SEEd 2 A F AR L B, EAMREREHEY
ZHXF. RANEFABEII AR LI XEZ —REEFEAM
EMEXED, EEAH LB FABMEFESERTEM. KT
WA T E MR, A (OERFE) £ A A R TI
FEHUL “HHRAFERE WHRAAF AT ERFA RN L EXE
HATRAET . THMFEHHIFERIN, PFNEENZEER
] B K 3R 20 K &k WA R AT BUE A
5.2.2 AI B THE 551 R B A

AIERA S FENRLERBRFAERENZCEHEZ —, X
mILTEEEHRNENNEWTIN, MR, RERFH/

1 Kou T. From model performance to claim: How a change of focus in machine learning replicability can help
bridge the responsibility gap[C]//Proceedings of the 2024 ACM Conference on Fairness, Accountability, and
Transparency. New York, NY, USA: Association for Computing Machinery, 2024: 1002-1013.

@R A, B g, HERS. QB FHR T HUE M IR, Bk EEUD]. QB A F R, 2024, 32(5): 715-727.

B Nosek B A, Ebersole C R, DeHaven A C, et al. The preregistration revolution[J]. Proceedings of the National
Academy of Sciences, 2018, 115(11): 2600-2606.
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EM. AHTXEANRIT AL FWEMRIL, ETINEF LN,
Vo hEmzE., REREZ. WEREZ. ReRE. TREFEE
tnEEm =N BT R F R ERE R E LR P R IR LS

AEERE (REMREFT B EFHRTHT) . fEwE (X

RNEEREATRHERE, ANTFBEANLERNWEMLEERE)

PLE A R £ (E—IZEA 7 e —HRe 2 B8 70 Z W 2D
2, RE MmN EZEFyTE, TR AEERL. i
o EARIL . ZIARCED S A WL A o0 8% 44 T 5 1 A LY

(1) &KW E 547 E O By L

EEBRESEESNTF, REFATXNEBREETELERRIRH,

TR EXEFRNRERELTHTE, PREEWEREEE. A

w, ET=ARBEXAREENAATE G REAN EEHT L

R, RIAMNTEAEE. DWRTHEZHNROEER, FEETHR

EemmzY, EETRETRGTENEE DM R RN, £K5

He A AN D F Bl H O RES EHATIGE, EEER

FREF BT, £ TCGAHERE T, kBB MEEREDN

8594 fr r A A, 82.0% HFEFIRE AAEE, 10.1% K HEEA

A H = E AL

KM RAEXARBEFMEGRECRER Y. —FH, F5

BRETAERNTTHEF NG T HFEAELEA MR EEAKH

B3, HEZETARFAXE)NLNARNE, L0 EHEMERZ

W%, WHEN ZEAEESRAXERLE, Z—FE, £

[l Harini Suresh, John Guttag. A framework for understanding sources of harm throughout the machine learning
life cycle | proceedings of the 1st ACM conference on equity and access in algorithms, mechanisms, and
optimization[EB/OL]. 2021[2025-08-11]. https://dl.acm.org/doi/10.1145/3465416.3483305.

121 Ntoutsi E, Fafalios P, Gadiraju U, et al. Bias in data-driven artificial intelligence systems—an introductory
survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10(3): e1356.

B1 Bias in AI[EB/OLY]. [2025-08-12]. https://www.chapman.edu/ai/bias-in-ai.aspx.

4 Seyyed-Kalantari L, Zhang H, McDermott M B A, et al. Underdiagnosis bias of artificial intelligence algorithms
applied to chest radiographs in under-served patient populations[J]. Nature Medicine, 2021, 27(12): 2176-
2182.

B Chen R J, Wang J J, Williamson D F K, et al. Algorithmic fairness in artificial intelligence for medicine and
healthcare[J]. Nature Biomedical Engineering, 2023, 7(6): 719-742.

1 Bolukbasi T, Chang K W, Zou ] Y, et al. Man is to computer programmer as woman is to homemaker?
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THENREGREF, FARARLT REKBEN “EEEGRER"
HATERN S, REEEAETXEREITT LTSGR F N &
MRI G, IMMENKRERTET: XEHEEEAZEFN TR
WA, AT, RLHGEREETRFERE. TROE TS THE
¥, RRELEAREATELR, EHEFRHLUER ARG Z
FAE, RIABEANEHEREN, AT SREENQEFTT
BEFBRUEN, RRAEXRAEEELTRESERWIL, FHEEE
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interfaces[C]//Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 2021: 1-11.
[ Roberts J, Baker M, Andrew J. Artificial intelligence and qualitative research: The promise and perils of large
language model (LLM)‘assistance’[J]. Critical Perspectives on Accounting, 2024, 99: 102722.
[21 Dengel A, Gehrlein R, Fernes D, et al. Qualitative research methods for large language models: Conducting
semi-structured interviews with ChatGPT and BARD on computer science education[C]//Informatics. MDPI,
2023, 10(4): 78.
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51 Xue, Z., Jin, M., Wang, B., Zhu, S., Mei, K., Tang, H., Hua, W., Du, M., & Zhang, Y. What if llms have
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(21 Brand J, Israeli A, Ngwe D. Using LLMs for market research[J]. Harvard business school marketing unit

working paper, 2023 (23-062).

131 Motoki F, Pinho Neto V, Rodrigues V. More human than human: measuring ChatGPT political bias[J].
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[21'Wang C, Liu Z, Yang D, et al. Decoding echo chambers: LiIm-powered simulations revealing polarization in
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(11 Sartori G, Orru G. Language models and psychological sciences[J]. Frontiers in Psychology, 2023, 14:
1279317.
(21 Strachan ] W A, Albergo D, Borghini G, et al. Testing theory of mind in large language models and
humans[J]. Nature Human Behaviour, 2024, 8(7): 1285-1295.
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Ay £ R T T AUIUE o X BT A E U ES TR 46 K I E
HEE, EERT ARNEXAE. 7 Fln, FIRFQRET 230
FHRZBERLTF: “REA-IRBHBERLANRT. BRTER
A BRI ZERERF KA, FURTUEREE RN 4.
R, RFLOREETE “TTnh’ MAE BEKWE o Sam K
TREART WURAARR T ZANARF . Sam % T A74&. #AHER
Fxa#mT o) 7 ZAGERRT £ 4 Sally-Anne £ 5 097 45 45 1
GERBERAMR) , EEAT INSHBEF T AT REEIAWAENE,

X —EREANE AL RELECEERBNKNZOE
BEMIE, ERELEFHAMKAMUERIER, XAT GPT-4 £
RN T ry KK EFF IR T B R 89 B R SRS T T e
R, EEEWNE, IRAEHL—IHET —MHEKHRELY
= (faux pas. FHEMBRBEREE) , BLFEIGEEZFHRRSH
BONEE, RBRILT R ASREERLRIT ORRSEEH
B, T—RIARFERBINGRE LD WA RFLGFF
TRBEFHRA, TR TN THEELR T EFEBHTAESTEE
B S2 A A AL 7 T B RO EL

R PLSL, A Centaur A BT A BT, HRAFWRA T K
k. BT EBAE e L RP R RFELMBETT I, Centaur
BRAWTF R ABERERT 72— MHEXESFERREBEE. B4 Centaur
FrREFERABE 160 MO A ROCEF LR ALKE, EMIIR
WHREHTT ARENEFRAEEANLE, K EEZDEERL
FTARERNERETHX, QIET @4 HT 1000 7 A KEFH
Psych-101 #X 2 [, X A3 48 # kit A2 5L IR £k 3L T At 8 & 2
PEABEEANERRMN AL RATENE 1. BIRFEINEFTF
BHRAN, KFRBFRBK, 5H5F XU LREFER TG AT

1 Binz M, Akata E, Bethge M, et al. A foundation model to predict and capture human cognition[J]. Nature,
2025: 1-8.
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XAFARY N Blao, BEATEAELRFIF 78T %58 KN T K&
WNmES, Ry “SEFERUTEERR: .7 WHARY
Ro BMEHABBKETRENRALR, EFAXT ZRTEAE
B E 2 E R T K
MFERAER, T “HEIXEN SEEWERFLT =
H#EETEANE: IERET ELIRRENESKE, HIE
BA SR WL PRI AR ANER,; 52 N # T3 T
FEWRIRET EROANIRELES, el 2 ey BB
PR AR T B R R T R R R AE T EA R W
Pkl M EIEE RN R TRFF LR Z # 0y EE M, Centaur
MBBE, DEEMTARENEN R, LS EE DR
EEEMAEEIED, RARELHENRRMET ETHH b
BR— ARTRETURFANALE, EETRESENES £
AIF 58 BE- Sk 17 3% 52 B0 0 200 A A AL
9.4.5 Y E5HA
EEKERBEENIEFY, XA RBEEEWMHXANALR
AEEEANEA, EEEEAREERNREL, —MEIEWT %
EHBEAWNEASI AT ER R, X —REELFEBEAD,
G REAETALZHLRERF AN EFABF, Fln, clIEHZ2
REE R TELPAT R LTS, B, @BILRARZH T % EH
FTHBAN, UL AR R LR R EAT A, AT B MR
YHWEE N, ERERWE, ToERL)HRFEE KR GENKE G
E—RERLTARRSMRRERE, Flar, B0 A R EE 8 xf R
WARSEITEA IR ZRAE, RFAREE L SHERN K
EREREBSRBRE MRS Z FE, AT, SAEEREEE
ERAMETHEY, BRE+TeBPAEET, R—HLELT
X BT BE RN R E AR R
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EEMERTANELT, EEFAXEEATR2BREX L
Bl 46 A HoR i mory R BILR, Flan R A £ A A3 o W2,
AT, EmAEAE X LS E ] g I N, Lyman % £ R+ &2
TReER. A, MNAENERBREYZARTANTEREZ TR,
T A= 5221 4 A B

Mesh, R R R AR AT A A AR AR I AR ] REAE AT [
Blan, REELZMENWE XA 2 FREMENK FE KT
BAT O E W sh b X R F B R — A, MAENMEREES
XA ZHGHERE.

WRAN X E I A MERER AT — P ROE, FRA
SR AR 32X AL & ok D 38 A0 A R B9 A A o, X AR T R R
MTHEREZ2RPERTTIRBN RS, X—XBBEHFE
100 MK E D oyl B AT HORM, SR A R AR EERA R .
EHFmH IR E L AR EASHEENA RS HES. A,
A URBHERUBREFBOEHE TR IL, o iEEAR
TETHEDNEANE, MARAMEREEEAEAMXHONA. 5
T gAE L, AFRMBETFE MRS, LHEERKEN (LoRA)
Tk M A BB AR EDIO, AT, 5 HEAE T &
— 8, IR ARNMKERB LG F A, k22 A )| K
TR RS, BEERLIWHFHEE LRI E,

I R B OB T E AR, B R AR R R sk 38 5] W E
(steering vectors) , FAEEHEAEXZ L T B ERUTER THE

(1 Murthy S K, Ullman T, Hu J. One fish, two fish, but not the whole sea: Alignment reduces language models'
conceptual diversity[EB/OL].(2024-11-07)[2025-09-14].https://arxiv.org/abs/2411.04427.
(21 Potter Y, Lai S, Kim J, et al. Hidden Persuaders: LLMs' Political Leaning and Their Influence on
Voters[EB/OL].(2024-11-07)[2025-09-14].https://arxiv.org/abs/2410.24190.
131 Lyman A, Hepner B, Argyle L P, et al. Balancing large language model alignment and algorithmic fidelity in
social science research[J]. Sociological Methods & Research, 2025, 54(3): 1110-1155.
4 Qi X, Zeng Y, Xie T, et al. Fine-tuning aligned language models compromises safety, even when users do not
intend to![EB/OL].(2023-11-07)[2025-09-14].https://arxiv.org/abs/2310.03693.
B1Hu E J, Shen Y, Wallis P, et al. Lora: Low-rank adaptation of large language models[J]. ICLR, 2022, 1(2): 3.
[ Dettmers T, Pagnoni A, Holtzman A, et al. Qlora: Efficient finetuning of quantized llms[J]. Advances in
neural information processing systems, 2023, 36: 10088-10115.
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FEEMBER, KW, XM FERAFE AR E A, Bld
THRNAZEE ARG HRET T REIEA .
9.4.6 FF R VAL 75 ¥

ERBENREFEELTUARREFRET S ZXH. A,
T AR G T A S A, Eﬁﬁ%%*%ﬁ%ﬁ@ A R
BENMANAARE, CNARTUENKERE, LakERXK
%ﬁwﬁéﬁﬁ,ﬁﬁﬁﬁﬁﬁﬁ&&ﬁT%%%& A, AR
ERBERENTETEIHEL, NENIEEH, T
Neumann % A X JLHY, %A% AE S HEAE £ KB R T I E
RTEAZE: CIEKRH “FH” ELEFREMTFHEANERL
EaHmt. HR P/ r e RaEPEREE L T, 7%
IEMURFERERGUFES,

T, THEERES THBRIENE—EHER S EEREHE
¥4 . Biabee % AAE & A BRYE 40 T A Ak 5 4 A B L AR LB B L B AT
AR T & KBENFREWFETED Al EEmHEReE L H
HpEMERATAAAESEERCEZS RN AN R. BE, B
RERMT M PE A EN 6 RBZERTT ¥, BFETH
T EREITE, NHEATENETE, URFHBEREFER
Wik, FEAI, BEAGRKEARE. FEMEFHERESFS
NMEE PRI G ARBEREL, EEEEh <t L& E %
A A, flw, HRAEH, EXNER. FHFL2BREGFTA,
B RE R AR R R KD, X RETRAFENEAA
BEEAEGREA LW RAHATIRG, URTIGEEF AL
WK E, THRERNKERZ ZHE, Bk, £LR6 RKE

[l Neumann T, De-Arteaga M, Fazelpour S. Should you use LLMs to simulate opinions? Quality checks for
early-stage deliberation[EB/OL].(2025-04-11)[2025-09-14].https://arxiv.org/abs/2504.08954.

(21 Bisbee J, Clinton J D, Dorff C, et al. Synthetic replacements for human survey data? the perils of large
language models[J]. Political Analysis, 2024, 32(4): 401-416.

31 Anthis J R, Liu R, Richardson S M, et al. Position: LLM Social Simulations Are a Promising Research
Method[C]//Forty-second International Conference on Machine Learning Position Paper Track.
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WREETE, FERTMRAANELHREH#TLEENL Y, £ LR
R, FlALE 2016 £/ 2020 F % EE KL FEE (ANES) #E
M. EE, MBI RFAEFTEXELGEERETNET,
XM FETUFAREERNMEESRBBEERE L TXFH
R, ABAEERT R A B R A B R =

Bk, A7 R R dE R IR # A R SR R R
FHFE . FEIR KT T A VR4 a8 K A R E R, (B
B 2 32 5t X R R AE 40 bR 7 = R TR ik . fil4e,  Strachan
EMAERBETEAETEEAERBES ARE XN OEE LT E
MEEH R T, BF T —RIEFCEFEMNK, HRIEE
EHEAWNE SRR AKERIEETHRNRTEN, ZFRAR T AN
PR ERENT RUNED: ERERTF, AAREFRRXRT B
PR A R EEETETRE & TG H N % 4 0
. IREAE, THAEFEREBELEKESRIT, XERELED
FEBE (WETAESIRLTLFE) EELAREATRBETE
g, R RANESHE LI 7% (40 Kruskal-Wallis 4 %) Fl & 5%
WA BRE W EAZER, BT RIS RIKENA R ED,

=, THRABRENRAAMENEEAITGHERL. FTEAHE
ML PR, MEHEGINERAWITHEELY, UFELE. A
Y AR B ER B, AHREITT WA RHE R K
BEEAEYARNE, HNBT —MF R EEHIT G EL,
BEfmE, REXRIEAEAEE0EWATE: EAEEH -
P, BRMEA ERH “FH A ERGSEMRBHEAENL, LH
REFEBAZ WA EZR L. X— BB AER G HRET —/

[ Strachan ] W A, Albergo D, Borghini G, et al. Testing theory of mind in large language models and
humans[J]. Nature Human Behaviour, 2024, 8(7): 1285-1295.
(21 Kieser F, Wulff P, Kuhn J, et al. Educational data augmentation in physics education research using
ChatGPT[J]. Physical Review Physics Education Research, 2023, 19(2): 020150.
31 Neumann T, De-Arteaga M, Fazelpour S. Should you use LLMs to simulate opinions? Quality checks for
early-stage deliberation[ EB/OL].(2025-04-11)[2025-09-14].https://arxiv.org/abs/2504.08954.
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mENE I F B, AREFeERGIEN; RAE 5 mME X
FHEWA T, FEER A KR ES S MRS N EEE
BEFINER — B, X— 7k T TEERERANE,
AEEFRRART T, WInFELLEIATTE,

9.4.7 15| M &

NH, FHRAFBHIFEEEREEEANERAZ ] F, DIEH
Al £ B & REERE, XANFEEMLAET @E (steering
vectors) N, A =B Z— N HFHE, ATHSEELNREAN (W
XA, BBR%F) BEANEHENZ TN, EREREHHTALE
EM, EEKRERRENLEY, RATERE XBER, HA
CHUR R RERA R TREAFEM KR, BiLET wE,
RANRFT LA — LR R EXE R, Pl MEEEE MR .
“ERT R CBRERTEX” FEED, B mELT UEARE
MR, BEEBEANSFE, HFFRARAHRENTA,
R ey R dE N

A, RABHCEALAR S HFUERFERET AN ET
IRk, XFEREHTHFENME I (mechanistic superposition) HY
B MMEMRIBHETERFEEEA T RRESERR6E &L,
T BUME DLVE W 4 7 A R A AN R AL 2 [8] By Qe AR R IBT, A, g R
XN MERMEES “E” M BN XFARAL, A E R DL
Al AR S BB ) B . B, BWEsHIAA S AERSHF
TRy mE, KARENES LA L RNTH, RS T M
T EEWERK,

1 Kim B, Wattenberg M, Gilmer J, et al. Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (tcav)[C]//International conference on machine learning. PMLR, 2018: 2668-2677.

(21 Kim, J., Evans, J., and Schein, A.Linear Representations of Political Perspective Emerge in Large Language
Models[EB/OL].(2025-03-03)[2025-09-14].https://arxiv.org/abs/2503.02080.

131 Panickssery N, Gabrieli N, Schulz J, et al. Steering llama 2 via contrastive activation addition[EB/OL].(2023-
12-09)[2025-09-14]. https://arxiv.org/abs/2312.06681.

4l Arora S, Li Y, Liang Y, et al. Linear algebraic structure of word senses, with applications to polysemy[J].
Transactions of the Association for Computational Linguistics, 2018, 6: 483-495.

51 Bolukbasi T, Pearce A, Yuan A, et al. An interpretability illusion for bert{fEB/OL].(2025-09-14)[2025-09-
14].http://arxiv.org/abs/2104.07143.
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REwmM, TR RE, BE&&MRENBARE T KR
B A 2 XCHRE, X—RIANELHREANEBRAETEHAENE =
THEM IR ET B ENR BN, FH & ok v DLE 5T
FEMARECWERYE, TERIEIMFEEEERR LS
XAt aFHEZNLELTH. &L TFEAHRSEEMEE
eI BB = £ W BT AL 2B &S fldn, EATHEA G 2E AT 44E
i, BEWSUEER TR T EEREANTHTIENERLLR, &
A &R, AR DUIR A Lo R AR BT O A L B BT B
B At XE FMA R, AW EERHH KA FHIR,

A, RTAEERAEGEFARNMNAEEE, FARL
BHEHT s, x2EFEHRNRAY “LMERTRHRK” (linear
representation hypothesis) , 3§ # & FFFAEEE R 2 L7 DL £
BT A ME SRR, WRGERGFELELRNXLERH, HE
WEMEA e EZRN TRTEASBAREXERENEH. BHi, T
W 2V 2w B EET LU B R AR AR, AR B fm e AT R LA,
FUBEATR AR, MAMERNZRTEAMEBRENER,
BRRAE, WAL, KEEERETHmENERAEXLE
MTRRAR, B awk A TP, &A% =MW ILH (debiasing)
Ao A (out-of-distribution, OOD) By & IPI7H & .

RZ, IR n s ERBEW R HEEFHATRT, BT HA
BEMEUERNE, NN RESEMEE XHRIENEFI =
O, FHit, X—FEMEERIHASARESHE T, 1EEELREA

[l Gong B, Lai S, Song D. Probing the Vulnerability of Large Language Models to Polysemantic

Interventions[EB/OL].(2025-05-16)[2025-09-14].https://arxiv.org/abs/2505.11611.

[21 Park, K., Choe, Y. J., and Veitch, V.The Linear Representation Hypothesis and the Geometry of Large

Language Models[EB/OL].(2023-11-07)[2025-09-14].https://arxiv.org/abs/2311.03658.

131 Engels J, Liao I, Michaud E J, et al. Not all language model features are linear[EB/OL].(2023-11-07)[2025-

09-14].https://arxiv.org/abs/2405.14860.

] Durmus E, Tamkin A, Clark J, et al. Evaluating feature steering: A case study in mitigating social

biases| EB/OL].(2024-10-25)[2025-09-14].https://www.anthropic.com/research/evaluating-feature-steering.

(51 Tan, D. C. H., Chanin, D., Lynch, A, et al..Analysing the Generalisation and Reliability of Steering

Vectors| EB/OL].(2024-07-17)[2025-09-14].https://arxiv.org/abs/2407.12404.

1 Kim J, Evans J, Schein A. Linear representations of political perspective emerge in large language

models[EB/OL].(2024-10-25)[2025-09-14].https://arxiv.org/abs/2503.02080.

"1 Veselovsky V, Argin B, Stroebl B, et al. Localized Cultural Knowledge is Conserved and Controllable in
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AN RFFIEE, EH—FRIEZE, FEELTRNERME,

ERBEEARNETEAEAEHFTH AL LA A, T
MARBTEBYEFART AUS K RHEANEENARNESF O,
HRZIHE TR T AIBRATAT AR IR R R TS EHEEL,
ERBEWAXRANENT ALEHEFRARWE LS, BLEH
XEFFRB A, AR BRI EM AR EFER, EERANRFNH
FHRARARENEE 8, HEZWOTERARZENAF, PR
MRT¥. FewhERAfnFEfa AEHHE,

AT, & RBEN ) Z N MR ETFEFLEAWALKR
FNENE REAHMEREHEWNELELLNELEZIHITR AW
CATE R A A RN B RE) , AEE T Z 2SRRI
. A EEIE B A S AR UL R e s g R F B AT BIER AL £
BARBEERNR, ERFAMTETN S, AAARMALER
NTEERERRFERBENERERN =, FAHEEN MR, 4
ENER i 2NN DY VS 7 W

AR — PRI NFEATE RE T ENFA G EH0E
BN, FEENEFE RS ZEFAILFER MK 7B 2 & 09 1K
REMFEETA, B ZBERENRARNENE &, BRT
SLENIE BALE . B, HEARAF A AL 2025 4 10 A % 74
% Al & 8K I ik 21 (Agents4Science 2025) , BA# ZE K A7 #6 C
BLULAL R A £ EAMEEMR, HEETFHARILE, ALK AKX
WE— S —1FE, ARHIREFNENXEEESEXFIRETE
U, SHER, #AMEAFEZEERETHFTNR, x2TH
MAAIAFEEZRNHRFTRA X B ESE SH 1T ED, XLaE ks

Large Language Models[EB/OL].(2025-04-14)[2025-09-14].https://arxiv.org/abs/2504.10191.
[l Stanford University. Open Conference of Al Agents for Science 2025[EB/OL].(2025-05-16)[2025-09-
14].https://agents4science.stanford.edu/
RHERNITEAFFR (HEMRFR . F—1EFLHE ALl BALLAL A B E RN F AR XEE
SR, 4R A S & A&[EB/OL].(2025-10-02)[2025-10-08].
https://mp.weixin.qq.com/s/BduSLybNkLvTzcvBUGaJ9Q.
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KENTHRAG KB EERTAXFWARUL AR ERT AR
EZ TR X AR E,

IF 4w Evans ¥ 5 # 15, X6 REE A B9 E® 4T A 77 ik ik
Jst o ik MARAR LS A, "B — b 45 18 o 7] AU R BV R AR 3R
BREETFREFEHTHEZIER R, B RGN AEZTER
ERZANREEMBERRESFFOAGCRAZR, BHEHTEE
BEEEANEZRSZSERRR, THESHERRT 6 REEL
BEH K T E N E A E A L Fry ] AT, A —F OSBRI
R SR B R A

(1 Anthis J R, Liu R, Richardson S M, et al. Position: LLM Social Simulations Are a Promising Research
Method[C]//Forty-second International Conference on Machine Learning Position Paper Track.
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£ 10E XKIESREFSFNHEHERHE

BRESBEARNELEKNEEL %, GE “EHEES ™
BT WA, EARAETRIEULEHN, BHAREHD
B A E— B, BRI, FERTHE -SRI ES
B, BRRSKEEALES Y LBER, ARENTHT HE
BRWEY, BES5TE, NTESREESHREF EHEEL
A

ERERAY, BAZRATFREBLN L REEABHNNE
RN, BEEE (BEAE) TR HBRATREENKT LS, B
T BB —Bb—E L7 2 ERAEEE T FRE (BRIL) *
A EHAER R KT, BRI RES X ENESE “HAK
B, UM LEAA A SR AR, R BRI R
HEEE, MEALEALREEERTHNEER (B, B
Ta ME) SXAAE, HTEETRBAEEEST%RK
TRER, BAKETRBENMED S 7R LA ZEEFEML.

KT, BRLHWAERERERS ., 2HE5THE E R
FRAWEDEFR, WA 5T, g%%a%A@&
MERLEEHEREENTH: LEEHER B EEEL, LA
BAEFETRRFREEWAR, & ﬁn%%%ﬁﬁﬁ@ﬁ%
KA BEERELZEEHERE, SR DR TESERELT L.
FHl, WAEGYRAThE R UMFRN, REESEE, 7
ERMETHAMN, &4 IR,

KETHA A AR R T R AL R,
feREE S = REREDE S, ERTURR “RA” ¥4, %
. Rk, REESREHEELETRAAE, BILBAREHHT
AT H B, BHHRETAAE LG ML 5T HR . &
SRR R R S MR B AT S R R, M
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XEHEHBRESREE ST, B “EAMAETERRT” X—%
WAL, R, KIEEHEE A EELR AR E AT “BIRFIT
BrAsaR. HEAMASMRRF, CRCHEZNEEREF NN
PATHZIERE AR TR, AHRLTE. Eir. NETAEEXHES
t, FELEFHNEHIEBSAMNMER, N THARERS
MBS &G, EoxEe s, AEFRATRABRFE. &
B RERANFL/INEEZR, #MEFHMRFTHFHK
KHE . HEANZ ST EHEF KA
10.1 BTG HLA

BRESIKE—FHETHURRESESZHNERT &, BETKH
?%%E&ﬁ%w&T,%%%%ﬁ%EM% BMAKERWEE
ERENAE R, B HEENERABREEE, BEHEIZRF B
%%%K@%%@ﬁfﬁ\%ﬁﬁ&%ﬁﬁ¢,kﬁﬁﬁ@%%&
BE5FEM. ERFHPANTRLRENE, THERK. BEALERE
B, BERILHREFEEER. cRv BRI EBHRENEN, B
THEFA, BREL—FH, EETINHFAEL, RALBRFILE
A EEREFLIERA AN EEA T, BRIR AR AFHRZITRE
B, TR#TMIRKANER T, L&A LR IHIE WL
i, BRIZRESHFELRTRMLEETE, Hit, BEZRS
AT ERMATHEHRANTERER, —FHEBHHEK, £H
‘A F RS,
10.1.1 B} BARSLE

MEERIREAMNFARTNEE L, T ZATRRER
MR B A N T B LR B RIFT R Rk, B2
RAEBBIEUEMERLENENTE, BFEELRE %ﬁ%ﬁ
REGELEABELRWAMT, ELHE R M Ak — Sk
(1] Hallsworth J E, Udaondo Z, Pedrés - Alié C, et al. Scientific novelty beyond the experiment[J]. Microbial

Biotechnology, 2023, 16(6): 1131-1173.
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RARB G, XA EL R T HFELWBAEFN, &
AR FRIAEET WEENERRFE O, #EIRFHIRERNIE
#HETE, EFLZEEMFRAI T, BAELR YL R 6F.
REANmERNWEETR, LHEEERMYE, £YFTRTRESL
e RBEA .

ey EFE b, BAZRHETREEENAEC, BT HAF
BERWEARHE. mELNP T2 —EMmAlegx T LEEFSE L&
R B AR, FHAREHTRERE, X—ELERHESF
MEERAFEH— SRR, ZEAHENERLREZZHETH
fir, R — RGN EEL R RLERT 7 XHEXN .,
10.1.2 ¥ BARSLIS

HeFBERAIRENBTIHEESIZIF . 2T 2 F E
BERWTNMEATAGHEMARANEETR, AHARFHRTF
HEEZOHA, BAMEEWUEERBERRER, XXEEAZRT
MAEHERRXENEMESE AR, TRET H&
it 512G E WA FN,

ZAA4F « K« B (Robert K. Merton) £ 2 & #E/E (14 3HE
whHaEh) PRENEFANERLR, RET “BRELIAW
WME” AF. ZAEREZRIEY, AMIMEMELEHOTH (Fla
RATER) AF2WRHERLNEERTAH, REAREZFHNR L,
X—NERZANE ST GASTHZEANNSR AR, NEME2 B
LR SRR REEEERRKE

“WiEEE” EARF R FNEREMALR, REFHM LY
WEEFAEHRZ EEHERLT, WAESFESTRZEANE R,
WA ERT MR R EREEZ AW E, WEHT &1F
MFl R L&, TENATHEES., 5T 5RIENHE

]
]
=
[

U1 Einstein A, Infeld L. Evolution of physics[M]. New York: Simon and Schuster, 1966.
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& 4T

% K/R o« /KT (Emile Durkheim) 7 (#t &2 FEAN)
RHEW “ZTAHEL” BALR, 8- dEETEMRAE KN
2, BERTNRENL ST # AN, fily, HEEEMR
e, WRMAFEELEABFAL LT EZERARE,
X—BERRRTEANLEREN, ANFEFAHLLERELN R
BT HNA.

FELHr « EA4HT (Thomas Hobbes) R HH “EHARAS” BAL
B, #L7 " IMNERAEBREEEAR, ANNEEAHSER, BR
HERFHBRRBRFENLEE, ZEAZR HHRL 2 THE
WEE T Ea, R T BEHSFMEZXELWRE.

bR, BERZRUMEENBEREREAK, EFELMH
THEUXBLTERHLBEING, dMETHFESLLTABTLHEHR
B ERE. BERATREAEHERGEFEL A, R0 F
FUHERELER, WAHRALH, FEHESRERITEH®T R
RN HTHER G J7 ik X1
10.1.3 HHXRALR

waHRFREAE L, (ZRIL) . (REEXE5HF) 5§ (EA
EY THA=FMAELERN “BREFEREAXR” . TEHFTFAAE
Eh, EUBRMIXELNERRBERE. BEMA, HHE
TE#HFRNWNESER, FRU—AEMAGH2ETE, N
R BARR” SHRFEHRENAFT; HENEFREEAREMH S
WaE R, HEAR. RASEERGEATELFEY; maEERE—
WRBHWERRERRAFTEAE, EEZ XA,

AT E U “mRFRZEMREMNIEZAT, 2KEMFTLT AR
'iHE. (ZwL) LFEIHFHERE-INRZFEYILE RF LK
BEALR, FREET EHAMERILKERAARIT, LHF7E
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SWAEEFRE “BR/ARE” § “H2 B, AWRHAT A
“MEER” NEEEMHN “EHRHET” NWHE. FFPAETEHS
DRZZR “HFRZ” 20 BEHFEMBERELERETHTAEA
REEELR, =GR REFTHRERSKM? ZiL)LEAL
“BERNHE—EBREL” WZEFIREAR, £LHTHIIIR?
ARARONENFEMEL ARG RHE, REETHITE
HRAZWE R TR R ENE? AR RN EEARELE (HE., &
£ B ZR. EETID RBRIER RN B, EEERENEH
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