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Abstract
Aim: This study aimed to construct a N1-methyladenosine (m1A)-related
biomarker model for predicting the prognosis of ovarian cancer (OVCA).
Methods: OVCA samples were clustered into two subtypes using the Non-
Negative Matrix Factorization (NMF) algorithm, including TCGA (n = 374) as
the training set and GSE26712 (n = 185) as the external validation set. Hub genes,
which were screened to construct a risk model, and nomogram to predict the over-
all survival of OVCA were explored and validated through various bioinformatic
analysis and quantitative real-time PCR.
Results: Following bootstrap correction, the C-index of nomogram was 0.62515,
showing reliable performance. The functions of DEGs in the high- and low-risk
groups were mainly enriched in immune response, immune regulation, and
immune-related diseases. The immune cells relevant to the expression of hub
genes were explored, for example, Natural Killer (NK) cells, T cells, activated
dendritic cells (aDC).
Conclusions: AADAC, CD38, CACNA1C, and ATP1A3 might be used as m1A-
related biomarkers for OVCA, and the nomogram labeled with m1A for the first
time had excellent performance for predicting overall survival in OVCA.
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INTRODUCTION

Ovarian cancer (OVCA) is the malignant tumor that poses
the greatest threat to women’s health, ranking third in inci-
dence and first in mortality in the female reproductive sys-
tem.1 There were nearly 239 000 new OVCA cases and
152 000 new OVCA deaths each year worldwide, account-
ing for 3.6% of all new cancer cases and 4.3% of all cancer
deaths.2 Due to the lack of effective screening strategies
and a few early-stage clinical symptoms, about 60% of
patients with epithelial OVCA are underdiagnosed and too
late.3 Despite the widespread use of surgery, chemother-
apy, biological therapy, and targeted gene therapy in the
treatment of OVCA,4 the 5-year survival rate for OVCA is
still only 35%–38%.5 Exploring the alternative pathogenesis
of OVCA is of great significance for early detection, early
diagnosis, and early treatment.6,7

As a vital RNA methylation modification, N1-
methyladenosine (m1A) is ubiquitous in tRNA, rRNA,
mRNA, and mitochondrial transcripts, and m1A dysregu-
lation affected various cellular processes.8,9 The latest study
found that m1A methylation modification plays a crucial
role in the prognosis and the shaping of the immune micro-
environment of OVCA.10 Another report in the literature
suggested that the m1A-regulating enzyme TRMT10C
affected the survival of OVCA patients.11 In the other
words, the underlying significances of m1A dysregulation in
the progression of OVCA have been preliminarily inspired,
while, no theory has conducted a theoretical system explor-
ing the targeted binding sites as well as the regulatory net-
works of m1A-related genes affecting OVCA.

Li et al. used weighted gene co-expression network
analysis (WGCNA) and nonnegative matrix factorization
(NMF) method sample classification to identify key
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biomarkers in CD8 T cell-related genes and construct
prognostic features in OVCA.12 Chen et al. explored the
underlying mechanisms of the tumorigenesis and progres-
sion based on genes associated with OVCA clinical
features.13 Considering the advantages of bioinformatics
analysis recognizing markers in various tumors, in this
study, according to the previous literature,8,14,15 10 m1A
genes were collected to cluster OVCA patients into two
tumor subtypes to excavate pivotal m1A-related bio-
markers. Therefore, a four genes-based m1A-related
OVCA risk model and nomogram were constructed and
evaluated for the first time, providing a reference for
diagnosing and treatment of OVCA cohorts. And mean-
while, correlation analysis of hub genes expression and
key immune cells was helpful to reveal the underlying
roles of immune-related therapy targeting hub genes in
OVCA progression. The workflow chart of this study is
shown in Supporting Information Figure S1.

MATERIALS AND METHODS

Data collection

We downloaded OVCA-related expression data from The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov/) database and Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) database. m1A genes
were retrieved from published literature8,14,15 including
TRMT10C, TRMT61B, TRMT6, TRMT61A, ALKBH3,
ALKBH1, YTHDC1, YTHDF1, YTHDF2, and YTHDF3.
A total of 379 samples were included in the TCGA data-
base, 5 recurrence samples were removed, and 374 samples
with clinical information were used for subsequent analysis.
A total of 185 OV patients with survival information were
included in the GSE26712 dataset.

Non-negative matrix factorization clustering

Based on the expressed profiles of 10 m1A genes, NMF
clustering analysis were first performed using the
NMF (version 0.23.0) R package16 to cluster the TCGA-
OVCA samples into different subtypes. Survival analysis
was then performed for the different subtypes using the
survminer (version 0.4.9) R package.17 The clinicopatho-
logical factors such as age, stage, race, chemotherapy,
and radiotherapy were added to compare whether there
was a difference between samples of different subtypes by
chi-square test and p < 0.05 was considered as a signifi-
cant difference.18

Differentially expressed genes screening

We used the DESeq2 R package (version 1.34.0, https://
bioconductor.org/packages/release/bioc/html/DESeq2.html)

to compare the differences in mRNA expression levels
of different subtypes. The screening conditions for the
DEGs were jlog2FCj > 0.5, adj.p < 0.05.

Screening for hub genes

We used the TCGA-OVCA samples (n = 373) as the
training set of the model to construct a least absolute
shrinkage and selection operator (LASSO) regression
model using the DEGs between the two subtypes. To
reduce the feature dimension, we used the glmnet
R package19 (version 4.1-3), set the parameter famil to
cox, implemented lasso logistic regression, and used 10-fold
cross-validation to calculate the error rate under different
features to select strongly correlated features.

Genes screened by lasso regression were subjected to
univariate COX regression analysis. Those with p < 0.01
were subjected to multivariate cox regression analysis to
screen hub genes and used to construct a risk model.

Construction and validation of the risk model

The risk score was calculated using the predict.coxph function
scores through survival (version 3.2-13) R package,17 where
the risk score of each patient in TCGA-OVCA was
calculated as follows: Risk score¼EXPAADAC � �0:095ð Þ
þEXPCD38 � �0:15ð Þ þ EXPCACNA1C �0:15þEXPATP1A3

�0:11. That is, a risk model was constructed based on
the predictive genes and coefficients obtained by COX
regression analysis. K–M survival curve between the high
and low-risk groups were conducted as well. To further
assess the validity of the risk model, the survival ROC
(version 1.03) R package (https://CRAN.R-project.org/
package=survivalROC) was used to draw the ROC curve
with 3-, 5-, and 7- years as survival time nodes. Valida-
tion of the applicability was made in GSE26712.

After univariate and multivariate COX regression
analyses, we constructed a nomogram of 3-, 5-, and
7-year survival rates for the prognosis of OVCA. Calibra-
tion curve was drawn after that. The closer the slope was
to 1, the more accurate the prediction was. We further
performed a decision curve analysis (DCA) to validate
this model’s diagnostic accuracy and clinical utility.

Enrichment analysis of the DEGs between
high- and the low-risk groups

We first used the DESeq2 R package (version 1.34.0)
to obtain the DEGs between high- and low-risk sam-
ples. The filter conditions were jlog2FCj > 1 and adj.
p < 0.05. Afterward, the clusterProfiler R language20

(version 4.2.1) was used to perform Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genome
(KEGG) enrichment analysis on DEGs, and the GO
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plot (version 1.0.2) and enrich plot packages (version 1.10.2,
https://github.com/huerqiang/enrichplot) were utilized to
draw GO enrichment graph and bubble graphs. In addition,
we also performed GSEA enrichment analysis on the
prognosis-related genes that were finally determined to build
the risk model to find the functions and related pathways
between high and low-risk groups. The significance thresh-
old of single-gene GSEA was jNESj > 1, p-val<0.05, and
q-val<0.2 as screening conditions.

The ceRNA regulatory network and immune
correlation analysis relevant to hub genes

In order to investigate the potential regulatory mechanism
targeting the hub genes, the starbase database (https://
starbase.sysu.edu.cn/) was used to predict potential binding
sites of hub genes for establishment of the lncRNA–miRNA–
mRNA networks, where miRNA is the core regulatory fac-
tor, that is, lncRNAs that competitively bound to miRNAs
could regulate the transcription level of mRNA that was reg-
ulated by corresponding miRNAs. Hence, the opposite
expression patterns between miRNAs and hub genes
(screening criteria: CLIP-DATA ≥ 1) as well as the interac-
tion of lncRNAs and miRNAs involved (screening criteria:

CLIP-DATA ≥ 5) were included to reduce false-positive rate
and exhibited through the Cytoscape21 (version 3.8.2) software.

Besides, immune cell correlation analysis was per-
formed using the GSVA (version 1.34.0) R package to
interpret gene expression data by ssGSEA.22 Correlations
were evaluated through Spearman tests. The statistical
difference was considered to be significant at p < 0.05.

Exploration of hub gene expression

After obtaining the patient’s informed consent and
approval from the Ethics Committee of Hebei General
Hospital, the tissues we collected were immediately stored
at �80�C until use. We extracted total RNA from 15 ovar-
ian cancer tissues and 15 normal tissue samples using
TRizol reagent (Thermo Fisher Scientific, Waltham, MA).
Afterward, cDNA was obtained using a FastQuant First
Strand cDNA Synthesis kit (TIANGEN, Beijing, China).
qPCR was conducted using the SYBR Green PCR kit
(TIANGEN, Beijing, China) according to the protocol.
The primer sequences pairs of hub genes used in this study
were designed as follows: AADAC-F (50-TGCAGGAGG-
GAATTTAGCTG-30)/AADAC-R (50-TGACATCTGG-
GTCATCAAGG-30); CD38-F (50-ACAGACCTGGCTG

F I GURE 1 Identification of the molecular subtypes of TCGA-OVCA cohorts using NMF cluster analysis. (a) The cophenetic, dispersion, evar,
residuals, rss, silhouette, and sparseness distributions when rank k was set as 2–10, in which k = 2 was considered as the optimal cluster number, and
consensus map of NMF clustering for k = 2 was displayed. (b) Kaplan–Meier (K–M) survival analysis in C1 and C2 groups (p = 0.043). (c) Clinical
correlation analysis of C1 and C2 groups with different clinicopathological factors (chi-square test). (d) The volcano plot and heatmap of
differentially expressed genes (DEGs) between two subtypes of TCGA-OVCA cohort.
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CCGCCTCTCTAG-30)/CD38-R (50-GGGGCGTAGTC-
TTCTCTTGTGATGT-30); CACNA1C-F (50-GAAGC-
GGCAGCAATATGGGA-30)/CACNA1C-R (50-TTGG
TGGCGTTGGAATCATCT-30); ATP1A3-F (50-GCAA-
CGAGACTGTGGAGGACAT-30)/ATP1A3-R (50-GAC-
TTCCTGTAACAACGCATC-30); β-actin-F (50-ATG
ACTTAGTTGCGTTACACC-30)/β-actin-R (50-GACTT-
CCTGTAACAACGCATC-30), using β-actin as house-
keeping gene. All data were calculated using the 2 � ΔΔCt
method.

RESULTS

Two m1A subtypes were identified based on
10 m1A genes expressions

After excluding one sample without survival data, NMF
clustering was conducted to cluster the 374 samples in
TCGA-OVCA into two m1A subtypes through the NMF

algorithm (k = 2, C1 = 179, C2 = 195, see Figure 1a).
Survival results showed there were significant differences
in individuals’ prognosis between two subtypes, and
cohorts within C2 groups had greater survival probability
(p = 0.043) (Figure 1b). The results for gene expression
of 10 m1A genes exhibited that the up-regulation of these
m1A genes might be relevant to poorer prognosis of
OVCA patients (Supporting Information Figure S2). In
addition, substantial differences in chemotherapy were
found between different subtype clusters in two m1A sub-
types (p = 0.01), while there was no distinct difference in
other clinical subtype clusters (Figure 1c).

Four prognostic related hub genes were identified
to construct the risk model

The 609 DEGs (455 up-regulated and 154 down-
regulated gene) between the two m1A expression sub-
types were included to construct a lasso regression

F I GURE 2 Construction and evaluation of a predictive model for TCGA-OVCA. (a) LASSO regression analysis to select prognostic genes,
including (left) lasso penalty coefficient plot and (right) lasso cross-validation error plot. (b,c) Univariate and multivariate COX analysis forest plot.
(d) Distribution of risk curve, survival state and genes expression of individuals in TCGA-OVCA. (e) K–M survival curve between high- and low- risk
groups (p < 0.0001). (f) Receiver operating characteristic (ROC) curve for survival prediction at 3-, 5-, and 7-years.
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prognostic model (Figure 1d) and 37 prognostic-related
genes were screened (λ = 0.0594; Figure 2a). Moreover,
AADAC, CD38, CACNA1C, and ATP1A3 were finally
identified as hub genes for constructing the risk model
(Figure 2b,c). Then OVCA patients were divided into
high and low-risk groups according to the best cut-off
(1.039795) value of the risk score, with 169 samples in the
high-risk group and 204 in the low-risk group. Represen-
tatives from the high-risk group had higher risk scores
and a higher risk of death than the low-risk group. And
meanwhile, the expression of AADAC and CD38 was
higher in the low-risk group, whereas CACNA1C and
ATP1A3 were higher in the high-risk group (Figure 2d).
This result is consistent with the multivariate regres-
sion analysis. The survival curve indicated that the
survival rate of patients in the high-risk group was
lower than that in the low-risk cohort (p < 0.0001)
(Figure 2e). It was observed that AUCs at 3-, 5-, and
7- years were all greater than 0.6, indicating that the
performance of the risk model is better (Figure 2f).
Moreover, the survival distributions (Figure 3a), survival

probability (Figure 3b), as well as ROC curve (Figure 3c)
for the risk model were validated in GSE26712, in which
the survival difference between different risk groups was
observed (p < 0.013). And the AUC values were similar to
the previous results (AUC > 0.6). These findings further
confirmed the predictive value and stability of the model.

Clinical correlation analysis and nomogram
establishment

Clinical correlation analysis through Wilcoxon test
showed that there were distinct differences in the risk
score between the two m1A subtypes (C1 and C2) as well
as individuals with different stage and chemotherapy
terms (Figure 4a). In comparison, only subtype was quite
different between high- and low-risk groups (p < 0.001,
chi-square test; Table 1). Similarly, the heat map for hub
genes expression in different clinical subtypes showed
that AADAC and CD38 were highly expressed in the
low-risk group and C2, while CACNA1C and ATP1A3

F I GURE 3 Validation of the predictive model in GSE26712. (a) Distribution of risk curve, survival state, and genes expression of individuals in
GSE26712. (b) K–M survival curve between high- and low- risk groups (p = 0.013). (c) ROC curve for survival prediction at 3-, 5-, and 7-years.
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were highly expressed in the high-risk group and C1,
remaining consistent with previous results.

The univariate and multivariate COX regression ana-
lyses including risk score and clinicopathological factors
showed that the three elements of chemotherapy, age, and
risk score were statistically different (p < 0.05;
Figure 4b,c). Hence, the nomogram based on the risk
model as well as chemotherapy, age was constructed. The
c-index of which was 0.62499, and the adjusted c-index was
0.62515 (Figure 4d), indicating that the predictive strength
of the model was reliable. DCA curve showed that the ben-
efits of risk score and multivariate models were higher than
extreme curves, suggesting that they have a larger optional
range and are relatively safe (Figure 4e).

Enrichment analysis on DEGs between high and
low-risk groups

Difference analysis showed that there were 140 DEGs
between high and low-risk groups, of which 44 mRNAs
were up-regulated in the high-risk group, and 96 mRNAs
were down-regulated in the high-risk group (Figure 5a).
The GO/KEGG enrichment analyses on the DEGs fur-
ther revealed that these genes were mainly related to the
activation of chondrocyte differentiation, as well as the
inhibition of the granulocyte chemotaxis process
(Figure 5b), and so on. In the meantime, the pathways of
primarily in the interaction of viral proteins with
cytokine–cytokine receptor interaction were enriched in

F I GURE 4 Independent prognostic analysis and construction of a nomogram model. (a) Violin plots and heat map for correlation between risk
score and various clinical characteristics. (b,c) Univariate and multivariate COX analysis forest plot. (d) The nomogram of the risk model based on
the risk score and other independent prognostic factors, and corresponding calibration curve. (e) Decision curve analysis (DCA) to evaluate the
clinical utilize of the nomogram.
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KEGG (Figure 5c), and so on. To avoid the omission of
some genes whose differential expression was not signifi-
cant but biologically significant, we also performed a
GSEA enrichment analysis, where adaptive immune
response, T cell activation, as well as graft-versus-host
disease were found (Figure 5e).

Construction of ceRNA network and immune
correlation analysis

To further explore the upstream regulatory mechanisms
of hub genes, a total of 31 miRNAs target to hub genes
as well as 38 lncRNAs binding sites of these miRNAs
were determined and conducted to construct the
miRNA–mRNA regulatory network (Figure 6a), in
which CACNA1C was predicted as only the binding sites
of hsa-miR-384, and it was competitively bound by
among lncRNAs SNHG8, NEAT1, MALAT1,
AC005261.1, and NORAD. AADAC and CD38 were tar-
geted by many miRNAs and lncRNAs in the network,
suggesting that ceRNAs may be important in regulating
the expressions of which.

Moreover, the expression levels of AADAC were sig-
nificantly positively correlated with activated dendritic
cells (aDC), dendritic cells (DC), macrophages, neutro-
phils, T cells, T helper cells, T-helper 1 (Th1) cells, and
regulatory T cells (Tregs). However, the expression levels
of AADAC were significantly negatively correlated with
Natural Killer (NK) cells. The expression level of
ATP1A3 was positively correlated with B cells, cytotoxic
cells, neutrophils, central memory T cells (Tcm), effector
memory T cells (Tem), follicular helper T cells (Tfh), Th1
cells, and Treg. The expression level of CACNA1C was
negatively correlated with aDC, T-helper type 17 (Th17)
cells but positively correlated with CD8 T cells, NK
CD56dim cells, T helper cells, and T-helper type 2 (Th2)
cells. The expression level of CD38 was positively corre-
lated with Mast cells, T gamma delta (Tgd), and Th17
cells (Figure 6b).

Exploration of prognostic gene expression

Using the RT-qPCR methods, it was found that the
expressions of AADAC, ATP1A3, and CD38 were higher

TABLE 1 Correlation analysis between risk score and clinical characteristics through chi-square test.

Score

Total High Low
p-value(N = 373) (N = 169) (N = 204)

Age 0.988

≤60 204 (54.7%) 93 (55.0%) 111 (54.4%)

>60 169 (45.3%) 76 (45.0%) 93 (45.6%)

Stage 0.194

Stages I and II 22 (5.9%) 6 (3.6%) 16 (7.8%)

Stages III and IV 348 (93.3%) 162 (95.9%) 186 (91.2%)

Unknown 3 (0.8%) 1 (0.6%) 2 (1.0%)

Race 0.515

Asian 11 (2.9%) 7 (4.1%) 4 (2.0%)

Black 25 (6.7%) 13 (7.7%) 12 (5.9%)

Unknown 13 (3.5%) 5 (3.0%) 8 (3.9%)

White 324 (86.9%) 144 (85.2%) 180 (88.2%)

Chemotherapy 0.276

No 10 (2.7%) 7 (4.1%) 3 (1.5%)

Unknown 12 (3.2%) 5 (3.0%) 7 (3.4%)

Yes 351 (94.1%) 157 (92.9%) 194 (95.1%)

Radiotherapy 0.792

No 341 (91.4%) 153 (90.5%) 188 (92.2%)

Unknown 9 (2.4%) 5 (3.0%) 4 (2.0%)

Yes 23 (6.2%) 11 (6.5%) 12 (5.9%)

subType <0.001

C1 178 (47.7%) 100 (59.2%) 78 (38.2%)

C2 195 (52.3%) 69 (40.8%) 126 (61.8%)
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in ovarian cancer tissues but lower in normal tissues.
CACNA1C was more deficient in cancer tissues and
higher in normal, and all the differences were statistically
significant (Figure 6c), which were consistent with the
expression in TCGA.

DISCUSSION

Previous studies showed that m1A regulatory molecules can
affect the processes of transcription and translation to pro-
mote tumorigenesis.23,24 The latest research demonstrated

that m1A methylation modification is an essential driver in
the prognosis of OVCA.10 Considering the potential
prognostic value of various RNA methylation modifi-
cations in OVCA,25–27 we used the NMF algorithm for
the first time to cluster OVCA samples and screened
out four hub genes (AADAC, CD38, CACNA1C, and
ATP1A3) for building a risk score model in this study.

AADAC is a glycoprotein and is associated with
lower rifapentine clearance.28 A synergistic tumor sup-
pressor effect between AADAC and anticancer drugs was
also found, suggesting that AADAC is beneficial to the
prognosis of OVCA patients, which is consistent with our

F I GURE 5 Functional enrichment analysis of DEGs between high and low-risk groups. (a) Volcano plot and heatmap of DEGs between high
and low-risk groups. (b) The circle map of Gene Ontology (GO) enrichment analysis. (c) The bubble plot of Kyoto Encyclopedia of Genes and
Genome (KEGG) enrichment analysis. (d,e) The enriched GO and KEGG terms by Gene Set Enrichment Analysis (GSEA).
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experimental results.29 CD38 is widely expressed in vari-
ous human tissues and cells and plays an important role
in the immune system. The great success of CD38-
targeted antibodies in treating multiple myeloma has
driven its research in other oncology areas.30 Zhu et al.

demonstrated that CD38 predicts a favorable prognosis
by enhancing immune invasion and anti-tumor immunity
in the OVCA microenvironment.31 There is evidence that
CACNA1C plays a crucial role in regulating the occur-
rence and development of various tumors by targeting

F I GURE 6 Exploration of hub genes. (a) The ceRNA network targeting to hub genes. Red circle represents hub gene, green triangle represents
miRNA, and blue square represents lncRNA. (b) Immune infiltration analysis of hub genes, including activated dendritic cells (aDC), dendritic cells
(DC), macrophages, neutrophils, T cells, T helper cells, T-helper 1 (Th1) cells, regulatory T cells (Tregs), natural killer (NK) cells, B cells, cytotoxic
cells, central memory T cells (Tcm), effector memory T cells (Tem), follicular helper T cells (Tfh), T-helper type 17 (Th17) cells, CD8 T cells, NK
CD56dim cells, NK CD56bright cells, T-helper type 2 (Th2) cells, Mast cells, plasmacytoid dendritic cells (pDC), immature dendritic Cells (iDC),
Eosinophils, T gamma delta (Tgd). (c) The expressions of four hub genes in OVCA and normal tissues.
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the immunity of patients, which may be a novel prog-
nostic marker for OVCA.32 As a member of the ATP1A
gene family, ATP1A3 can promote tumor proliferation,
invasion, anti-apoptosis, and cell cycle arrest.33 The lat-
est study found that high expression of ATP1A3 is asso-
ciated with poor prognosis in ovarian cancer patients.34

Our study verified the expressions of four hub genes in
OVCA and normal tissues. The expressions of AADAC,
ATP1A3, and CD38 in OVCA were higher than that in
normal, while CACNA1C was contrary, which was con-
sistent with the current research results. Immune corre-
lation analysis showed that the expression of hub genes
was correlated with immune cell infiltration, suggesting
that all the four genes could influence tumor progres-
sion. Our results were consistent with the current
research.

Cramer and Welch proposed in 1983 that excessive
gonadotropin stimulation can lead to ovarian cancer.35

Many studies have shown that GnRH and its synthetic
analogs have direct anti-proliferative effects on OVCA
cell lines.36 The analysis in this study enriched the
gonadotropin-releasing hormone secretion pathway, sug-
gesting that the risk model may be related to the sex hor-
mone secretion status of OVCA patients. For the
lncRNA–miRNA–mRNA ceRNA network of these four
genes, it was found that long non-coding RNAs XIST
and NEAT1 formed the most connections with miRNA-
mRNAs. The latest study found that inhibition of XIST
upregulates microRNA-149-3p to repress ovarian cancer
cell progression.37 Yang et al. showed that NEAT1 pro-
motes the proliferation of ovarian cancer cells and angio-
genesis of co-incubated human umbilical vein endothelial
cells by regulating FGF9 through sponging miR-365.38

Our study provided a theoretical basis for further explo-
ration of their mechanism of action, while the current
research is limited to bioinformatics analysis and simple
expression verification.

Above all, this study was employed to make a cluster
analysis of OVCA samples to construct a nomogram
with m1A as a tag for the first time, where the expression
of four m1A-related biomarkers was converted into a
score to take all of which into consideration for clinical
utilize. Simultaneously, the mRNA expression of these
four hub genes was confirmed using clinical samples and
was considered reliable potential detection targets.
Besides, the immune cell targets and ceRNA network
associated with hub genes were excavated, laying the
foundation for further exploring the impact and underly-
ing mechanism of m1A on OVCA.
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